Evaluation of Near Infrared Spectroscopy (NIRS) and Remote Sensing (RS) for Estimating Pasture Quality in Mediterranean Montado Ecosystem
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Evaluation of Near Infrared Spectroscopy (NIRS) Approach
2.1.1. Pasture Sample Collection and Chemical Processing
2.1.2. Sample Spectra Acquisition and Processing
2.1.3. Statistical Analysis
2.2. Evaluation of Remote Sensing (RS) Approach
2.2.1. Pasture Sample Collection and Chemical Processing
2.2.2. Sample Spectra Acquisition and Processing
2.2.3. Statistical Analysis
3. Results
3.1. Evaluation of Near Infrared Spectroscopy (NIRS)
- (i)
- The “raw spectra” procedure for CP prediction model due to the highest RPD (4.0) and R2 (0.844) and the lowest RMSE (1.622) and bias (0.057) of the external validation model (Table 3).
- (ii)
- The “normalization and SNV” pre-processing for the NDF prediction model due to the highest RPD (2.4) and R2 (0.826) and lowest RMSE (4.200) of the external validation model (Table 3).
- (iii)
- The “raw spectra” procedure for the PQI prediction model due to the highest RPD (3.2) and R2 (0.808) and lowest RMSE (0.066) and bias (0.009) of the external validation model (Table 3).
3.2. Evaluation of Remote Sensing (RS)
4. Discussion
4.1. Evaluation of Near Infrared Spectroscopy (NIRS)
4.2. Evaluation of Remote Sensing (RS)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Monitoring seasonal pasture quality degradation in the Mediterranean montado ecosystem: Proximal versus remote sensing. Water 2018, 10, 1422. [Google Scholar] [CrossRef] [Green Version]
- Efe Serrano, J. Pastures in Alentejo: Technical Basis for Characterization, Grazing and Improvement; Universidade de Évora—ICAM, Ed.; Gráfica Eborense: Évora, Portugal, 2006; pp. 165–178. [Google Scholar]
- Bell, M.J.; Mereu, L.; Davis, J. The use of mobile near-infrared spectroscopy for real-time pasture management. Front. Sustain. Food Syst. 2018, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lugassi, R.; Chudnovsky, A.; Zaady, E.; Dvash, L.; Goldshleger, N. Spectral slope as an indicator of pasture quality. Remote Sens. 2015, 7, 256–274. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a Mediterranean agro-silvo-pastoral system. Water 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Sheep, 6th ed.; National Academy Press: Washington, DC, USA, 1985; Volume 5. [Google Scholar]
- Lumbierres, M.; Méndez, P.F.; Bustamante, J.; Soriguer, R.; Santamaria, L. Modeling biomass production in seasonal wetlands using Modis NDVI land surface phenology. Remote Sens. 2017, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Louhaichi, M.; Hassan, S.; Clifton, K.; Johnson, D.E. A reliable and non-destructive method for estimating forage shrub cover and biomass in arid environments using digital vegetation charting technique. Agrofor. Syst. 2018, 92, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- Teye, E.; Amuah, C.L.Y.; McGrath, T.; Elliott, C. Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 217, 147–154. [Google Scholar] [CrossRef]
- Swart, E.; Brand, T.S.; Engelbrecht, J. The use of near infrared spectroscopy (NIRS) to predict the chemical composition of feed samples used in ostrich total mixed rations. S. Afr. J. Anim. Sci. 2012, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, T.B.; Sharma, S.; Chattopadhyay, K. Development of NIRS models to predict protein and amylase content of brown rice and proximate compositions of rice bran. Food Chem. 2016, 191, 21–27. [Google Scholar] [CrossRef]
- Véstia, J.; Barroso, J.M.; Ferreira, H.; Gaspar, L.; Rato, A.E. Predicting calcium in grape must and base wine by FT-NIR spectroscopy. Food Chem. 2019, 276, 71–76. [Google Scholar] [CrossRef]
- Musingarabwi, D.M.; Nieuwoudt, H.H.; Young, P.R.; Eyeghe-Bickong, H.A.; Vivier, M.A. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem. 2016, 190, 253–262. [Google Scholar] [CrossRef]
- Corson, D.C.; Waghorn, G.C.; Ulyatt, M.J.; Lee, J. NIRS: Forage analysis and livestock feeding. Proc. N. Z. Grassl. Assoc. 1999, 61, 127–132. [Google Scholar]
- Givens, D.I.; Deaville, E.R. The current and future role of near infrared reflectance spectroscopy in animal nutrition: A review. Aust. J. Agric. Res. 1999, 50, 1131–1145. [Google Scholar] [CrossRef]
- Danieli, P.P.; Carlini, P.; Bernabucci, U.; Ronchi, B. Quality evaluation of regional forage resources by means of near infrared reflectance spectroscopy. Ital. J. Anim. Sci. 2004, 3, 363–376. [Google Scholar] [CrossRef]
- Rio-Mena, T.; Willemen, L.; Tesfamariama, G.T.; Beukes, O.; Nelson, A. Remote sensing for mapping ecosystem services to support evaluation of ecological restoration interventions in an arid landscape. Ecol. Indic. 2020, 113, 106182. [Google Scholar] [CrossRef]
- Reddy, A.R.; Chaitanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Sales-Baptista, E.; Ferraz de Oliveira, I.; Lopes de Castro, J. Tree influence on soil and pasture: Contribution of proximal sensing to pasture productivity and quality estimation in montado ecosystems. Int. J. Remote Sens. 2018, 39, 4801–4829. [Google Scholar] [CrossRef]
- Handcock, R.N.; Gobbett, D.L.; González, L.A.; Bishop-Hurley, G.J.; McGavin, S.L. A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures. Biogeosciences 2016, 13, 4673–4695. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Method of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, AT, USA, 2005. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fibre Analysis (Apparatus Reagents, Procedures and Some Applications); Agriculture Handbook no. 379, USDA-ARS: Albany, NY, USA, 1970. [Google Scholar]
- Milinovic, J.; Garcia, R.; Rato, A.E.; Cabrita, M.J. Rapid assessment of monovarietal portuguese Extra Virgin Olive Oil’s (EVOO’s) fatty acids by Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS). Eur. J. Lipid Sci. Technol. 2020, 121, 1800392. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression: A basic tool of Chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Murray, I. Forage Analysis by Near Infrared Spectroscopy. In Sward Measurement Handbook, 2nd ed.; Davies, A., Baker, R.D., Grant, S.A., Laidlaw, A.S., Eds.; The British Grassland Society: Reading, UK, 1993. [Google Scholar]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Progress Report RSC 1978-1; Remote-Sensing Center, Texas A&M Univ.: College Station, TX, USA, 1973. [Google Scholar]
- Gao, B.-C. NDWI -A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Valero, C.; Momin, M.A.; Kaur, A.; Slaughter, D.C. Performance Evaluation of two commercially available portable spectrometers to non-invasively determine table grape and peach quality attributes. Agronomy 2020, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Aleixandre-Tudo, J.L.; Nieuwoudt, H.; Olivieri, A.; Aleixandre, J.L.; Toit, W. Phenolic profiling of grapes, fermenting samples and wines using UV-Visible spectroscopy with chemometrics. Food Control 2018, 85, 11–22. [Google Scholar] [CrossRef]
- Garcia, J.; Cozzolino, D. Use of near infrared reflectance (NIR) spectroscopy to predict chemical composition of forages in broad-based calibration models. Agric Tech. 2006, 66, 41–47. [Google Scholar] [CrossRef]
- Shenk, J.S.; Werterhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Espectroscopy; Infrasoft International: Port Matilda, PA, USA, 1993; pp. 116–187. [Google Scholar]
- Batten, G.D. Plant analysis using near infrared reflectance spectroscopy: The potential and the limitations. Aust. J. Exp. Agric. 1998, 38, 697–706. [Google Scholar] [CrossRef]
- Fagan, C.C.; Everard, C.D.; McDonnell, K. Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresour. Technol. 2011, 102, 5200–5206. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett. 2008, 35, L22401. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.; Ash, A.J. Tree-grass relationships in open eucalypt woodlands of northeastern Australia: Influence of trees on pasture productivity, forage quality and species distribution. Agrofor. Syst. 1998, 40, 159–176. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, S.; Piles, M.; Sánchez, N.; Martínez-Fernández, J.; Vall-llossera, M.; Camps, A. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. J. Hidrol. 2014, 516, 273–283. [Google Scholar] [CrossRef]
- Maki, M.; Ishiahra, M.; Tamura, M. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sens. Environ. 2004, 90, 441–450. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry. Grass Forage Sci. 2013, 68, 110–119. [Google Scholar] [CrossRef]
Site | Coordinates | Pasture Type | Predominant Trees | Animal Species |
---|---|---|---|---|
“AZI” | 38°6.2′ N; 8°26.9′ W | Permanent; biodiverse (predominance of composites) | Holm oak and Cork oak | Sheep in rotational grazing |
“CUB” | 39°10.0′ N; 6°44.6′ W | Annual; biodiverse (mixture of grasses and legumes) | Holm oak and Cork oak | Cattle in rotational grazing |
“GRO” | 37°52.3′ N; 7°56.7′ W | Permanent; biodiverse (predominance of composites) | Holm oak | Cattle in rotational grazing |
“MIT” | (1) 38°32.2′ N; 8°01.1′ W; (2) 38°31.8′ N; 8°0.9′ W | Permanent; biodiverse (mixture of grasses and legumes) | Holm oak | (1) Sheep in permanent grazing (2) Cattle in rotational grazing |
“MUR” | 38°23.4′ N; 7°52.5′ W | Annual; biodiverse (mixture of grasses and legumes) | Holm oak and Cork oak | Sheep in permanent grazing |
“PAD” | 38°36.4′ N; 8°8.7′ W | Permanent; biodiverse (predominance of composites) | Holm oak | Cattle in permanent grazing |
“QF” | 40°16.4′ N; 7°25.9′ W | Permanent; biodiverse (mixture of grasses and legumes) | Eucalyptus | Sheep and cattle in rotational grazing |
“TAP” | 39°9.5′ N; 7°31.9′ W | Permanent; biodiverse (mixture of legumes) | Holm oak and Cork oak | Cattle, sheep or pigs in rotational grazing |
PHASE | DOY | Samples | PMC (%) | CP (%) | NDF (%) | |||
---|---|---|---|---|---|---|---|---|
(field) | (year) | (n) | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range |
CALIB. | (2018) | |||||||
MIT_1 | 39 | 24 | 77.5 ± 7.8 | 55.6–86.1 | 18.7 ± 4.9 | 8.7–25.3 | 34.3 ± 11.9 | 18.6–58.9 |
66 | 24 | 82.2 ± 5.2 | 66.7–88.9 | 18.3 ± 4.7 | 8.3–27.0 | 36.4 ± 10.4 | 17.4–52.6 | |
99 | 24 | 84.6 ± 2.4 | 79.6–88.6 | 13.2 ± 3.7 | 8.3–25.5 | 40.3 ± 7.1 | 31.3–52.6 | |
122 | 24 | 82.7 ± 2.8 | 73.3–87.1 | 15.2 ± 3.2 | 10.2–24.1 | 46.8 ± 7.1 | 33.0–60.3 | |
155 | 24 | 68.5 ± 5.7 | 54.2–77.8 | 10.5 ± 2.4 | 7.3–15.9 | 60.2 ± 3.4 | 51.7–66.4 | |
266 | 6 | 89.1 ± 5.0 | 85.9–93.9 | 20.5 ± 1.0 | 19.3–21.8 | 58.8 ± 3.0 | 53.0–61.3 | |
295 | 35 | 86.2 ± 2.7 | 77.8–90.8 | 24.3 ± 8.8 | 13.4–52.3 | 50.5 ± 7.0 | 28.5–64.5 | |
310 | 35 | 79.0 ± 6.0 | 58.5–87.8 | 16.8 ± 5.1 | 7.7–31.6 | 51.8 ± 10.1 | 28.9–71.1 | |
345 | 35 | 82.5 ± 5.6 | 66.7–88.7 | 18.4 ± 5.2 | 13.9–30.0 | 47.7 ± 8.1 | 34.2–62.1 | |
MIT_2 | 130 | 24 | 83.7 ± 2.7 | 77.9–87.1 | 12.1 ± 1.9 | 8.9–15.5 | 51.4 ± 3.6 | 45.7–58.0 |
135 | 12 | 83.9 ± 2.5 | 79.1–86.9 | 11.5 ± 1.6 | 9.6–14.9 | 50.1 ± 4.1 | 43.2–57.4 | |
TAP | 130 | 24 | 80.4 ± 3.3 | 72.9–83.4 | 10.4 ± 1.7 | 7.7–14.0 | 49.0 ± 6.7 | 41.1–66.1 |
QF | 135 | 24 | 72.6 ± 3.7 | 65.8–77.8 | 12.8 ± 3.4 | 7.3–19.1 | 46.7 ± 7.1 | 35.1–58.3 |
VALID. | (2019) | |||||||
CUB | 10 | 12 | 82.2 ± 2.8 | 77.8–86.5 | 20.9 ± 4.7 | 15.3–28.3 | 29.4 ± 5.4 | 17.7–37.4 |
AZI | 25 | 12 | 71.0 ± 6.5 | 55.3–79.6 | 13.0 ± 2.2 | 10.0–18.9 | 53.1 ± 5.2 | 45.8–65.8 |
GRO | 25 | 12 | 62.5 ± 6.2 | 50.0–70.2 | 11.9 ± 1.1 | 10.1–13.3 | 59.9 ± 3.0 | 55.7–64.2 |
MUR | 45 | 15 | 79.7 ± 3.1 | 72.9–85.3 | 11.9 ± 2.3 | 8.8–17.5 | 44.3 ± 4.3 | 37.6–53.0 |
MIT_2 | 45 | 8 | 82.4 ± 2.6 | 80.2–86.8 | 17.0 ± 3.8 | 12.9–24.6 | 39.6 ± 5.6 | 30.7–44.9 |
PAD | 55 | 8 | 72.8 ± 4.6 | 63.9–80.0 | 13.9 ± 5.5 | 8.4–22.4 | 52.1 ± 8.8 | 35.6–60.4 |
TAP | 50 | 8 | 75.7 ± 4.9 | 68.3–81.7 | 10.7 ± 2.0 | 7.1–13.5 | 52.2 ± 5.1 | 41.5–59.0 |
QF | 50 | 8 | 72.8 ± 8.8 | 57.9–83.3 | 12.4 ± 3.0 | 9.1–16.5 | 48.2 ± 12.6 | 32.4–67.3 |
Spectral Pre-Processing | LV | Calibration | External Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | Bias | RPD | ||
CP | |||||||
Raw spectra * | 5 | 0.874 | 1.882 | 0.844 | 1.622 | 0.057 | 4 |
SNV | 4 | 0.866 | 1.894 | 0.653 | 2.473 | −0.877 | 3 |
Normalization | 4 | 0.837 | 1.973 | 0.817 | 1.978 | 0.586 | 3.4 |
Normalization and SNV | 5 | 0.902 | 1.632 | 0.753 | 2.16 | −0.421 | 3.1 |
NDF | |||||||
Raw spectra | 7 | 0.618 | 6.261 | 0.607 | 6.979 | 4.453 | 1.9 |
SNV | 7 | 0.834 | 4.061 | 0.802 | 4.868 | 0.426 | 2.1 |
Normalization | 7 | 0.807 | 4.446 | 0.818 | 4.742 | 2.015 | 2.4 |
Normalization and SNV * | 7 | 0.828 | 4.163 | 0.826 | 4.2 | 0.701 | 2.4 |
PQI | |||||||
Raw spectra * | 3 | 0.791 | 0.071 | 0.808 | 0.066 | 0.009 | 3.2 |
SNV | 7 | 0.829 | 0.079 | 0.768 | 0.079 | −0.010 | 2.6 |
Normalization | 7 | 0.746 | 0.1 | 0.747 | 0.12 | −0.024 | 1.7 |
Normalization and SNV | 7 | 0.83 | 0.078 | 0.736 | 0.083 | −0.015 | 2.5 |
Field | DOY (2019) | PMC (%) | CP (%) | NDF (%) | PQI | NDVI | NDWI |
---|---|---|---|---|---|---|---|
AZI | 25 | 71.0 | 13.0 | 53.1 | 0.248 | 0.566 | 0.154 |
90 | 70.2 | 9.2 | 56.8 | 0.164 | 0.611 | 0.183 | |
120 | 67.5 | 7.9 | 59.3 | 0.136 | 0.392 | 0.036 | |
CUB | 10 | 82.2 | 20.9 | 29.4 | 0.755 | 0.771 | 0.487 |
80 | 77.6 | 13.0 | 39.6 | 0.335 | 0.670 | 0.364 | |
135 | 66.6 | 9.4 | 61.2 | 0.155 | 0.437 | 0.112 | |
GRO | 25 | 62.5 | 11.9 | 59.9 | 0.199 | 0.609 | 0.050 |
105 | 69.2 | 11.4 | 54.9 | 0.211 | 0.600 | 0.100 | |
135 | 54.9 | 10.2 | 62.0 | 0.168 | 0.600 | −0.150 | |
MIT_2 | 45 | 82.4 | 17.0 | 39.6 | 0.446 | 0.697 | 0.325 |
90 | 78.5 | 15.9 | 38.4 | 0.440 | 0.700 | 0.321 | |
125 | 80.5 | 11.1 | 51.1 | 0.221 | 0.622 | 0.337 | |
MUR | 45 | 79.7 | 11.9 | 44.3 | 0.273 | 0.683 | 0.328 |
90 | 76.3 | 11.6 | 43.7 | 0.276 | 0.620 | 0.415 | |
125 | 73.3 | 10.1 | 56.4 | 0.182 | 0.643 | 0.368 | |
PAD | 55 | 72.8 | 13.9 | 52.1 | 0.288 | 0.685 | 0.325 |
90 | 73.7 | 13.2 | 39.4 | 0.336 | 0.666 | 0.346 | |
125 | 78.5 | 14.6 | 50.6 | 0.291 | 0.668 | 0.282 | |
QF | 50 | 72.8 | 12.4 | 48.2 | 0.288 | 0.584 | 0.172 |
110 | 79.2 | 13.2 | 53.2 | 0.253 | 0.582 | 0.207 | |
145 | 67.2 | 10.2 | 51.8 | 0.202 | 0.550 | −0.027 | |
TAP | 50 | 75.7 | 10.7 | 52.2 | 0.209 | 0.572 | 0.152 |
105 | 79.2 | 11.3 | 44.3 | 0.268 | 0.582 | 0.290 | |
145 | 69.9 | 6.9 | 65.0 | 0.127 | 0.365 | 0.052 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Carreira, E.; Carmona-Cabezas, R.; Nogales-Bueno, J.; Rato, A.E. Evaluation of Near Infrared Spectroscopy (NIRS) and Remote Sensing (RS) for Estimating Pasture Quality in Mediterranean Montado Ecosystem. Appl. Sci. 2020, 10, 4463. https://doi.org/10.3390/app10134463
Serrano J, Shahidian S, Marques da Silva J, Paixão L, Carreira E, Carmona-Cabezas R, Nogales-Bueno J, Rato AE. Evaluation of Near Infrared Spectroscopy (NIRS) and Remote Sensing (RS) for Estimating Pasture Quality in Mediterranean Montado Ecosystem. Applied Sciences. 2020; 10(13):4463. https://doi.org/10.3390/app10134463
Chicago/Turabian StyleSerrano, João, Shakib Shahidian, José Marques da Silva, Luís Paixão, Emanuel Carreira, Rafael Carmona-Cabezas, Julio Nogales-Bueno, and Ana Elisa Rato. 2020. "Evaluation of Near Infrared Spectroscopy (NIRS) and Remote Sensing (RS) for Estimating Pasture Quality in Mediterranean Montado Ecosystem" Applied Sciences 10, no. 13: 4463. https://doi.org/10.3390/app10134463
APA StyleSerrano, J., Shahidian, S., Marques da Silva, J., Paixão, L., Carreira, E., Carmona-Cabezas, R., Nogales-Bueno, J., & Rato, A. E. (2020). Evaluation of Near Infrared Spectroscopy (NIRS) and Remote Sensing (RS) for Estimating Pasture Quality in Mediterranean Montado Ecosystem. Applied Sciences, 10(13), 4463. https://doi.org/10.3390/app10134463