Machine Learning to Identify Critical Biomarker Profiles in New SARS-CoV-2 Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Samples
2.2. Patient Cohort
2.3. Statistical Analyses
False Positive (FP): current value Beta variant/Unvaccinated < arithmetic mean other variant/Vaccinated
True Negative (TN): arithmetic mean Beta variant/Unvaccinated > current value other variant/Vaccinated
False Negative (FN): arithmetic mean Beta variant/Unvaccinated < current value other variant/Vaccinated
2.4. Groups
3. Results
Vaccinated Samples Resulted in z-Scores Higher Than 1 for EIF1AY
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, S.R.; Leibowitz, J.L. Coronavirus Pathogenesis. Adv. Virus Res. 2011, 81, 85–164. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Song, Y.; Shi, M.; Cheng, Y.; Zhang, W.; Xia, X.-Q. Inferring the Hosts of Coronavirus Using Dual Statistical Models Based on Nucleotide Composition. Sci. Rep. 2015, 5, 17155. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.R.; Navas-Martin, S. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiol. Mol. Biol. Rev. 2005, 69, 635–664. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Mechanisms of SARS-CoV-2 Entry into Cells|Nature Reviews Molecular Cell Biology. Available online: https://www.nature.com/articles/s41580-021-00418-x (accessed on 27 August 2023).
- He, F.; Deng, Y.; Li, W. Coronavirus Disease 2019: What We Know? J. Med. Virol. 2020, 92, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Salas, E.; Francisco-Velilla, R.; Fernandez-Chamorro, J.; Embarek, A.M. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front. Microbiol. 2017, 8, 2629. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kohalmi, S.E.; Svircev, A.; Wang, A.; Sanfaçon, H.; Tian, L. Silencing of the Host Factor eIF(Iso)4E Gene Confers Plum Pox Virus Resistance in Plum. PLoS ONE 2013, 8, e50627. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, U.; Powell, P.; Goss, D.J. Eukaryotic Initiation Factor (eIF) 3 Mediates Barley Yellow Dwarf Viral mRNA 3′-5′ UTR Interactions and 40S Ribosomal Subunit Binding to Facilitate Cap-Independent Translation. Nucleic Acids Res. 2019, 47, 6225–6235. [Google Scholar] [CrossRef]
- Wuerth, J.D.; Habjan, M.; Kainulainen, M.; Berisha, B.; Bertheloot, D.; Superti-Furga, G.; Pichlmair, A.; Weber, F. eIF2B as a Target for Viral Evasion of PKR-Mediated Translation Inhibition. mBio 2020, 11, e00976-20. [Google Scholar] [CrossRef]
- Nicaise, V.; German-Retana, S.; Sanjuán, R.; Dubrana, M.-P.; Mazier, M.; Maisonneuve, B.; Candresse, T.; Caranta, C.; LeGall, O. The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce Mosaic Virus. Plant Physiol. 2003, 132, 1272–1282. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Berche, P. Gain-of-Function and Origin of COVID19. Presse Med. 2023, 52, 104167. [Google Scholar] [CrossRef] [PubMed]
- Morens, D.M.; Breman, J.G.; Calisher, C.H.; Doherty, P.C.; Hahn, B.H.; Keusch, G.T.; Kramer, L.D.; LeDuc, J.W.; Monath, T.P.; Taubenberger, J.K. The Origin of COVID-19 and Why It Matters. Am. J. Trop. Med. Hyg. 2020, 103, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Knabl, L.; Mitra, T.; Kimpel, J.; Roessler, A.; Volland, A.; Walser, A.; Ulmer, H.; Pipperger, L.; Binder, S.C.; Riepler, L.; et al. High SARS-CoV-2 Seroprevalence in Children and Adults in the Austrian Ski Resort Ischgl. Epidemiology 2020. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 Among Children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.; Mathews, M.B.; Mohr, I. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harb. Perspect. Biol. 2013, 5, a012351. [Google Scholar] [CrossRef] [PubMed]
- Krähling, V.; Stein, D.A.; Spiegel, M.; Weber, F.; Mühlberger, E. Severe Acute Respiratory Syndrome Coronavirus Triggers Apoptosis via Protein Kinase R but Is Resistant to Its Antiviral Activity. J. Virol. 2009, 83, 2298–2309. [Google Scholar] [CrossRef]
- de Breyne, S.; Vindry, C.; Guillin, O.; Condé, L.; Mure, F.; Gruffat, H.; Chavatte, L.; Ohlmann, T. Translational Control of Coronaviruses. Nucleic Acids Res. 2020, 48, 12502–12522. [Google Scholar] [CrossRef]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; et al. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature 2020, 583, 459–468. [Google Scholar] [CrossRef]
- Sa Ribero, M.; Jouvenet, N.; Dreux, M.; Nisole, S. Interplay between SARS-CoV-2 and the Type I Interferon Response. PLoS Pathog. 2020, 16, e1008737. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, L.H.; Yamada, Y.; Liu, D.X. Coronavirus Spike Protein Inhibits Host Cell Translation by Interaction with eIF3f. PLoS ONE 2008, 3, e1494. [Google Scholar] [CrossRef]
- Liu, L.; Iketani, S.; Guo, Y.; Chan, J.F.-W.; Wang, M.; Liu, L.; Luo, Y.; Chu, H.; Huang, Y.; Nair, M.S.; et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. Nature 2022, 602, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Paredes, M.I.; Lunn, S.M.; Famulare, M.; Frisbie, L.A.; Painter, I.; Burstein, R.; Roychoudhury, P.; Xie, H.; Mohamed Bakhash, S.A.; Perez, R.; et al. Associations between SARS-CoV-2 Variants and Risk of COVID-19 Hospitalization among Confirmed Cases in Washington State: A Retrospective Cohort Study. medRxiv 2022. [Google Scholar] [CrossRef]
- Kalisch, M.; Mächler, M.; Colombo, D.; Maathuis, M.H.; Bühlmann, P. Causal Inference Using Graphical Models with the R Package Pcalg. J. Stat. Softw. 2012, 47, 1–26. [Google Scholar] [CrossRef]
- Rashidi, H.H.; Pepper, J.; Howard, T.; Klein, K.; May, L.; Albahra, S.; Phinney, B.; Salemi, M.R.; Tran, N.K. Comparative Performance of Two Automated Machine Learning Platforms for COVID-19 Detection by MALDI-TOF-MS. PLoS ONE 2022, 17, e0263954. [Google Scholar] [CrossRef] [PubMed]
- Smolander, J.; Dehmer, M.; Emmert-Streib, F. Comparing Deep Belief Networks with Support Vector Machines for Classifying Gene Expression Data from Complex Disorders. FEBS Open Bio 2019, 9, 1232–1248. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Knabl, L.; Knabl, L.; Wieser, M.; Mur, A.; Zabernigg, A.; Schumacher, J.; Kapferer, S.; Kaiser, N.; Furth, P.A.; et al. Immune Transcriptome Analysis of COVID-19 Patients Infected with SARS-CoV-2 Variants Carrying the E484K Escape Mutation Identifies a Distinct Gene Module. Sci. Rep. 2022, 12, 2784. [Google Scholar] [CrossRef] [PubMed]
- Knabl, L.; Lee, H.K.; Wieser, M.; Mur, A.; Zabernigg, A.; Knabl, L.; Rauch, S.; Bock, M.; Schumacher, J.; Kaiser, N.; et al. BNT162b2 Vaccination Enhances Interferon-JAK-STAT-Regulated Antiviral Programs in COVID-19 Patients Infected with the SARS-CoV-2 Beta Variant. Commun. Med. 2022, 2, 17. [Google Scholar] [CrossRef]
- Rössler, A.; Knabl, L.; von Laer, D.; Kimpel, J. Neutralization Profile after Recovery from SARS-CoV-2 Omicron Infection. N. Engl. J. Med. 2022, 386, 1764–1766. [Google Scholar] [CrossRef]
Pooled Group | n Patients | n Male, n Female | Median Age | Severity |
---|---|---|---|---|
Alpha 1 | 31 | 15, 16 | 67 | - |
Alpha 2 | 29 | 13, 16 | 72 | - |
Alpha 3 | 5 | 4, 1 | 65 | - |
Alpha + EK 1 | 13 | 8, 5 | 74 | - |
Alpha + EK 2 | 10 | 7, 3 | 77 | - |
Alpha + EK 3 | 7 | 4, 3 | 80 | - |
Beta unvaccinated 1 | 5 | 1, 4 | 62 | 0 mild 3 moderate 2 severe |
Beta unvaccinated 2 | 5 | 1, 4 | 62 | - |
Beta unvaccinated 3 | 4 | 1, 3 | 68 | - |
Beta vaccinated 1 | 4 | 2, 2 | 82 | 1 mild 0 moderate 3 severe |
Beta vaccinated 2 | 3 | 2, 1 | 80 | - |
Beta vaccinated 3 | 3 | 2, 1 | 80 | - |
Omicron vaccination 1 | 22 | - | - | - |
Omicron vaccination 2 | 21 | - | - | - |
Omicron unvaccinated 1 | 44 | - | - | - |
Omicron unvaccinated 2 | 41 | - | - | - |
Sample Number | Variant | Vaccination State |
---|---|---|
1 | Alpha | Unvaccinated |
2 | Alpha | Unvaccinated |
3 | Alpha | Unvaccinated |
4 | Alpha + E484K | Unvaccinated |
5 | Alpha + E484K | Unvaccinated |
6 | Alpha + E484K | Unvaccinated |
7 | Beta | Unvaccinated |
8 | Beta | Unvaccinated |
9 | Beta | Unvaccinated |
10 | Beta | Vaccinated |
11 | Beta | Vaccinated |
12 | Beta | Vaccinated |
13 | Omicron | Unvaccinated |
14 | Omicron | Unvaccinated |
15 | Omicron | Vaccinated |
16 | Omicron | Vaccinated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schatz, C.; Knabl, L.; Lee, H.K.; Seeboeck, R.; von Laer, D.; Lafon, E.; Borena, W.; Mangge, H.; Prüller, F.; Qerimi, A.; et al. Machine Learning to Identify Critical Biomarker Profiles in New SARS-CoV-2 Variants. Microorganisms 2024, 12, 798. https://doi.org/10.3390/microorganisms12040798
Schatz C, Knabl L, Lee HK, Seeboeck R, von Laer D, Lafon E, Borena W, Mangge H, Prüller F, Qerimi A, et al. Machine Learning to Identify Critical Biomarker Profiles in New SARS-CoV-2 Variants. Microorganisms. 2024; 12(4):798. https://doi.org/10.3390/microorganisms12040798
Chicago/Turabian StyleSchatz, Christoph, Ludwig Knabl, Hye Kyung Lee, Rita Seeboeck, Dorothee von Laer, Eliott Lafon, Wegene Borena, Harald Mangge, Florian Prüller, Adelina Qerimi, and et al. 2024. "Machine Learning to Identify Critical Biomarker Profiles in New SARS-CoV-2 Variants" Microorganisms 12, no. 4: 798. https://doi.org/10.3390/microorganisms12040798
APA StyleSchatz, C., Knabl, L., Lee, H. K., Seeboeck, R., von Laer, D., Lafon, E., Borena, W., Mangge, H., Prüller, F., Qerimi, A., Wilflingseder, D., Posch, W., & Haybaeck, J. (2024). Machine Learning to Identify Critical Biomarker Profiles in New SARS-CoV-2 Variants. Microorganisms, 12(4), 798. https://doi.org/10.3390/microorganisms12040798