Cyclofaulknamycin with the Rare Amino Acid D-capreomycidine Isolated from a Well-Characterized Streptomyces albus Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Recombinant DNA Techniques
2.3. Construction of the delXNR_1347 BAC Vector
2.4. Construction of the S. albus delXNR_1347 Mutant
2.5. Metabolite Extraction and Analysis
2.6. Isolation and Purification of Cyclic and Linear Iso-Faulknamycin
2.7. Nuclear Molecular Resonance Spectroscopy (NMR)
2.8. Marfey’s Method
2.9. Genome Mining and Bioinformatic Analysis
2.10. Antimicrobial Susceptibility Test
3. Results and Discussion
3.1. Mining of Actinobacterial Genomes for the Presence of Capreomycidine Biosynthetic Genes
3.2. Analysis of an flk Gene Cluster in the S. albus Genome
3.3. Identification of the flk Cluster Product
3.4. Purification and Structural Elucidation of Iso- and Cyclofaulknamycins
3.5. Deletion of the XNR1347 Gene in the S. albus del9 Genome
3.6. Proposed Biosynthesis of Cyclofaulknamycin
3.7. Bioactivity Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcone, G.L.; Binda, E.; Berini, F.; Marinelli, F. Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnol. Adv. 2018, 36, 534–554. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, Y.; Chen, H.; Wu, C.; Zhang, H.; Chen, L.; Chen, X. Antifungal peptides produced by actinomycetes and their biological activities against plant diseases. J. Antibiot. 2020, 73, 265–282. [Google Scholar] [CrossRef]
- Hudson, G.A.; Mitchell, D.A. RiPP antibiotics: Biosynthesis and engineering potential. Curr. Opin. Microbiol. 2018, 45, 61–69. [Google Scholar] [CrossRef]
- Strieker, M.; Tanović, A.; Marahiel, M.A. Nonribosomal peptide synthetases: Structures and dynamics. Curr. Opin. Struct. Biol. 2010, 20, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Felnagle, E.A.; Jackson, E.E.; Chan, Y.A.; Podevels, A.M.; Berti, A.D.; McMahon, M.D.; Thomas, M.G. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 2008, 5, 191–211. [Google Scholar] [CrossRef]
- Thomas, M.G.; Chan, Y.A.; Ozanick, S.G. Deciphering tuberactinomycin biosynthesis: Isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster. Antimicrob. Agents Chemother. 2003, 47, 2823–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, D.J.; Naysmith, B.J.; Furkert, D.P.; Brimble, M.A. Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis. Beilstein J. Org. Chem. 2016, 12, 2325–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, P.J.; Wang, T.Z.; Dushin, R.G.; Bradford, P.A. Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin, and other antimicrobial agents against gram-positive clinical isolates. Antimicrob. Agents Chemother. 2004, 48, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Magarvey, N.A.; Haltli, B.; He, M.; Greenstein, M.; Hucul, J.A. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrob. Agents Chemother. 2006, 50, 2167–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Zabriskie, T.M. The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology 2006, 152, 2969–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Mandalapu, D.; Ji, X.; Gao, J.; Zhang, Q. Chemistry and biology of teixobactin. Chemistry 2018, 24, 5406–5422. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, E.; et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Eagle, M.C.; LaCasse, M.L. In vitro chemotherapeutic combinations against isoniazid-resistant Mycobacterium tuberculosis and Mycobacterium fortuitum. Appl. Microbiol. 1971, 22, 329–333. [Google Scholar] [CrossRef]
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta 2006, 1758, 1184–1202. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; Lee, M.K.; Kim, K.L.; Hahm, K.S. Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int. J. Pept. Protein Res. 1996, 48, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, E.; Stachurski, O.; Neubauer, D.; Małuch, I.; Wyrzykowski, D.; Bauer, M.; Brzozowski, K.; Kamysz, W. Short arginine-rich lipopeptides: From self-assembly to antimicrobial activity. Biochim. Biophys. Acta Biomembr. 2018, 1860, 2242–2251. [Google Scholar] [CrossRef]
- Antonoplis, A.; Zang, X.; Wegner, T.; Wender, P.A.; Cegelski, L. A vancomycin-arginine conjugate inhibits growth of carbapenem-resistant E. coli and targets cell-wall synthesis. ACS Chem. Biol. 2019, 14, 2065–2070. [Google Scholar] [CrossRef]
- Myronovskyi, M.; Rosenkränzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetskyy, A. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng. 2018, 49, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Tryon, J.H.; Rote, J.C.; Chen, L.; Robey, M.T.; Vega, M.M.; Phua, W.C.; Metcalf, W.M.; Ju, K.-S.; Kelleher, N.L.; Thomson, R.J. Genome mining and metabolomics uncover a rare d-capreomycidine containing natural product and its biosynthetic gene cluster. ACS Chem. Biol. 2020, 15, 3013–3020. [Google Scholar] [CrossRef]
- Fu, J.; Wenzel, S.C.; Perlova, O.; Wang, J.; Gross, F.; Tang, Z.; Yin, Y.; Stewart, A.F.; Müller, R.; Zhang, Y. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res. 2008, 36, e113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Muyrers, J.P.P.; Testa, G.; Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 2000, 18, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics, 2nd ed.; John Innes Foundation: Norwich, UK, 2000. [Google Scholar]
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Harbor, NY, USA, 2001. [Google Scholar]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Y.; van Wezel, G.P. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, gkab335. [Google Scholar]
- Yin, X.; McPhail, K.L.; Kim, K.J.; Zabriskie, T.M. Formation of the nonproteinogenic amino acid 2S,3R-capreomycidine by VioD from the viomycin biosynthesis pathway. ChemBioChem 2004, 5, 1278–1281. [Google Scholar] [CrossRef]
- Kohli, R.M.; Walsh, C.T. Enzymology of acyl chain macrocyclization in natural product biosynthesis. Chem. Commun. 2003, 3, 297–307. [Google Scholar] [CrossRef]
- Baltz, R.H. Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J. Ind. Microbiol. Biotechnol. 2011, 38, 1747–1760. [Google Scholar] [CrossRef] [PubMed]
- Hackl, S.; Bechthold, A. The gene bldA, a regulator of morphological differentiation and antibiotic production in streptomyces. Arch. Pharm. 2015, 348, 455–462. [Google Scholar] [CrossRef]
- Harada, K.; Fujii, K.; Hayashi, K.; Suzuki, M.; Ikai, Y.; Oka, H. Application of d,l-FDLA derivatization to determination of absolute configuration of constituent amino acids in peptide by advanced Marfey’s method. Tetrahedron Lett. 1996, 37, 3001–3004. [Google Scholar] [CrossRef]
- Rebets, Y.; Broetz, E.; Tokovenko, B.; Luzhetskyy, A. Actinomycetes biosynthetic potential: How to bridge in silico and in vivo? J. Ind. Microbiol. Biotechnol. 2014, 41, 387–402. [Google Scholar] [CrossRef]
- Belknap, K.C.; Park, C.J.; Barth, B.M.; Andam, C.P. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep. 2020, 10, 2003. [Google Scholar] [CrossRef]
Bacterial Strains and Plasmids | Description | Source or Reference |
---|---|---|
S. albus J1074 | Isoleucine and valine auxotrophic derivative of S. albus G (DSM 40313) lacking SalI-restriction activity | Salas J., Oviedo, Spain |
S. albus del9 | S. albus G (DSM 40313) lacking 9 secondary metabolite gene clusters | This work |
S. albus del10 | S. albus G (DSM 40313) lacking 10 secondary metabolite gene clusters | This work |
S. albus del9 delXNR_1347 | S. albus del9 strain carrying the deletion of the XNR_1347 gene | This work |
E. coli ET12567 (pUB307) | conjugative transfer of DNA | Kieser et al., 2000 |
E. coli GB05-red | Derivative of GB2005 containing integration of PBAD-ETgA operon | Zhang et al., 2000 |
pSMART | Chloramphenicol-resistant, general cloning BAC vector | Thermo Fisher Scientific |
2K9/2 | pSMART derivative containing a piece of the S. albus J1074 chromosome | Myronovskyi et al., 2018 |
2K9/2delXNR_1347 | 2K9/2 derivative containing deleted XNR_1347 gene | This work |
Primers | Sequence 5′-3′ | Purpose |
---|---|---|
XNR_1347RedFor | TGGAGCGGGAGCGCGAGCAGGACGAGCGGCGCGAGCGGGCGTGAGCCGCCGGGTGCCCGCGCCCGGTCATATCCATCCTTTTTCGCACGATATAC | XNR_1347 gene deletion |
XNR_1347RedRev | CGACGCCTGGCTGCCGGGGCTCCCGCGCGGGTCCGTAGAATCGGCCCCACCATGGCCTACCTCGACCACCAGATTACGCGCAGAAAAAAAGGATCTC | |
XNR_1347F | AAGAAGCAGCTGGAGCGGGAG | XNR_1347 gene deletion check |
XNR_1347R | ACCATGGCCTACCTCGACCAC |
Domain | NRPS Signature Position of the Residues | Predicted Substrate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
235 | 236 | 239 | 278 | 299 | 301 | 322 | 330 | 331 | 517 | ||
A1 | D | A | W | T | V | A | A | V | C | K | Phe |
A2 | D | G | M | L | V | G | A | V | V | K | Leu |
A3 | D | A | F | W | L | G | G | T | F | K | Val |
A4 | D | L | A | E | S | G | A | V | D | K | Arg, Orn, Lys |
A5 | D | F | W | S | V | G | M | V | H | K | Thr |
A6 | D | F | W | S | V | G | M | V | H | K | Thr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horbal, L.; Stierhof, M.; Palusczak, A.; Eckert, N.; Zapp, J.; Luzhetskyy, A. Cyclofaulknamycin with the Rare Amino Acid D-capreomycidine Isolated from a Well-Characterized Streptomyces albus Strain. Microorganisms 2021, 9, 1609. https://doi.org/10.3390/microorganisms9081609
Horbal L, Stierhof M, Palusczak A, Eckert N, Zapp J, Luzhetskyy A. Cyclofaulknamycin with the Rare Amino Acid D-capreomycidine Isolated from a Well-Characterized Streptomyces albus Strain. Microorganisms. 2021; 9(8):1609. https://doi.org/10.3390/microorganisms9081609
Chicago/Turabian StyleHorbal, Liliya, Marc Stierhof, Anja Palusczak, Nikolas Eckert, Josef Zapp, and Andriy Luzhetskyy. 2021. "Cyclofaulknamycin with the Rare Amino Acid D-capreomycidine Isolated from a Well-Characterized Streptomyces albus Strain" Microorganisms 9, no. 8: 1609. https://doi.org/10.3390/microorganisms9081609
APA StyleHorbal, L., Stierhof, M., Palusczak, A., Eckert, N., Zapp, J., & Luzhetskyy, A. (2021). Cyclofaulknamycin with the Rare Amino Acid D-capreomycidine Isolated from a Well-Characterized Streptomyces albus Strain. Microorganisms, 9(8), 1609. https://doi.org/10.3390/microorganisms9081609