Brevibacillus laterosporus: A Probiotic with Important Applications in Crop and Animal Production
Abstract
:1. Introduction
2. The Salutary Effects of B. laterosporus on Crops
2.1. Enhances Nutrient Acquisition and Promotes Crop Growth
2.2. Suppresses Reproduction of Harmful Organisms
2.2.1. Inhibits Pathogenic Fungi in Crops
2.2.2. Inhibition of Pathogenic Bacteria in Crops
2.2.3. Inhibits Pests in Crops
3. The Probiotic Effects of B. laterosporus on Animals
3.1. Regulation of Animal Growth
3.2. Regulation of Intestinal Health
3.3. Other Functions
4. B. laterosporus Antimicrobial Peptides
4.1. Structural Features of Brevilaterins
4.2. Mechanisms of Antimicrobial Actions of Brevilaterins
5. Prospects for Industrializing B. laterosporus
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, Z.; Liu, K.; Lu, C.; Yu, J.; Ju, R.; Liu, X. Isolation and characterization of a potential biocontrol Brevibacillus laterosporus. Afr. J. Microbiol. Res. 2011, 5, 2675–2681. [Google Scholar]
- Hassi, M.; El Guendouzi, S.; Haggoud, A.; David, S.; Ibnsouda, S.; Houari, A.; Iraqui, M. Antimycobacterial activity of a Brevibacillus laterosporus strain isolated from a Moroccan soil. Braz. J. Microbiol. 2012, 43, 1516–1522. [Google Scholar] [CrossRef]
- Suslova, M.Y.; Lipko, I.; Mamaeva, E.; Parfenova, V. Diversity of cultivable bacteria isolated from the water column and bottom sediments of the Kara Sea shelf. Microbiology 2012, 81, 484–491. [Google Scholar] [CrossRef]
- Khaled, J.M.; Al-Mekhlafi, F.A.; Mothana, R.A.; Alharbi, N.S.; Alzaharni, K.E.; Sharafaddin, A.H.; Kadaikunnan, S.; Alobaidi, A.S.; Bayaqoob, N.I.; Govindarajan, M. Brevibacillus laterosporus isolated from the digestive tract of honeybees has high antimicrobial activity and promotes growth and productivity of honeybee’s colonies. Environ. Sci. Pollut. Res. 2018, 25, 10447–10455. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Zhang, D.; Li, X.-F.; Ning, Y.-W.; Zhang, F.-J.; Jia, Y.-M. A Study on the Biological Characteristics of Brevibacillus laterosporus S62-9. Mod. Food Sci. Technol. 2016, 32, 52–58. [Google Scholar] [CrossRef]
- Smirnova, T.; Minenkova, I.; Orlova, M.; Lecadet, M.; Azizbekyan, R. The crystal-forming strains of Bacillus laterosporus. Res. Microbiol. 1996, 147, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Laubach, C. Studies on aerobic spore-bearing non-pathogenic bacteria Part II spore-bearing bacteria in dust. J. Bacteriol. 1916, 1, 493–533. [Google Scholar] [CrossRef]
- Shida, O.; Takagi, H.; Kadowaki, K.; Komagata, K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Evol. Microbiol. 1996, 46, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 2013, 4, 476–492. [Google Scholar] [CrossRef]
- Ning, Y.; Han, P.; Ma, J.; Liu, Y.; Fu, Y.; Wang, Z.; Jia, Y. Characterization of brevilaterins, multiple antimicrobial peptides simultaneously produced by Brevibacillus laterosporus S62-9, and their application in real food system. Food Biosci. 2021, 42, 101091. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Shukla, R.; Kumar, R.; Weingarth, M.; Breukink, E.; Kuipers, O.P. Brevibacillin 2V Exerts Its Bactericidal Activity via Binding to Lipid II and Permeabilizing Cellular Membranes. Front. Microbiol. 2021, 12, 694847. [Google Scholar] [CrossRef]
- Prasanna, L.; Eijsink, V.G.; Meadow, R.; Gseidnes, S. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl. Microbiol. Biotechnol. 2013, 97, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Anbu, P. Enhanced production and organic solvent stability of a protease from Brevibacillus laterosporus strain PAP04. Braz. J. Med. Biol. Res. 2016, 49. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Liu, Y.; Han, P.; Hong, D.; Li, S.; Ma, A.; Jia, Y. Brevilaterin B from Brevibacillus laterosporus has selective antitumor activity and induces apoptosis in epidermal cancer. World J. Microbiol. Biotechnol. 2022, 38, 201. [Google Scholar] [CrossRef] [PubMed]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Masciarelli, O.; Llanes, A.; Luna, V. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol. Res. 2014, 169, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Suping, M. Effects of Different Concentrations of Bacillus Subtilis on Soil and Crop Growth. J. Jining Univ. 2016, 37, 38–42. [Google Scholar]
- Zhu, J.; Zhang, S.; Guo, J.; Gao, C.; Tian, W.; Zhou, B. Application Effects of Brevibacillus laterosporus (AMCC 100018) on Greenhouse Cucumber. J. Chang. Veg. 2014, 28, 62–65. [Google Scholar]
- Fitriatin, B.N.; Arief, D.H.; Simarmata, T.; Santosa, D.A.; Joy, B. Phosphatase-producing bacteria isolated from Sanggabuana forest and their capability to hydrolyze organic phosphate. J. Soil Sci. Environ. Manag. 2011, 2, 299–303. [Google Scholar]
- Świątczak, J.; Kalwasińska, A.; Wojciechowska, A.; Brzezinska, M.S. Physiological properties and genomic insights into the plant growth—Promoting rhizobacterium Brevibacillus laterosporus K75 isolated from maize rhizosphere. J. Sci. Food Agric. 2023, 103, 1432–1441. [Google Scholar] [CrossRef]
- Nehra, V.; Saharan, B.S.; Choudhary, M. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus 2016, 5, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wang, X.; An, J.; You, C.; Zhou, B.; Hao, Y. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta. Hortic. Plant J. 2022, 8, 22–34. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Wang, J.; Lv, D.; Ma, Y.; Zhou, B.; Wang, B. Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities. Biol. Control 2017, 106, 89–98. [Google Scholar] [CrossRef]
- Nega, A. Review on concepts in biological control of plant pathogens. J. Biol. Agric. Healthc. 2014, 4, 33–54. [Google Scholar]
- Zhao, J.; Guo, L.; Zeng, H.; Yang, X.; Yuan, J.; Shi, H.; Xiong, Y.; Chen, M.; Han, L.; Qiu, D. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 2012, 33, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, X.; Xiao, C.; Wang, W.; Zhao, X.; Sui, J.; Sa, R.; Guo, T.L.; Liu, X. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J. Microbiol. Biotechnol. 2015, 31, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, D.; Du, C. Studies on fermentation conditions of antimicrobial substances produced by Brevibacillus laterosporus BL-21. Agric. Sci. Technol. 2014, 15, 1852. [Google Scholar]
- Zayed, M.; El-Garawani, I.M.; El-Sabbagh, S.M.; Amr, B.; Alsharif, S.M.; Tayel, A.A.; AlAjmi, M.F.; Ibrahim, H.M.; Shou, Q.; Khalifa, S.A. Structural Diversity, LC-MS-MS Analysis and Potential Biological Activities of Brevibacillus laterosporus Extract. Metabolites 2022, 12, 1102. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Li, H.; Zheng, Z.; Ji, C.; Guo, Q.; Lai, H. Biocontrol effect and mechanism of Bacillus laterosporus Bl13 against early blight disease of tomato. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2021, 32, 299–308. [Google Scholar]
- Saikia, R.; Gogoi, D.; Mazumder, S.; Yadav, A.; Sarma, R.; Bora, T.; Gogoi, B. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiol. Res. 2011, 166, 216–225. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 2012, 50, 403–424. [Google Scholar] [CrossRef]
- Li, W.; Jiang, R. Identification and field application of antagonistic strain X10 against tomato bacterial wilt. Soil Fertil. Sci. China 2007, 44, 60–63. [Google Scholar]
- Li, C.; Shi, W.; Wu, D.; Tian, R.; Wang, B.; Lin, R.; Zhou, B.; Gao, Z. Biocontrol of potato common scab by Brevibacillus laterosporus BL12 is related to the reduction of pathogen and changes in soil bacterial community. Biol. Control 2021, 153, 104496. [Google Scholar] [CrossRef]
- Su, X.-x.; Wan, T.-t.; Gao, Y.-d.; Zhang, S.-h.; Chen, X.; Huang, L.-q.; Wang, W. Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae pv. oryzae causing rice bacterial leaf blight. Arch. Microbiol. 2024, 206, 40. [Google Scholar] [CrossRef]
- Kakar, K.U.; Nawaz, Z.; Cui, Z.; Almoneafy, A.A.; Zhu, B.; Xie, G.-L. Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J. Microbiol. Biotechnol. 2014, 30, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Glare, T.R.; Hampton, J.G.; Cox, M.P.; Bienkowski, D.A. Novel strains of Brevibacillus laterosporus as biocontrol agents against plant pests, particularly Lepidoptera and Diptera. AU20130319915, 22 September 2016. [Google Scholar]
- Khanna, K.; Kohli, S.K.; Ohri, P.; Bhardwaj, R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol. Res. 2021, 248, 126755. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zheng, J.; Zhang, Z.; Peng, D.; Sun, M. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms. Sci. Rep. 2016, 6, 31341. [Google Scholar] [CrossRef]
- Hamze, R.; Ruiu, L. Brevibacillus laterosporus as a natural biological control agent of soil-dwelling nematodes. Agronomy 2022, 12, 2686. [Google Scholar] [CrossRef]
- Huang, X.; Tian, B.; Niu, Q.; Yang, J.; Zhang, L.; Zhang, K. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res. Microbiol. 2005, 156, 719–727. [Google Scholar] [CrossRef]
- Tian, B.; Li, N.; Lian, L.; Liu, J.; Yang, J.; Zhang, K.-Q. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch. Microbiol. 2006, 186, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, G.; Ferrari, C.; Mamberti, S.; Gabrieli, P.; Castelli, M.; Sassera, D.; Ursino, E.; Scoffone, V.C.; Radaelli, G.; Clementi, E. Identification of a Novel Brevibacillus laterosporus Strain with Insecticidal Activity against Aedes albopictus Larvae. Front. Microbiol. 2021, 12, 624014. [Google Scholar] [CrossRef]
- Bedini, S.; Muniz, E.R.; Tani, C.; Conti, B.; Ruiu, L. Insecticidal potential of Brevibacillus laterosporus against dipteran pest species in a wide ecological range. J. Invertebr. Pathol. 2020, 177, 107493. [Google Scholar] [CrossRef]
- Carramaschi, I.N.; Pereira, L.d.A.; Queiroz, M.M.d.C.; Zahner, V. Preliminary screening of the larvicidal effect of Brevibacillus laterosporus strains against the blowfly Chrysomya megacephala (Fabricius, 1794)(Diptera: Calliphoridae). Rev. Soc. Bras. Med. Trop. 2015, 48, 427–431. [Google Scholar] [CrossRef]
- Marche, M.G.; Mura, M.E.; Falchi, G.; Ruiu, L. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis. Sci. Rep. 2017, 7, 43805. [Google Scholar] [CrossRef]
- Schnepf, H.E.; Narva, K.E.; Stockhoff, B.A.; Lee, S.F.; Walz, M.; Sturgis, B. Pesticidal Toxins and Genes from Bacillus Laterosporus Strains. ES19990939705T, 31 March 2010. [Google Scholar]
- Kouadio, J.-L.; Duff, S.; Aikins, M.; Zheng, M.; Rydel, T.; Chen, D.; Bretsnyder, E.; Xia, C.; Zhang, J.; Milligan, J. Structural and functional characterization of Mpp75Aa1.1, a putative beta-pore forming protein from Brevibacillus laterosporus active against the western corn rootworm. PLoS ONE 2021, 16, e0258052. [Google Scholar]
- Zhi, T.; Ma, A.; Liu, X.; Chen, Z.; Li, S.; Jia, Y. Dietary Supplementation of Brevibacillus laterosporus S62-9 Improves Broiler Growth and Immunity by Regulating Cecal Microbiota and Metabolites. Probiotics Antimicrob. Proteins 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Purba, M.; Sepriadi, S.; Trisna, A.; Desnamrina, K.; Hua, L. The effect of Brevibacillus laterosporus texasporus culture on percentage of carcass broilers chickens infected with salmonella pullorum. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Medan, Indonesia, 2022; p. 012133. [Google Scholar]
- Yang, D.; Wang, Z.; Dai, X.; Liu, M.; Zhang, D.; Zeng, Y.; Zeng, D.; Ni, X.; Pan, K. Addition of Brevibacillus laterosporus to the rearing water enhances the water quality, growth performance, antioxidant capacity, and digestive enzyme activity of crucian carp Carassius auratus. Fish. Sci. 2023, 89, 659–670. [Google Scholar] [CrossRef]
- Daode, Y.; Kaikai, L.; Jingjing, S.; Shaojing, G.; Ancheng, Z.; Xiaolu, W.; Ying, F.; Youhong, W.; Hongjun, L. Effects of Adding Brevibacillus laterosporu FAS05 to Feed on the Growth, Disease Resistance, and Immunity of Litopenaeus vannamei. Prog. Fish. Sci. 2023, 44, 144–153. [Google Scholar]
- Liu, X.; Ma, A.; Zhi, T.; Hong, D.; Chen, Z.; Li, S.; Jia, Y. Dietary Effect of Brevibacillus laterosporus S62-9 on Chicken Meat Quality, Amino Acid Profile, and Volatile Compounds. Foods 2023, 12, 288. [Google Scholar] [CrossRef]
- Jiang, Y. BT Lipopeptides Are Used as Therapeutic Agents for Obesity and Related Diseases. CN108478790B, 31 May 2022. [Google Scholar]
- Chen, C.; Li, J.; Zhang, H.; Xie, Y.; Xiong, L.; Liu, H.; Wang, F. Effects of a probiotic on the growth performance, intestinal flora, and immune function of chicks infected with Salmonella pullorum. Poult. Sci. 2020, 99, 5316–5323. [Google Scholar] [CrossRef] [PubMed]
- Weng, G.; Huang, J.; Ma, X.; Song, M.; Yin, Y.; Deng, D.; Deng, J. Brevibacillus laterosporus BL1, a promising probiotic, prevents obesity and modulates gut microbiota in mice fed a high-fat diet. Front. Nutr. 2022, 9, 1050025. [Google Scholar] [CrossRef]
- Bagherzadeh Kasmani, F.; Torshizi, K.; Mehri, M. Effect of Brevibacillus laterosporus probiotic on hematology, internal organs, meat peroxidation and ileal microflora in Japanese quails fed aflatoxin B1. J. Agric. Sci. Technol. 2018, 20, 459–468. [Google Scholar]
- Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals 2013, 6, 1543–1575. [Google Scholar] [CrossRef] [PubMed]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef] [PubMed]
- Olga, K.; Marina, K.; Alexey, A.; Anton, S.; Vladimir, Z.; Igor, T. The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors. Biol. Commun. 2020, 65, 187–199. [Google Scholar]
- Starr, C.G.; Maderdrut, J.L.; He, J.; Coy, D.H.; Wimley, W.C. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides 2018, 104, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Song, Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ji, C.; Sui, J.; Sa, R.; Wang, X.; Liu, X.; Guo, T.L. Antibacterial and antitumor activity of Bogorol B-JX isolated from Brevibacillus laterosporus JX-5. World J. Microbiol. Biotechnol. 2017, 33, 1–11. [Google Scholar] [CrossRef]
- Han, P.; Ma, A.; Ning, Y.; Chen, Z.; Liu, Y.; Liu, Z.; Li, S.; Jia, Y. Global gene-mining strategy for searching nonribosomal peptides as antimicrobial agents from microbial sources. LWT 2023, 180, 114708. [Google Scholar] [CrossRef]
- Barsby, T.; Warabi, K.; Sørensen, D.; Zimmerman, W.T.; Kelly, M.T.; Andersen, R.J. The bogorol family of antibiotics: Template-based structure elucidation and a new approach to positioning enantiomeric pairs of amino acids. J. Org. Chem. 2006, 71, 6031–6037. [Google Scholar] [CrossRef]
- Yang, X.; Huang, E.; Yuan, C.; Zhang, L.; Yousef, A.E. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant Gram-positive bacteria. Appl. Environ. Microbiol. 2016, 82, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, X.; Shukla, R.; Kumar, R.; Weingarth, M.; Breukink, E.; Kuipers, O.P. Brevibacillin 2V, a novel antimicrobial lipopeptide with an exceptionally low hemolytic activity. Front. Microbiol. 2021, 12, 693725. [Google Scholar] [CrossRef]
- Wu, X.; Ballard, J.; Jiang, Y.W. Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Appl. Environ. Microbiol. 2005, 71, 8519–8530. [Google Scholar] [CrossRef] [PubMed]
- Odah, K.A.; Dong, W.-L.; Lei, L.; Atiah, L.A.; Wang, Y.-m.; Kong, L.-C.; Ma, H.-X. Isolation, identification, and characterization of a novel bacteriocin produced by Brevibacillus laterosporus DS-3 against methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Pept. Res. Ther. 2020, 26, 709–715. [Google Scholar] [CrossRef]
- Liu, Y.; Han, P.; Jia, Y.; Chen, Z.; Li, S.; Ma, A. Antibacterial regularity mining beneath the systematic activity database of lipopeptides Brevilaterins: An instructive activity handbook for its food application. Foods 2022, 11, 2991. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, E.; Yousef, A.E. Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staphylococcus aureus. Microbiol. Res. 2017, 195, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, L.; Lu, F.; Bie, X.; Zhao, H.; Zhang, C.; Lu, Z.; Lu, Y. Discovery of a novel antimicrobial lipopeptide, brevibacillin V, from Brevibacillus laterosporus fmb70 and its application on the preservation of skim milk. J. Agric. Food Chem. 2019, 67, 12452–12460. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, X.; Han, P.; Liu, Y.; Hong, D.; Li, S.; Ma, A.; Jia, Y. Discovery of novel antimicrobial peptides, Brevilaterin V, from Brevibacillus laterosporus S62-9 after regulated by exogenously-added L-valine. LWT 2022, 155, 112962. [Google Scholar] [CrossRef]
- Wu, Y.; Nie, T.; Meng, F.; Zhou, L.; Chen, M.; Sun, J.; Lu, Z.; Lu, Y. The determination of antibacterial mode for cationic lipopeptides brevibacillins against Salmonella typhimurium by quantum chemistry calculation. Appl. Microbiol. Biotechnol. 2021, 105, 5643–5655. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Y.; Chen, Z.; Han, P.; Zhi, T.; Li, S.; Ma, A.; Jia, Y. Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. Food Sci. Hum. Wellness 2023, 12, 1359–1368. [Google Scholar] [CrossRef]
- Fang, L.; Hongqu, W.; Shaohua, W.; Wei, F.; Kaimei, W. The Application Potential of Brevibacillus laterosporus in Agriculture. Chin. J. Biol. Control 2023, 39, 231. [Google Scholar]
- Ren, L.; Li, J.; Li, H.; Guo, Z.; Li, J.; Lv, Y. Inoculating exogenous bacterium Brevibacillus laterosporus ZR-11 at maturity stage accelerates composting maturation by regulating physicochemical parameters and indigenous bacterial community succession. Environ. Sci. Pollut. Res. 2023, 30, 110888–110900. [Google Scholar] [CrossRef] [PubMed]
Strains | Pathogenic Fungi | Anti-Fungal Activity * | Reference |
---|---|---|---|
B. laterosporus ZQ2 | Rhizoctonia solani, | Growth inhibition was 80.17% | [1] |
B. laterosporus JX-5 | Botryosphaeria dothidea | Biocontrol efficacy was 70% | [26] |
B. laterosporus A60 | Phytophthora capsici | Biocontrol efficacy was 96.55% | [25] |
B. laterosporus Bl13 | Alternaria solani | Biocontrol efficacy was 26.7% | [29] |
B. laterosporus BPM3 | Magnaporthe grisea Cav. | Biocontrol efficacy ranged from 30% to 67% | [30] |
B. laterosporus K75 | Fusarium oxysporum | Growth inhibition was 26% | [20] |
Strains | Species of Animals | Status of Improvement | Reference |
---|---|---|---|
B. laterosporus S62-9 | arbor acre male broiler | Body weight exhibited a 7.2% increase, while the feed conversion rate (FCR) demonstrated a significant decrease of 5.19%, leading to an overall enhancement in production performance | [48] |
B. laterosporus Texasporus | male broiler | The carcass percentage was increased by 1.11%, which improved the production performance | [49] |
B. laterosporus PBC01 | crucian carp | Weight gain rate (WGR) and specific growth rate (SGR) were significantly increased by 32.19% and 0.24%, and FCR was decreased by 0.28, which improved the production performance | [50] |
B. laterosporus FAS05 | Litopenaeus vannamei | SGR significantly increased by 0.5% (p < 0.05) to improve production performance | [51] |
B. laterosporus S62-9 | arbor acre male broiler | The meat quality of broilers could be enhanced through significant improvements in breast muscle color (0.5% decrease in lightness and 0.54% increase in redness) as well as muscle chemistry (0.05% increase in protein content) | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zai, X.; Weng, G.; Ma, X.; Deng, D. Brevibacillus laterosporus: A Probiotic with Important Applications in Crop and Animal Production. Microorganisms 2024, 12, 564. https://doi.org/10.3390/microorganisms12030564
Liu Y, Zai X, Weng G, Ma X, Deng D. Brevibacillus laterosporus: A Probiotic with Important Applications in Crop and Animal Production. Microorganisms. 2024; 12(3):564. https://doi.org/10.3390/microorganisms12030564
Chicago/Turabian StyleLiu, Yucheng, Xueying Zai, Guangying Weng, Xianyong Ma, and Dun Deng. 2024. "Brevibacillus laterosporus: A Probiotic with Important Applications in Crop and Animal Production" Microorganisms 12, no. 3: 564. https://doi.org/10.3390/microorganisms12030564
APA StyleLiu, Y., Zai, X., Weng, G., Ma, X., & Deng, D. (2024). Brevibacillus laterosporus: A Probiotic with Important Applications in Crop and Animal Production. Microorganisms, 12(3), 564. https://doi.org/10.3390/microorganisms12030564