Insights into PCDD/Fs and PAHs in Biomass Boilers Envisaging Risks of Ash Use as Fertilizers
Abstract
:1. Introduction
2. Literature Review
2.1. PCDD/Fs and TEQs; PAHs and BaP Equivalents
2.2. Origin, Generation and Fate of PCDD/Fs and PAHs in Combustion Processes
3. Experimental Part
3.1. Materials and Methods
3.2. Results and Discussion
3.2.1. Chemical Composition and PCDD/F in Biomass, Sludge and Soil
3.2.2. Chemical Composition, PCDD/Fs and PAHs in Ashes
3.3. Conformity of PCDD/Fs and PAHs in Ashes with the Proposed Limits for Fertilizers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Resolution Adopted by the General Assembly on 25 September 2015 70/1. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 23 March 2020).
- Regulation (EU) 2019/1021 of the European Parliament and of the Council of 20 June 2019. OJEU, European Union. L169/45-77, 25 June 2019.
- Regulation (EC) No 850/2004 of the European Parliament and of the Council of 29 April 2004. OJEU, European Union. L158/7-49, 30 April 2004.
- Protocol on Persistent Organic Pollutants (POPs). Available online: https://www.unece.org/env/lrtap/pops_h1.html (accessed on 23 March 2020).
- Stockholm Convention on Persistent Organic Pollutions (POPs). Available online: http://www.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx (accessed on 23 March 2020).
- Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal. Available online: http://www.basel.int/TheConvention/Overview/tabid/1271/Default.aspx (accessed on 23 March 2020).
- Swedish EPA. Low POP Content Limit of PCDD/F in Waste. Evaluation of Human Health Risks; Report 6418; Swedish EPA: Bromma, Sweden, 2011; ISBN 978-91-620-6418.
- Weber, R.; Bell, L.; Watson, A.; Petrlik, J.; Paun, M.C.; Vijgen, J. Assessment of POPs contaminated sites and the need for stringent soil standards for food safety for the protection of human health. Environ. Pollut. 2019, 249, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Petrlik, J.; Bell, L. PCDD/Fs in waste incineration fly ash. Organohalogen Compd. 2017, 79, 249–252. [Google Scholar]
- Toolkit for Identification and Quantification of Releases of Dioxins, Furans and Other Unintentional POPs. Available online: http://toolkit.pops.int (accessed on 23 March 2020).
- BATBEP-Guidelines on Best Available Techniques and Guidance on Best Environmental Practices. Available online: http://chm.pops.int/Implementation/BATandBEP/BATBEPGuidelinesArticle5/tabid/187/Default.aspx (accessed on 23 March 2020).
- BREFs. Available online: https://eippcb.jrc.ec.europa.eu/reference (accessed on 23 March 2020).
- Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010. OJEU, European Union. L334/17-119, 17 December 2010.
- European Commission. Study for the Strategy for a Non-Toxic Environment of the 7th EAP. Sub-Study d: Very Persistent Chemicals. August 2017. Available online: https://ec.europa.eu/environment/chemicals/non-toxic/index_en.htm (accessed on 23 March 2020).
- The European Green Deal COM (2019) 640 Final. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Luxembourg, 11 December 2019.
- European Commission. Community strategy for dioxins, furans and polychlorinated biphenyls (2001/C 322/02). Communication from the Commission to the Council, the European Parliament and the Economic and Social Committee. OJEC C 322/2-18, 17 November 2001. [Google Scholar]
- Weber, R.; Herold, C.; Hollert, H.; Kamphues, J.; Blepp, M.; Ballschmiter, K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environ. Sci. Eur. 2018, 30, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Ahlborg, U.G.; Brouwer, A.; Fingerhut, M.A.; Jacobson, J.L.; Jacobson, S.W.; Kennedy, S.W.; Kettrup, A.F.; Koeman, J.H.; Poiger, H.; Rappe, C.; et al. Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept. Eur. J. Pharmacol. 1992, 228, 179–199. [Google Scholar]
- Alcock, R.E.; Jones, K.C. Dioxins in the environment: A review of trend data. Environ. Sci. Technol. 1996, 30, 3133–3143. [Google Scholar] [CrossRef]
- Code of Practice for the Prevention and Reduction of Dioxin and Dioxin-like PCB Contamination in Food and Feeds. Available online: http://www.fao.org/ag/againfo/home/en/news_archive/2009_IN_dioxin.html (accessed on 23 March 2020).
- European POPs Expert Team; European Commission. Preparatory Actions in the Field of Dioxins and PCBs. Available online: https://ec.europa.eu/environment/archives/dioxin/pdf/prepactfinrept.pdf (accessed on 23 March 2020).
- Commission Regulation (EC) No 1881/2006 of 19 December 2006. OJEU L, European Union, 364/5-24, 20 December 2006.
- Commission Recommendation 2013/711/EU of 3 December 2013. OJEU L, European Union, 323/37-39, 4 December 2013.
- IEA. World Energy Outlook 2019. Paris. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 23 March 2020).
- World Energy Council. World Energy Resources 2016. London. Available online: https://www.worldenergy.org/assets/images/imported/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf (accessed on 23 March 2020).
- van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2008. [Google Scholar] [CrossRef]
- Someshwar, A.V. Wood and combination wood-fired boiler ash characterization. J. Environ. Qual. 1996, 25, 962–972. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Pöykiö, R.; Rönkkömäki, H.; Nurmesniemi, H.; Perämäki, P.; Popov, K.; Välimäki, I.; Tuomig, T. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW). J. Hazard. Mater. 2009, 162, 1059–1064. [Google Scholar] [CrossRef]
- Lavric, E.D.; Konnov, A.A.; Ruyck, J. Dioxin levels in wood combustion—A review. Biomass Bioenergy 2004, 26, 115–145. [Google Scholar] [CrossRef]
- Rohr, A.C.; Campleman, S.L.; Long, C.M.; Peterson, M.K.; Weatherstone, S.; Quick, W.; Lewis, A. Potential occupational exposures and health risks associated with biomass-based power generation. Int. J. Environ. Res. Public Health 2015, 12, 8542–8605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, A.; Bignal, K.L.; Zhou, J.L.; Cazier, F. Profiles of polycyclic aromatic hydrocarbons and polychlorinated biphenyls from the combustion of biomass pellets. Chemosphere 2010, 78, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Pohlandt, K.; Marutzky, R. Concentration and distribution of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) in wood ash. Chemosphere 1994, 28, 1311–1314. [Google Scholar] [CrossRef]
- IEA Bioenergy Task 32 Deliverable D7. Options for Increased Use of Ash from Biomass Combustion and Co-Firing; IEA Bioenergy, 2018. Available online: www.ieabioenergy.com (accessed on 25 January 2020).
- Insam, H.; Knapp, B.A. Recycling of Biomass Ashes; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Pitman, R. Wood ash use in forestry—A review of the environmental impacts. Forestry 2006, 79, 563–588. [Google Scholar] [CrossRef] [Green Version]
- Lanzerstorfer, C. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. J. Environ. Sci. 2015, 30, 191–197. [Google Scholar] [CrossRef]
- Nurmesniemi, H.; Mäkelä, M.; Pöykiö, R.; Manskinen, K.; Dahl, O. Comparison of the forest fertilizer properties of ash fractions from two power plants of pulp and paper mills incinerating biomass-based fuels. Fuel Process. Technol. 2012, 104, 1–6. [Google Scholar] [CrossRef]
- Dahl, O.; Nurmesniemi, H.; Pöykiö, R.; Watkins, G. Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Process. Technol. 2009, 90, 871–878. [Google Scholar] [CrossRef]
- Singh, S.; Ram, L.C.; Masto, R.E.; Verma, S.K. A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants. Int. J. Coal Geol. 2011, 87, 112–120. [Google Scholar] [CrossRef]
- Maresca, A.; Krüger, O.; Herzel, H.; Adam, C.; Kalbe, U.; Astrup, T.F. Influence of wood ash pre-treatment on leaching behaviour, liming and fertilising potential. Waste Manag. 2019, 83, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, S.; Jones, T.; Preston, M.D.; Hazlett, P.; Tran, H.; Basiliko, N. Wood ash as a forest soil amendment: The role of boiler and soil type on soil property response. Can. J. Soil Sci. 2014, 94, 621–634. [Google Scholar] [CrossRef]
- Vamvuka, D.; Kakaras, E. Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Process. Technol. 2011, 92, 570–581. [Google Scholar] [CrossRef]
- Väätäinen, K.; Sirparanta, E.; Räisänen, M.; Tahvanainem, T. The costs and profitability of using granulated wood ash as a forest fertilizer in drained peatland forests. Biomass Bioenergy 2011, 35, 3335–3341. [Google Scholar] [CrossRef]
- Shi, R.; Li, J.; Jiang, J.; Mehmood, K.; Liu, Y.; Xu, R.; Qian, W. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. J. Environ. Sci. 2017, 55, 294–302. [Google Scholar] [CrossRef] [PubMed]
- James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash management review—Applications of biomass bottom ash. Energies 2012, 5, 3856–3873. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; Omil, B.; Merino, A.; Martínez-Carballo, E.; Simal-Gándara, J. Organic pollutants profiling of wood ashes from biomass power plants linked to the ash characteristics. Sci. Total Environ. 2016, 544, 535–543. [Google Scholar] [CrossRef]
- Masto, R.; Sarkar, E.; George, J.; Jyoti, K.; Dutta, P.; Ram, L. PAHs and potentially toxic elements in the fly ash and bed ash of biomass fired power plants. Fuel Process. Technol. 2015, 132, 139–152. [Google Scholar] [CrossRef]
- Sarenbo, S. Wood ash dilemma-reduced quality due to poor combustion performance. Biomass Bioenergy 2009, 33, 1212–1220. [Google Scholar] [CrossRef]
- Enell, A.; Fuhrman, F.; Lundin, L.; Warfvinge, P.; Thelin, G. Polycyclic aromatic hydrocarbons in ash: Determination of total and leachable concentrations. Environ. Pollut. 2008, 152, 285–292. [Google Scholar] [CrossRef]
- Straka, P.; Havelcová, M. Polycyclic aromatic hydrocarbons and other organic compounds in ashes from biomass combustion. Acta Geodyn. Geomater. 2012, 9, 481–490. [Google Scholar]
- Miles, K. Hog Fuel Boiler/Wood Ash Action Plan: Technical Report. Publication Number 01-04-008. Revised February 2004. Department of Ecology. Hazardous Waste & Toxics Reduction Program. Washington State. Available online: https://fortress.wa.gov/ecy/publications/SummaryPages/0104008.html (accessed on 10 March 2020).
- Bundt, M.; Krauss, M.; Blaser, P.; Wilcke, W. Forest fertilization with wood ash: Effect on the distribution and storage of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). J. Environ. Qual. 2001, 30, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Freire, F.; Lopes, H.; Tarelho, L.A.C. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F. Waste Manag. 2015, 46, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Gul, N.; Khan, B.; Khan, H.; Israr, M. Dioxin leaching risk assessment through selected soils by estimating distribution coefficient and breakthrough curves. Environ. Monit. Assess. 2018, 190, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, D. Solubility enhancement of PCDD/F in the presence of dissolved humic matter. J. Hazard. Mater. 2002, B91, 113–127. [Google Scholar] [CrossRef]
- Haglund, N. NT Technical Report 613—Guideline for Classification of Ash from Solid Biofuels and Peat Utilized for Recycling and Fertilizing in Forestry and Agriculture; Nordic Innovation Centre: Oslo, Norway, 2008; ISSN 0283-7234. [Google Scholar]
- Košnář, Z.; Mercl, F.; Perná, I.; Tlustoš, P. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content. Sci. Total Environ. 2016, 563–564, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Johansson, I.; van Bavel, B. Levels and patterns of polycyclic aromatic hydrocarbons in incineration ashes. Sci. Total Environ. 2003, 311, 221–231. [Google Scholar] [CrossRef]
- Standards and Guidelines for the Use of Wood Ash as a Liming Material for Agricultural Soils; Alberta Environment: Edmonton, AB, Canada, 2002; ISBN 0-7785-2281-4.
- Decreto-Lei n.°103/2015, Diário da Républica, 1.ª série, N.º114 de 15 de Junho de 2015. 3756-3788. Diário da Republica, 2015.
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. OJEU, European Union L170/1-127, 25 June 2019.
- Huygens, D.; Saveyn, H.G.M.; Tonini, D.; Eder, P.; Sancho, L.D. Technical Proposals for Selected New Fertilising Materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009)—Process and Quality Criteria, and Assessment of Environmental and Market Impacts for Precipitated Phosphate Salts & Derivates, Thermal Oxidation Materials & Derivates and Pyrolysis & Gasification Materials; EUR 29841 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-09888-1. JRC117856. [Google Scholar] [CrossRef]
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; de Vit, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Safe, S.H. Development validation and problems with the toxic equivalency factor approach for risk assessment of dioxins and related compounds. J. Anim. Sci. 1998, 76, 134–141. [Google Scholar] [CrossRef]
- Kutz, F.W.; Barnes, D.G.; Bottimore, D.P.; Greim, H.; Bretthauer, E.W. The International toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Chemosphere 1990, 20, 751–757. [Google Scholar] [CrossRef]
- Pilot Study on International Information Exchange on Dioxins and Related Compounds; Report Number 178; August 1988 North Atlantic Treaty Organization: Committee on the Challenges of Modern Society. U.S. Government Printing Office 1988-516-002/80238: Washington, DC, USA, 1998.
- Van den Berg, M.; Birnbaum, L.; Bosveld, A.T.C.; Brunström, B.; Cook, P.; Feeley, M.; Giesy, J.P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 1998, 106, 775–792. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Urano, K. Convenient substitute indices to toxic equivalent quantity for controlling and monitoring dioxins in stack gas from waste incineration facilities. Waste Manag. 2001, 21, 55–62. [Google Scholar] [CrossRef]
- Leclerc, D.; Duo, L.D.; Vessey, M. Effects of combustion and operating conditions on PCDD/PCDF emissions from power boilers burning salt-laden wood waste. Chemosphere 2006, 63, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Moltó, J.; Font, F.; Gálvez, A.; Rey, M.D.; Pequenín, A. Analysis of dioxin-like compounds formed in the combustion of tomato plant. Chemosphere 2010, 78, 121–126. [Google Scholar] [CrossRef]
- Moltó, J.; Font, R.; Gálvez, A.; Muñoz, M.; Pequenín, A. Emissions of Polychlorodibenzodioxin/Furans (PCDD/Fs), dioxin-like Polychlorinated Biphenyls (PCBs), Polycyclic Aromatic Hydrocarbons (PAHs), and volatile compounds produced in the combustion of pine needles and cones. Energy Fuels 2010, 24, 1030–1036. [Google Scholar] [CrossRef]
- Fång, J.; Nyberg, E.; Bignert, A.; Bergman, Å. Temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in mothers’ milk from Sweden, 1972–2011. Environ. Int. 2013, 60, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Luthardt, P.; Mayer, J.; Fuchs, J. Total TEQ emissions (PCDD/F and PCB) from industrial sources. Chemosphere 2002, 46, 1303–1308. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, L.; Zhou, J.; Liu, J.; Qian, G.; Ohtsuka, N.; Motegi, M.; Oh, K.; Hosono, S. Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere 2013, 92, 765–771. [Google Scholar] [CrossRef]
- Sakurai, T.; Weber, R.; Ueno, S.; Nishino, J.; Tanaka, M. Relevance of coplanar PCBs for TEQ emission of fluidized bed incineration and impact of emission control devices. Chemosphere 2003, 53, 619–625. [Google Scholar] [CrossRef]
- Elskens, M.; Pussemier, L.; Dumortier, P.; Van Langenhove, K.; Scholl, G.; Goeyens, L.; Focant, J.F. Dioxin levels in fertilizers from Belgium: Determination and evaluation of the potential impact on soil contamination. Sci. Total Environ. 2013, 454–455, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Hoogerbrugge, R.; Liem, A.K.D. How to handle non detects. Oganohalogen Compd. 2000, 45, 13–16. [Google Scholar]
- Rouhani, S.; van Geel, A. Treatment of Non-Detects in the Los Alamos National Laboratory Natural Resource Damage Assessment. DOE Contract DE-EM0003939; Industrial Economics Incorporated: Cambridge, MA, USA, 2017. [Google Scholar]
- Zeghnoun, A.; Pascal, M.; Fréry, N.; Sarter, H.; Falq, G.; Focant, J.F.; Eppe, G. Dealing with the non-detected and non-quantified data. The example of the serum dioxin data in the French dioxin and incinerators study. Organohalogen Compd. 2007, 69, 2288–2291. [Google Scholar]
- Delistraty, D.A.; Laflamme, D.M. Influence of toxic equivalency factor scheme and method for treating non-detect values on soil dioxin levels. Toxicol. Environ. Chem. 2001, 80, 67–81. [Google Scholar] [CrossRef]
- Delistraty, D.A.; Singleton, S.A. Dioxin toxic equivalent concentrations in wood ash. Toxicol. Environ. Chem. 2002, 83, 69–85. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2017/771 of 3 May 2017. OJEU L, European Union, 115/ 22-42, 4 May 2017.
- Commission Regulation (EU) 589/2014 of June 2014. European Union, 164/18-40, 3 June 2014.
- National Council for Air and Stream Improvement, Inc. (NCASI). A Comprehensive Compilation and Review of Wood-Fired Boiler Emissions. Technical Bulletin No. 1013; National Council for Air and Stream Improvmenmt, Inc.: Research Triangle Park, NC, USA, 2013. [Google Scholar]
- Hedman, B.; Näslund, M.; Marklund, S. Emission of PCDD/F, PCB, and HCB from combustion of firewood and pellets in residential stoves and boilers. Environ. Sci. Technol. 2006, 40, 4968–4975. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, M.; Liu, W.; Wang, C.; Zhang, B.; Gao, L.; Su, G.; Xiao, K.; Lv, P. Atmospheric emission of PCDD/Fs, PCBs, Hexachlorobenzene, and pentachlorobenzene from the coking industry. Environ. Sci. Technol. 2009, 43, 9196–9201. [Google Scholar] [CrossRef]
- Neupert, D.M.; Thies, J.; Weis, H. Demands of effective PCDD/PCDF-analysis in environment and production control. Aims of an analytical laboratory to meet legal and toxicological requirements. Critical approach to detection limits. Chemosphere 1986, 15, 1099–1106. [Google Scholar] [CrossRef]
- Pampanin, D.M.; Sydnes, M.O. Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment; 2013 Pampanin and Sydnes, licensee InTech; Available online: http://creativecommons.org/licenses/by/3.0 (accessed on 26 April 2020). [CrossRef] [Green Version]
- Environmental Protection Agency. US-EPA, Code of Federal Regulation, Title 40, Part 60, subparts D, Da, Db, Dc; Environmental Protection Agency: Washington, DC, USA, 1997; p. 44.
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for Carcinogenic and other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects). Scientific Supporting Document (218 pp); 2008; ISBN 978-1-896997-79-7. Available online: https://www.ccme.ca/files/Resources/supporting_scientific_documents/pah_soqg_ssd_1401.pdf (accessed on 26 April 2020).
- Working Group on Polycyclic Aromatic Hydrocarbons. Ambient Air Pollution by Polycyclic Aromatic Hydrocarbons (PAH); Position Paper; Office for Official Publications of the European Communities: Luxembourg, 2001; ISBN 92-894-2057-X. [Google Scholar]
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004. OJEU L, European Union, 23/3-16, 26 January 2005.
- International Agency for Research on Cancer; WHO. Agents Classified by the IARC Monographs. Volumes 1–125. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 6 March 2020).
- Office of Research and Development. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons; EPA/600/R-93/089, July 1993; Office of Research and Development: Washington, DC, USA, 1993.
- Nisbet, I.C.T.; Lagoy, P.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAH)s. Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Law, R.J.; Kelly, C.; Baker, K.; Jones, J.; McIntosh, A.D.; Moffat, C.F. Toxic equivalency factors for PAH and their applicability in shellfish pollution monitoring studies. J. Environ. Monit. 2002, 4, 383–388. [Google Scholar] [CrossRef]
- Delistraty, D. Toxic equivalency factor approach for risk assessment of polycyclic aromatic hydrocarbons. Toxicol. Environ. Chem. 1997, 64, 81–108. [Google Scholar] [CrossRef]
- Potency Factors for Carcinogenic Polycyclic Aromatic Hydrocarbons. Regional Screening Levels (RSLs)-User’s Guide. May 2020. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide#toxicity (accessed on 21 April 2020).
- Jung, K.H.; Yan, B.; Chillrud, S.N.; Perera, F.P.; Whyatt, R.; Camann, D.; Kinney, P.L.; Miller, R.L. Assessment of Benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int. J. Environ. Res. Public Health 2010, 7, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, N.; Cuadras, A.; Rovira, E.; Marcé, R.M.; Borrull, F. Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ. Health Perspect. 2011, 119, 1110–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmos. Environ. 2009, 43, 4722–4732. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany. Air Qual. Atmos. Health 2010, 3, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Schecter, A.; Birnbaum, L.; Ryan, J.J.; Constable, J.D. Dioxins: An overview. Environ. Res. 2006, 101, 419–428. [Google Scholar] [CrossRef]
- Weber, R.; Tysklind, M.; Gaus, C. Dioxin–Contemporary and future challenges of historical legacies (editorial, dedicated to Otto Hutzinger). Environ. Sci. Pollut. Res. 2008, 15, 96–100. [Google Scholar] [CrossRef]
- Weber, R.; Gaus, C.; Tysklind, M.; Johnston, P.; Forter, M.; Hollert, H.; Heinisch, E.; Holoubek, I.; Lloyd-Smith, M.; Masunaga, S.; et al. Dioxin- and POP-contaminated sites—Contemporary and future relevance and challenges. Environ. Sci. Pollut. Res. 2008, 15, 363–393. [Google Scholar] [CrossRef]
- Weber, R.; Watson, A. Assessment of the PCDD/F fingerprint of the dioxin food scandal from bio-diesel in Germany and possible PCDD/F sources. Organohalogen Compd. 2011, 73, 400–403. [Google Scholar]
- Olie, K.; Vermeulen, P.L.; Hutzinger, O. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere 1977, 6, 455–459. [Google Scholar] [CrossRef]
- Tuppurainen, K.; Halonen, I.; Ruokojärvi, P.; Tarhanen, J.; Ruuskanen, J. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review. Chemosphere 1998, 36, 1493–1511. [Google Scholar] [CrossRef]
- Yasuhara, A.; Katami, T.; Shibamoto, T. Formation of PCDDs, PCDFs, and coplanar PCBs from incineration of various woods in the presence of chlorides. Environ. Sci. Technol. 2003, 37, 1563–1567. [Google Scholar] [CrossRef] [PubMed]
- Wikström, E.; Ryan, S.; Touati, A.; Gullett, B.K. Key parameters for de novo formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans. Environ. Sci. Technol. 2003, 37, 1962–1970. [Google Scholar] [CrossRef] [PubMed]
- Stanmore, B.R. The formation of dioxins in combustion systems. Combust. Flame 2004, 136, 398–427. [Google Scholar] [CrossRef]
- Tame, N.W.; Dlugogorski, B.Z.; Kennedy, E.M. Formation of dioxins and furans during combustion of treated wood. Prog. Energy Combust. Sci. 2007, 33, 384–408. [Google Scholar] [CrossRef]
- Altarawneh, M.; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. Sci. 2009, 35, 245–274. [Google Scholar] [CrossRef]
- Zhang, M.; Buekens, A. De novo synthesis of dioxins: A review. Int. J. Environ. Pollut. 2016, 60, 63–110. [Google Scholar] [CrossRef]
- Gullett, B.K.; Lemieux, P.M.; Dunn, J.E. Role of combustion and sorbent parameters in prevention of polychlorinated dibenzo-pdioxin and polychlorinated dibenzofuran formation during waste combustion. Environ. Sci. Technol. 1994, 28, 107–118. [Google Scholar] [CrossRef]
- Lustenhouwer, J.W.A.; Olie, K.; Hutzinger, O. Chlorinated Dibenzo-p-Dioxins and related compounds in incineratior effluents. Chemosphere 1980, 9, 501–522. [Google Scholar] [CrossRef]
- Vogg, H.; Metzger, M.; Stieglitz, L. Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration. Waste Manag. Res. 1987, 5, 285–294. [Google Scholar] [CrossRef]
- Bruce, K.R.; Beach, L.O.; Gullett, B.K. The role of gas-phase Cl2 in the formation of PCDD/PCDF during waste combustion. Waste Manag. 1991, 11, 97–102. [Google Scholar] [CrossRef]
- Addink, R.; Olie, K. Mechanisms of formation and destruction of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in heterogeneous systems. Environ. Sci. Technol. 1995, 29, 1425–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stieglitz, L.; Zwick, G.; Beck, J.; Bautz, H.; Roth, W. Carbonaceous particles in fly-ash-a source for the de-novo-synthesis of organochlorocompounds. Chemosphere 1989, 19, 283–290. [Google Scholar] [CrossRef]
- Luthe, C.; Karidio, I.; Utloth, V. Dioxins formation in salt-laden power boilers a mass balance. Chemosphere 1998, 36, 231–249. [Google Scholar] [CrossRef]
- Fängmark, I.; Van Bavel, B.; Marklund, S.; Strömberg, B.; Berge, N.; Rappe, C. Influence of combustion parameters on the formation of polychlorinated dibenzo-pdioxins, dibenzofurans, benzenes, and biphenyls and polyaromatic hydrocarbons in a pilot incinerator. Environ. Sci. Technol. 1993, 27, 1602–1610. [Google Scholar] [CrossRef]
- Fängmark, I.; Strömberg, B.; Berge, N.; Rappe, C. Influence of postcombustion temperature profiles on the formation of PCDDs, PCDFs, PCBzs, and PCBs in a pilot incinerator. Environ. Sci. Technol. 1994, 28, 624–629. [Google Scholar] [CrossRef]
- Hasselriis, F. Optimization of combustion conditions to minimize Dioxin Emissions. Waste Manag. Res. 1987, 5, 311–326. [Google Scholar] [CrossRef]
- Everaert, K.; Baeyens, J. Correlation of PCDD/F emissions with operating parameters of municipal solid waste incinerators. J. Air Waste Manag. Assoc. 2001, 51, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Everaert, K.; Baeyens, J. The formation and emission of dioxins in large scale thermal process. Chemosphere 2002, 46, 439–448. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, X.; Wang, M.; Dong, S.; Zheng, M. Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. Chemosphere 2015, 133, 68–74. [Google Scholar] [CrossRef]
- Huang, H.; Buekens, A. On the mechanisms of Dioxin formation in combustion process. Chemosphere 1995, 31, 4099–4117. [Google Scholar] [CrossRef]
- Wikström, E.; Tysklind, M.; Marklund, S. Influence of variation in combustion conditions on the primary formation of chlorinated organic micropollutants during municipal solid waste combustion. Environ. Sci. Technol. 1999, 33, 4263–4269. [Google Scholar] [CrossRef]
- Wang, L.-C.; Lee, W.-J.; Lee, W.-S.; Chang-Chien, G.-P.; Tsai, P.-J. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxinsydibenzofurans. Sci. Total Environ. 2003, 302, 185–198. [Google Scholar] [CrossRef]
- Luijk, R.; Akkerman, D.M.; Slot, P.; Olie, K.; Kapteijn, F. Mechanism of formation of polychlorinated dibenzo-p-dioxines and dibenzofurans in the catalyzed combustion of carbon. Environ. Sci. Technol. 1994, 28, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Stieglitz, L.; Zwick, G.; Beck, J.; Bautz, H.; Roth, W. The role of particulate carbon in the de-novo synthesis of polychlorinated Dibenzodioxins and -Furans in fly-ash. Chemosphere 1990, 20, 1953–1958. [Google Scholar] [CrossRef]
- Olie, K.; Bueken, A. Comparison of PCDD/F profiles in combustion residues. Organohalogen Compd. 2007, 69, 2443–2446. [Google Scholar]
- Chang, N.-B.; Huang, S.-H. A chemometric approach for the verification of dioxin/furan formation mechanism in municipal waste incinerators. Chemosphere 1996, 32, 209–216. [Google Scholar] [CrossRef]
- Korucu, M.K.; Karademir, A. An evaluation of PCDD/F mass flux from a hazardous waste incinerator: The need for a reasonable start-up procedure. Combust. Sci. Technol. 2015, 187, 458–468. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Du, Y.; Yan, J.-H.; Li, X.D.; Ni, M.-J.; Cen, K.-F. Dioxins and their fingerprint in size-classified fly ash fractions from municipal solid waste incinerators in china-mechanical grate and fluidized bed units. J. Air Waste Manag. Assoc. 2012, 62, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Oehme, M.; Müller, M.D. Levels and congener patterns of polychlorinated Dibenzo-p-dioxins and Dibenzofurans in solid residues from wood-fired boilers. Influence of combustion conditions and fuel type. Chemosphere 1995, 30, 1527–1539. [Google Scholar] [CrossRef]
- Vogg, H.; Stieglitz, L. Thermal Behavior of PCDD/PCDF in fly ash from municipal incinerators. Chemosphere 1986, 15, 1373–1378. [Google Scholar] [CrossRef]
- Shen, H.-M.; Wang, Y.-F.; Chyang, C.-S.; Yang, H.-Y. Incineration of pelettized fly ash in a bench-scale fluidized bed combustor. Aerosol Air Qual. Res. 2019, 19, 2115–2129. [Google Scholar] [CrossRef] [Green Version]
- Wunderli, S.; Zennegg, M.; Doležal, I.S.; Gujerb, E.; Moser, U.; Wolfensberger, M.; Hasler, P.; Nogera, D.; Studer, C.; Karlaganis, G. Determination of polychlorinated dibenzo-p-dioxins and dibenzo-furans in solid residues from wood combustion by HRGC/HRMS. Chemosphere 2000, 40, 641–649. [Google Scholar] [CrossRef]
- Bacher, R.; Swerev, M.; Ballschmlter, K. Profile and pattern of Monochloro-through Octachlorodibenzodioxins and -dibenzofurans in chimney deposits from wood burning. Environ. Sci. Technol. 1992, 26, 1649–1655. [Google Scholar] [CrossRef]
- Weber, R.; Hagenmaier, H. PCDD/PCDF formation in fluidized bed incineration. Chemosphere 1999, 38, 2643–2654. [Google Scholar] [CrossRef]
- Bai, S.T.; Chang, S.H.; Duh, J.M.; Sung, F.H.; Su, J.S.; Chang, M.B. Characterization of PCDD/Fs and dioxin-like PCBs emitted from two woodchip boilers in Taiwan. Chemosphere 2017, 189, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.I.; Juan, R.F.; Conesa, J.A. Characterization of gaseous emissions and ashes from the combustion of furniture waste. Waste Manag. 2016, 58, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.C.; Hwang, J.F.; Chi, K.H.; Chang, M.B. Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods. Chemosphere 2007, 67, S177–S184. [Google Scholar] [CrossRef]
- Chen, C.-K.; Lin, C.; Wang, L.-C.; Chang-Chien, G.-P. The size distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the bottom ash of municipal solid waste incinerators. Chemosphere 2006, 65, 514–520. [Google Scholar] [CrossRef]
- Weidemann, E.; Allegrini, E.; Astrup, T.F.; Hulgaard, T.; Ribe, C.; Jansson, S. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations. Waste Manag. 2016, 49, 110–113. [Google Scholar] [CrossRef]
- Wikström, E.; Ryan, S.; Touati, A.; Telfer, M.; Tabor, D.; Gullett, B.K. Importance of chlorine speciation on de Novo formation of polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans. Environ. Sci. Technol. 2003, 37, 1108–1113. [Google Scholar] [CrossRef]
- Luthe, C.; Karidio, I.; Utloth, V. Towards controlling dioxins emissions from power boilers fuelled with salt-laden wood waste. Chemosphere 1997, 35, 557–574. [Google Scholar] [CrossRef]
- Wikström, E.; Löfvenius, G.; Rappe, C.; Marklund, S. Influence of level and form of chlorine on the formation of chlorinated Dioxins, Dibenzofurans, and Benzenes during combustion of an artificial fuel in a laboratory reactor. Environ. Sci. Technol. 1996, 30, 1637–1644. [Google Scholar] [CrossRef]
- Wikström, E.; Maklund, S. The influence of level and chlorine source on the formation of mono- to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste. Chemosphere 2001, 43, 227–234. [Google Scholar] [CrossRef]
- Duo, W.; Leclerc, D. Thermodynamic analysis and kinetic modelling of dioxin formation and emissions from power boilers firing salt-laden hog fuel. Chemosphere 2007, 67, S164–S176. [Google Scholar] [CrossRef]
- Gullett, B.K.; Bruce, K.R.; Beach, L.O. The effect of metal catalyst on the formation of polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Precursors. Chemosphere 1990, 20, 1945–1952. [Google Scholar] [CrossRef]
- Gullett, B.K.; Touati, A.; Lee, C.W. Formation of chlorinated dioxins and furans in a hazardous-waste-firing industrial boiler. Environ. Sci. Technol. 2000, 34, 2069–2074. [Google Scholar] [CrossRef]
- Gullett, B.K.; Sarofim, A.F.; Smith, K.A.; Procaccini, C. The role of chlorine in Dioxin formation. Trans. IChemE 2000, 78, 47–52. [Google Scholar] [CrossRef]
- Ryu, J.-Y.; Mulholland, J.A.; Dunn, J.E.; Iino, F.; Gullett, B.K. Potential role of chlorination pathways in PCDD/F formation in a municipal waste incinerator. Environ. Sci. Technol. 2004, 38, 5112–5119. [Google Scholar] [CrossRef]
- Thomas, V.M.; Spiro, T.G. The U.S. Dioxin inventory: Are there missing sources? Environ. Sci. Technol. 1996, 30, 82A–85A. [Google Scholar] [CrossRef]
- Lopes, H.; Gulyurtlu, I.; Abelha, P.; Crujeira, A.T.; Salema, D.; Freire, M.; Pereira, R.; Cabrita, I. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor. Fuel 2009, 88, 2373–2384. [Google Scholar] [CrossRef]
- Someshwar, A.V.; Jain, A.K.; Whittemore, R.C.; LaFleur, L.E.; Gillespie, W.J. The Effects of sludge burning on the PCDD/F content of ashes from pulp and paper mill hog fuel boilers. Chemosphere 1990, 20, 1715–1722. [Google Scholar] [CrossRef]
- Duo, W.-L.; Uloth, V.; Karidio, I.; Leclerc, D.; Kish, J.; Singbeil, D. Experimental Study of Dioxin Formation and Emissions from Power Boilers Burning Salt-Laden Wood Waste; Paprican Technical Report, PSR 509; Paprican: Vancouver, BC, Canada, 2004. [Google Scholar]
- Ogawa, H.; Orita, N.; Horaguchi, M.; Suzuki, T.; Okada, M.; Yasuda, S. Dioxin reduction by sulfur component addition. Chemosphere 1996, 32, 151–157. [Google Scholar] [CrossRef]
- Gullett, B.K.; Dunn, J.E.; Raghunathan, K. Effect of cofiring coal on formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during waste combustion. Environ. Sci. Technol. 2000, 34, 282–290. [Google Scholar] [CrossRef]
- Raghunathan, K.; Gullett, B.K. Role of sulfur in reducing PCDD and PCDF Formation. Environ. Sci. Technol. 1996, 30, 1827–1834. [Google Scholar] [CrossRef]
- Chang, M.B.; Cheng, Y.C.; Chi, K.H. Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes. Sci. Total Environ. 2006, 366, 456–465. [Google Scholar] [CrossRef]
- Preto, F.; McCleave, R.; McLaughlin, D.; Wang, J. Dioxins/furans emissions from fluidized bed combustion of salt-laden hog fuel. Chemosphere 2005, 58, 935–941. [Google Scholar] [CrossRef]
- Xie, W.; Liu, K.; Pan, W.-P.; Riley, J.T. Interaction between emissions of SO2 and HCl in fluidized bed combustors. Fuel 1999, 78, 1425–1436. [Google Scholar] [CrossRef]
- Stieglitz, L.; Vogg, H. On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators. Chemosphere 1987, 16, 1917–1922. [Google Scholar] [CrossRef]
- Lundin, L.; Gomez-Rico, M.F.; Forsberg, C.; Nordenskjöld, C.; Jansson, S. Reduction of PCDD, PCDF and PCB during co-combustion of biomass with waste products from pulp and paper industry. Chemosphere 2013, 91, 797–801. [Google Scholar] [CrossRef]
- Aurell, J.; Fick, F.; Haglund, P.; Marklund, M. Effects of sulfur on PCDD/F formation under stable and transient combustion conditions during MSW incineration. Chemosphere 2009, 76, 767–773. [Google Scholar] [CrossRef]
- Hunsinger, H.; Seifert, H.; Jay, K. Reduction of PCDD/F formation in MSWI by a process-integrated SO2 Cycle. Environ. Eng. Sci. 2007, 24, 1145–1159. [Google Scholar] [CrossRef]
- Griffin, R.D. A new theory of dioxin formation in municipal solid waste combustion. Chemosphere 1986, 15, 1987–1990. [Google Scholar] [CrossRef]
- Xie, Y.; Xie, W.; Liu, K.; Dicken, L.; Pan, W.-P.; Riley, J.T. The effect of sulfur dioxide on the formation of molecular chlorine during co-combustion of fuels. Energy Fuels 2000, 14, 597–602. [Google Scholar] [CrossRef]
- Thomas, V.M.; McCreight, C.M. Relation of chlorine, copper and sulphur to dioxin emission factors. J. Hazard. Mater. 2008, 151, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Gullett, B.K.; Bruce, K.R.; Beach, L.O. Effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin and dibenzofuran in municipal waste combustors. Environ. Sci. Technol. 1992, 26, 1938–1943. [Google Scholar] [CrossRef]
- Ryan, S.P.; Li, X.-D.; Gullett, B.K.; Lee, C.W.; Clayton, M.; Touati, A. Experimental study on the effect of SO2 on PCDD/F emissions: Determination of the importance of gas-phase versus solid-phase reactions in PCDD/F formation. Environ. Sci. Technol. 2006, 40, 7040–7047. [Google Scholar] [CrossRef]
- Skodras, G.; Pallada, A.; Kaldis, S.P.; Sakellaropoulos, G.P. Cleaner co-combustion of lignite–biomass–waste blends by utilising inhibiting compounds of toxic emissions. Chemosphere 2007, 67, S191–S197. [Google Scholar] [CrossRef]
- Ruokojärvi, P.H.; Asikainen, A.H.; Tuppurainen, K.A.; Ruuskanen, J. Chemical inhibition of PCDD/F formation in incineration processes. Sci. Total Environ. 2004, 325, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Samaras, P.; Blumenstock, M.; Lenoir, D.; Schramm, K.-W.; Kettrup, A. PCDD/F prevention by novel inhibitors: Addition of inorganic S- and N-compounds in the fuel before combustion. Environ. Sci. Technol. 2000, 34, 5092–5096. [Google Scholar] [CrossRef]
- Zhan, M.-X.; Chen, T.; Fu, J.-Y.; Lin, X.-Q.; Lu, S.-Y.; Li, X.-D.; Yan, J.-H.; Buekens, A. High temperature suppression of dioxins. Chemosphere 2016, 146, 182–188. [Google Scholar] [CrossRef]
- Lundin, L.; Jansson, S. The effects of fuel composition and ammonium sulfate addition on PCDD, PCDF, PCN and PCB concentrations during the combustion of biomass and paper production residuals. Chemosphere 2014, 94, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Pandelova, M.; Stanev, I.; Henkelmann, B.; Lenoir, D.; Schramm, K.-W. Correlation of PCDD/F and PCB at combustion experiments using wood and hospital waste. Influence of (NH4)2SO4 as additive on PCDD/F and PCB emissions. Chemosphere 2009, 75, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hervás, J.M.; Armesto, L.; Ruiz-Martínez, E.; Otero-Ruiz, J. PCDD/PCDF emissions from co-combustion of coal and PVC in a bubbling fluidised bed boiler. Fuel 2005, 84, 2149–2157. [Google Scholar] [CrossRef]
- Addink, R.; Paulus, R.H.W.L.; Olie, K. Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash using nitrogen and sulfur compounds. Environ. Sci. Technol. 1996, 30, 2350–2354. [Google Scholar] [CrossRef] [Green Version]
- Olie, K.; Addink, R.; Schoonenboom, M. Metals as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes. J. Air Waste Manag. Assoc. 1998, 48, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Hagenmaier, H.; Brunner, H.; Haag, R.; Kraft, M. Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated bibenzofurans, and other chlorinated aromatic compounds. Environ. Sci. Technol. 1987, 21, 1085–1088. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Buekens, A.; Olie, K.; Li, X. PCDD/F catalysis by metal chlorides and oxides. Chemosphere 2016, 159, 536–544. [Google Scholar] [CrossRef]
- Fujimori, T.; Takaoka, M.; Takeda, N. Influence of Cu, Fe, Pb, and Zn Chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environ. Sci. Technol. 2009, 43, 8053–8059. [Google Scholar] [CrossRef]
- Stieglitz, L.; Zwick, G.; Beck, J.; Roth, W.; Vogg, H. On the de-Novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere 1989, 18, 1219–1226. [Google Scholar] [CrossRef]
- Addink, R.; Altwicker, E.R. Role of copper compounds in the de Novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans. Environ. Eng. Sci. 1998, 15, 19–27. [Google Scholar] [CrossRef]
- Qian, Y.; Zheng, M.; Liu, W.; Ma, X.; Zhang, B. Influence of metal oxides on PCDD/Fs formation from pentachlorophenol. Chemosphere 2005, 60, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, M.; Zhang, B.; Qian, Y.; Ma, X.; Liu, W. Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide. Chemosphere 2005, 60, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Naikwadi, K.P.; Karasek, F.W. Prevention of PCDD formation in MSW incinerators by inhibition of catalytic activity of fly ash produced. Chemosphere 1989, 19, 299–304. [Google Scholar] [CrossRef]
- Weber, R.; Sakurai, T.; Hagenmaier, H. Formation and destruction of PCDD/F during heat treatment of fly ash samples from fluidized bed incinerators. Chemosphere 1990, 38, 2633–2642. [Google Scholar] [CrossRef]
- Naikwadi, K.P.; Albrecht, I.D.; Karasek, F.W. Mechanism of formation of PCDD/F in industrial waste incineration and a method of prevention of their formation. Chemosphere 1993, 27, 335–342. [Google Scholar] [CrossRef]
- Potter, P.M.; Dellinger, B.; Lomnicki, S.M. Contribution of aluminas and aluminosilicates to the formation of PCDD/Fs on fly ashes. Chemosphere 2016, 144, 2421–2426. [Google Scholar] [CrossRef] [Green Version]
- Altwicker, E.R.; Kumar, R.; Konduri, N.V.; Milligan, M.S. The role of precursors in formation of polychloro-dibenzo-p-dioxins and polychloro-dibenzofurans during heterogeneous combustion. Chemosphere 1990, 20, 1935–1944. [Google Scholar] [CrossRef]
- Iino, F.; Imagawa, T.; Gullett, B.K. Dechlorination-Controlled Polychlorinated Dibenzofuran Isomer patterns from municipal waste incinerators. Environ. Sci. Technol. 2000, 34, 3143–3147. [Google Scholar] [CrossRef]
- Oh, J.-E.; Touati, A.; Gullett, B.K.; Mulhollands, J.A. PCDD/F TEQ indicators and their mechanistic implications. Environ. Sci. Technol. 2004, 38, 4694–4700. [Google Scholar] [CrossRef]
- Collina, E.; Lasagni, M.; Pitea, D.; Keil, B.; Stieglitz, L. Degradation of octachlorodibenzofuran and octachlorodibenzo-p-dioxin spiked on fly ash: Kinetics and mechanism. Environ. Sci. Technol. 1995, 29, 577–585. [Google Scholar] [CrossRef]
- Van Berkel, O.M.; Olie, K.; van den Berg, M. Thermal degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans on fly ash from a municipal incinerator. Int. J. Environ. Anal. Chem. 1988, 34, 51–67. [Google Scholar] [CrossRef]
- Fueno, H.; Tanaka, K.; Sugawa, S. Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin. Chemosphere 2002, 48, 771–778. [Google Scholar] [CrossRef]
- Ryu, J.-Y.; Choi, K.-C.; Mulholland, J.A. Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) isomer patterns from municipal waste combustion: Formation mechanism fingerprints. Chemosphere 2006, 65, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Cains, P.W.; Mccausland, L.J.; Fernandes, A.R.; Dyke, P. Polychlorinated dibenzo-p-dioxins and dibenzofurans formation in incineration: Effects of fly ash and carbon source. Environ. Sci. Technol. 1997, 31, 776–785. [Google Scholar] [CrossRef]
- Weber, R.; Nagai, K.; Nishino, J.; Shiraishi, H.; Ishida, M.; Takasuga, T.; Konndo, K.; Hiraoka, M. Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere 2002, 46, 1247–1253. [Google Scholar] [CrossRef]
- Weber, R.; Takasuga, T.; Nagai, K.; Shiraishi, H.; Sakurai, T.; Matuda, T.; Hiraoka, M. Dechlorination and destruction of PCDD, PCDF and PCB on selected fly ash from municipal waste incineration. Chemosphere 2002, 46, 1255–1262. [Google Scholar] [CrossRef]
- Hagenmaier, H.; Kraft, M.; Brunner, H.; Haag, R. Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p -dioxins and polychlorinated dibenzofurans. Environ. Sci. Technol. 1987, 21, 1080–1084. [Google Scholar] [CrossRef]
- Yasuhara, A.; Tanaka, Y.; Katami, T.; Shibamoto, T. The role of metals in dioxin formation from combustion of newspapers and polyvinyl chloride in an incinerator. Chemosphere 2005, 58, 891–896. [Google Scholar] [CrossRef]
- Murabayashi, M.; Moesta, H. Thermodynamic study on the reduction of the Polychlorinated Dibenzo-p -dioxins and dibenzofurans in incinerator exhausts. Environ. Sci. Technol. 1992, 26, 797–802. [Google Scholar] [CrossRef]
- Chen, W.-S.; Shen, Y.-H.; Hsieh, T.-Y.; Lin, C.-W.; Wang, L.-C.; Chang-Chien, G.-P. Fate and distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in a woodchip-fuelled boiler. Aerosol Air Qual. Res. 2011, 11, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Wehrmeier, A.; Lenoir, D.; Schramm, K.W.; Zimmermann, R.; Hahn, K.; Henkelmann, B.; Kettrup, A. Patterns of isomers of chlorinated dibenzo-p-dioxins as a tool for elucidation of thermal formation mechanisms. Chemosphere 1998, 36, 2775–2801. [Google Scholar] [CrossRef]
- Kopponen, P.; Törrönen, R.; Välttilä, O.; Talka, E.; Törrönem, J.; Ruuskanen, J.; Kärenlampi, S. Chemical and biological 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in fly ash from combustion of bleached kraft pulp mill sludge. Environ. Toxicol. Chem. 1994, 13, 143–148. [Google Scholar] [CrossRef]
- Wikström, E.; Maklund, S. Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes, and phenols during MSW combustion. Environ. Sci. Technol. 2000, 34, 604–609. [Google Scholar] [CrossRef]
- Lima, A.L.C.; Farrington, J.W.; Reddy, C.M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—A review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- McGrath, T.; Sharma, R.; Hajaligol, M. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel 2001, 80, 1787–1797. [Google Scholar] [CrossRef]
- Masclet, P.; Bresson, M.A.; Mouvier, G. Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions. Fuel 1987, 66, 556–562. [Google Scholar] [CrossRef]
- Caneghem, J.V.; Vandecasteele, C. Characterisation of polycyclic aromatic hydrocarbons in flue gas and residues of a full scale fluidized bed combustor combusting non-hazardous industrial waste. Waste Manag. 2014, 34, 2407–2413. [Google Scholar] [CrossRef]
- Liu, K.; Xie, W.; Zhao, Z.-B.; Pan, W.-P.; Riley, J.T. Investigation of polycyclic aromatic hydrocarbons in fly ash from fluidized bed combustion systems. Environ. Sci. Technol. 2000, 34, 2273–2279. [Google Scholar] [CrossRef]
- Bignal, K.L.; Langridge, S.; Zhou, L.Z. Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions. Atmos. Environ. 2008, 42, 8863–8871. [Google Scholar] [CrossRef]
- Mastral, A.M.; Callén, M.S. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ. Sci. Technol. 2000, 34, 3051–3057. [Google Scholar] [CrossRef]
- Janvijitsakul, K.; Kuprianov, V.I. Polycyclic aromatic hydrocarbons in coarse fly ash particles emitted from fluidized-bed combustion of thai rice husk. Asian J. Energy Environ. 2007, 8, 654–662. [Google Scholar]
- Benfenati, E.; Mariani, G.; Fanelli, R.; Zucotti, S. De novo synthesis of PCDD, PCDF, PCB, PCN, and PAH in a pilot incinerator. Chemosphere 1991, 22, 1045–1052. [Google Scholar] [CrossRef]
- Schoonenboom, M.H.; Olie, K. Formation of PCDDs and PCDFs from anthracene and chloroanthracene in a model fly ash system. Environ. Sci. Technol. 1995, 29, 2005–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iino, F.; Imagawa, T.; Takeuchi, M.; Sadakata, M. De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environ. Sci. Technol. 1999, 33, 1038–1043. [Google Scholar] [CrossRef]
- Iino, F.; Imagawa, T.; Takeuchi, M.; Sadakata, M.; Weber, R. Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol. Chemosphere 1999, 39, 2749–2756. [Google Scholar] [CrossRef]
- Weber, R.; Iino, F.; Imagawa, T.; Takeuchi, M.; Sakurai, T.; Sadakata, M. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 2001, 44, 1429–1438. [Google Scholar] [CrossRef]
- Wilhelm, J.; Stieglitz, L.; Dinjus, E.; Will, R. Mechanistic studies on the role of PAHs and related compounds in PCDD/F formation on model fly ashes. Chemosphere 2001, 42, 797–802. [Google Scholar] [CrossRef]
- Tarelho, L.A.C.; Lopes, M.H.S.D.; Silva, D.F.R.; Freire, M.S.M.; Teixeira, E.R.; Modolo, R.C.E. Characteristics of biomass used as fuel and ashes produced in two thermal power plants with BFBC. In Proceedings of the Proceedings Word Bioenergy 2014, Jonkoping, Sweden, 3–5 June 2014; ISBN 978-91-977624-8-9. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Barnthaler, G. Chemical properties of solid biofuels-significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Pandelova, M.; Henkelmann, B.; Bussian, B.M.; Schramm, K.-W. Results of the second national forest soil inventory in Germany-Interpretation of level and stock profiles for PCDD/F and PCB in terms of vegetation and humus type. Sci. Total Environ. 2018, 610–611, 1–9. [Google Scholar] [CrossRef]
- Chen, P.; Mei, J.; Peng, P.; Hu, J.; Chen, D. Atmospheric PCDD/F concentrations in 38 cities of China monitored with pine needles, a passive biosampler. Environ. Sci. Technol. 2012, 46, 13334–13343. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Hites, R.A. Is combustion the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans to the environment? A mass balance investigation. Environ. Sci. Technol. 2000, 34, 2879–2886. [Google Scholar] [CrossRef]
- U.S. EPA. An Inventory of Sources and Environmental Releases of Dioxin-Like Compounds in the U.S. for the Years 1987, 1995, and 2000 (Final, Nov 2006); EPA/600/P-03/002F; U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- Camenzuli, L.; Scheringer, M.; Gaus, C.; Grant, S.; Zennegg, M.; Hungerbühler, K. Historical emissions of octachlorodibenzodioxin in a watershed in Queensland, Australia: Estimation from field data and an environmental fate model. Sci. Total Environ. 2015, 502, 680–687. [Google Scholar] [CrossRef]
- Holt, E.; Weber, R.; Stevenson, G.; Gaus, C. Formation of dioxins during exposure of pesticide formulations to sunlight. Chemosphere 2012, 88, 364–370. [Google Scholar] [CrossRef]
- Prange, J.A.; Gaus, C.; Weber, R.; Päpke, O.; Müller, J.F. Assessing forest fire as a potential PCDD/F source in Queensland, Australia. Environ. Sci. Technol. 2003, 37, 4325–4329. [Google Scholar] [CrossRef] [PubMed]
- Wagrowski, D.M.; Hites, R.A. Insights into the global distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 2000, 34, 2952–2958. [Google Scholar] [CrossRef]
- Hutzinger, O.; Blumich, M.J.; van den Berg, M.; Olie, M.K. Sources and fate of PCDDs and PCDFs: An overview. Chemosphere 1985, 14, 581–600. [Google Scholar] [CrossRef]
- Pennise, D.M.; Kamens, R.M. Atmospheric behavior of polychlorinated dibenzo-p-dioxins and dibenzofurans and the effect of combustion temperature. Environ. Sci. Technol. 1996, 30, 2832–2842. [Google Scholar] [CrossRef]
- Liu, K.; Pan, W.-P.; Riley, J.T. A study of chlorine in a simulated fluidised bed combustion system. Fuel 2000, 79, 1115–1124. [Google Scholar] [CrossRef]
- Johansen, J.M.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass. Energy Fuels 2011, 25, 4961–4971. [Google Scholar] [CrossRef] [Green Version]
- Meij, R.; te Winkel, H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmos. Environ. 2007, 41, 9262–9272. [Google Scholar] [CrossRef]
- Neuwahl, F.; Cusano, G.; Benavides, J.G.; Holbrook, S.; Roudier, S. Best Available Techniques (BAT) Reference Document for Waste Incineration; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Abad, E.; Adrados, M.A.; Caixach, J.; Rivera, J. Dioxin abatement strategies and mass balance at a municipal waste management plant. Environ. Sci. Technol. 2002, 36, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Summoogum, S.L.; Altarawneh, M.; Mackie, J.C.; Kennedy, E.M.; Dlugogorski, B.Z. Oxidation of dibenzo-p-dioxin: Formation of initial products, 2-methylbenzofuran and 3-hydro-2-methylenebenzofuran. Combust. Flame 2012, 159, 3056–3065. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Assigning Values to Non-detected/Non-Quantified Pesticide Residues in Human Health Food Exposure Assessments, Office of Pesticide Programs, U.S.; Environmental Protection Agency: Washington, DC, USA, 2000.
- US EPA, Office of Resource Conservation and Recovery. SW-846 Test Method 4435. Screening for Dioxin-Like Chemical Activity in Soils and Sediments using the CALUX Bioassay and Toxic Equivalents (TEQs) Determinations. Revision 1. July 2014. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; US EPA, Office of Resource Conservation and Recovery, 2014. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/4435.pdf. (accessed on 15 May 2020).
- Behnisch, P.A.; Hosoe, K.; Shiozaki, K.; Kiryu, T.; Komatsu, K.; Schramm, K.W.; Sakai, S. Melting and incineration plants of municipal waste. Chemical and biochemical diagnosis of thermal processing samples (emission, residues). Environ. Sci. Pollut. Res. Int. 2002, 9, 337–344. [Google Scholar] [CrossRef] [PubMed]
- General Technical Guidelines on the Environmentally Sound Management of Wastes Consisting of, Containing or Contaminated with Persistent Organic Pollutants. UNEP/CHW.14/7/Add.1/Rev.1. 20 June 2019. Available online: http://www.basel.int/TheConvention/ConferenceoftheParties/Callforinformation/FollowuptoCOP14/tabid/8026/Default.aspx (accessed on 11 April 2020).
PCDD/Fs Congeners | I-TEF [68] | WHO1998-TEF a [69] | WHO2005-TEF a [65] | |
---|---|---|---|---|
Furans (PCDFs) | 2,3,7,8-TCDF | 0.1 | 0.1 | 0.1 |
1,2,3,7,8-PeCDF | 0.05 | 0.05 | 0.03 b | |
2,3,4,7,8-PeCDF | 0.5 | 0.5 | 0.3 | |
1,2,3,4,7,8-HxCDF | 0.1 | 0.1 | 0.1 | |
1,2,3,6,7,8-HxCDF | 0.1 | 0.1 | 0.1 | |
2,3,4,6,7,8-HxCDF | 0.1 | 0.1 | 0.1 | |
1,2,3,7,8,9-HxCDF | 0.1 | 0.1 | 0.1 | |
1,2,3,4,6,7,8-HpCDF | 0.01 | 0.01 | 0.01 | |
1,2,3,4,7,8,9-HpCDF | 0.01 | 0.01 | 0.01 | |
OCDF | 0.001 | 0.0001 | 0.0003 | |
Dioxins (PCDDs) | 2,3,7,8-TCDD | 1 | 1 | 1 |
1,2,3,7,8-PeCDD | 0.5 | 1 | 1 | |
1,2,3,4,7,8-HxCDD | 0.1 | 0.1 | 0.1 | |
1,2,3,6,7,8-HxCDD | 0.1 | 0.1 | 0.1 | |
1,2,3,7,8,9-HxCDD | 0.1 | 0.1 | 0.1 | |
1,2,3,4,6,7,8-HpCDD | 0.01 | 0.01 | 0.01 | |
OCDD | 0.001 | 0.0001 | 0.0003 |
PAHs Compounds | Acronym | Number Rings | IARC a [96] | RPF US-EPA [101] | RPF N&L [98] | |
---|---|---|---|---|---|---|
LPAHs | Naphthalene | NaP | 2 | 2 B | - | 0.001 |
Acenaphthylene | Acy | 3 | - | - | 0.001 | |
Acenaphthene | Ace | 3 | 3 | - | 0.001 | |
Fluorene | FL | 3 | 3 | - | 0.001 | |
Phenanthrene | Phe | 3 | 3 | - | 0.001 | |
Anthracene | Ant | 3 | 3 | - | 0.01 | |
HPAHs | Fluoranthene | Flut | 4 | 3 | - | 0.001 |
Pyrene | Pyr | 4 | 3 | - | 0.001 | |
Benzo[a]anthracene | BaA | 4 | 2 B | 0.1 | 0.1 | |
Chrysene | Chry | 4 | 2 B | 0.001c | 0.01 | |
Benzo[b]fluoranthene b | BbFA | 5 | 2 B | 0.1 | 0.1 | |
Benzo[k]fluoranthene b | BkFA | 5 | 2 B | 0.01 | 0.1 | |
Benzo[a]pyrene b | BaP | 5 | 1 | 1 | 1 | |
Dibenzo[a,h]anthracene | DahA | 5 | 2 A | 1 | 5 | |
Benzo[g,h,i]perylene | BghiP | 6 | 3 | - | 0.01 | |
Indeno [1,2,3-c,d]pyrene b | IP | 6 | 2 B | 0.1 | 0.1 |
Ash Stream | Combustion Technology | Ash Flows Included | |
---|---|---|---|
BA (Bottom Ash) | BABFB1 | BFB | Bottom bed |
BABFB3 | BFB | Bottom bed | |
BABFB4 | BFB | Bottom bed + EC + SH | |
BAGF | GF | Grate ash | |
FA (Fly Ash) | FABFB1 | BFB | Fly ash ESP + EC + SH |
FABFB3 | BFB | Fly ash ESP + EC + SH | |
FABFB4 | BFB | Fly ash ESP | |
FAGF | Grate Furnace | Fly ash ESP + EC |
Sludge Mix (1°/2°–70/30) | Biomass BFB1 (n = 5) | Biomass BFB3 (n = 5) | Biomass BFB4 (n = 4) | Biomass GF (n = 4) | |
---|---|---|---|---|---|
Ash% | 74 | 2.4–8.3 | 1.5–6.5 | 4.2–10.6 | 4.3–6.7 |
N% | 1.29 | 0.22–0.35 | 0.32–0.71 | 0.26–0.43 | 0.22–0.32 |
S% | 0.31 | 0.01–0.08 | 0.02–0.07 | 0.03–0.16 | 0.02–0.03 |
S%, avg | - | 0.04 | 0.05 | 0.08 | 0.03 |
Cl% | 0.60 | 0.08–0.28 | 0.04–0.19 | 0.10–0.12 | 0.15–0.24 |
Cl%, avg | - | 0.22 | 0.13 | 0.11 | 0.19 |
Cu mg/kg | 12 | 3–5 | 3–55 | 6–11 | 6–9 |
Ni mg/kg | 17 | 2–9 | 1–16 | 17–36 | 2–32 |
Cr mg/kg | 9 | 9–17 | 2–22 | 28–58 | 21–60 |
Zn mg/kg | 25 | 7–11 | 10–139 | 17–37 | 11–24 |
Pb mg/kg | 12 | 1–3 | 1–34 | 2–6 | 2–5 |
Cd mg/kg | <3 | <0.2 | <0.2–0.3 | <0.3 | <0.3 |
Hg mg/kg | 0.061 | 0.007–0.021 | 0.012–0.030 | 0.012–0.026 | 0.015–0.047 |
Mn mg/kg | 512 | 172–434 | 70–232 | 145–321 | 361–802 |
Fe% | 0.18 | 0.04–0.14 | 0.03–0.33 | 0.08–0.32 | 0.10–0.31 |
Al% | 0.49 | 0.07–0.36 | 0.07–0.33 | 0.15–0.70 | 0.20–0.53 |
Ca% | 23.2 | 0.34–1.83 | 0.21–0.98 | 0.72–1.56 | 0.58–0.82 |
Na% | 0.61 | 0.05–0.21 | 0.03–0.14 | 0.04–0.08 | 0.07–0.12 |
K% | 0.50 | 0.17–0.39 | 0.11–0.34 | 0.28–0.47 | 0.40–0.66 |
Mg% | 0.39 | 0.06–0.20 | 0.05–0.12 | 0.12–0.16 | 0.10–0.20 |
P% | 0.35 | 0.03–0.07 | 0.02–0.47 | 0.08–0.18 | 0.09–0.13 |
Si% | 1.6 | 0.16–1.56 | 0.17–1.07 | 0.59–2.44 | 0.53–1.54 |
S/Cl ratio | 0.5 | 0.02–1.0 | 0.3–0.6 | 0.2–1.3 | 0.1–0.2 |
S/Cl ratio, avg | - | 0.29 | 0.4 | 0.7 | 0.1 |
(ng/kg) | Sludge Mix (1°/2° = 70/30) | Soil | Biomass Blend BFB3 | Biomass Blend BFB4 | Biomass Blend GF |
---|---|---|---|---|---|
2,3,7,8-TCDF | ND(2.0) 1 | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) |
1,2,3,7,8-PeCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
2,3,4,7,8-PeCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,4,7,8-HxCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,6,7,8-HxCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
2,3,4,6,7,8-HxCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,7,8,9-HxCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,4,6,7,8-HpCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,4,7,8,9-HpCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
OCDF | ND(24) | ND(24) | ND(24) | ND(24) | ND(24) |
2,3,7,8-TCDD | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) | ND(2.0) |
1,2,3,7,8-PeCDD | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,4,7,8-HxCDD | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,6,7,8-HxCDD | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,7,8,9-HxCDD | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) |
1,2,3,4,6,7,8-HpCDD | ND(12) | ND(12) | 35 | ND(12) | ND(12) |
OCDD | ND(25) | 43 | 260 | 67 | 29 |
Σ PCDD/F MB 2 | 105 | 135 | 382 | 160 | 122 |
LB/UB 2 | 0/210 | 43/228 | 295/468 | 67/252 | 29/214 |
I-TEQ MB | 11.8 | 11.8 | 12.3 | 11.9 | 11.8 |
WHO1998-TEQ MB | 14.8 | 14.8 | 15.1 | 14.8 | 14.8 |
WHO2005-TEQ MB | 13.5 | 13.5 | 13.8 | 13.5 | 13.5 |
LB/UB | 0/26.9 | 0.01/26.9 | 0.43/27.2 | 0.02/26.9 | 0.009/26.9 |
BFB1 | BFB3 | BFB4 | GF | |||||
---|---|---|---|---|---|---|---|---|
BA (n = 12) | FA (n = 12) | BA (n = 12) | FA (n = 12) | BA (n = 4) | FA (n = 4) | BA (n = 6) | FA (n = 6) | |
C% | 0.1–0.5 | 1.4–5.6 | <0.1–0.4 | 0.9–1.7 | 0.1–0.3 | 1.2–3.8 | 0.7–4.2 | 5.1–12 |
S% | 0.01–0.07 | 0.3–1.4 | <0.01–0.01 | 0.2–1.3 | <0.01 | 0.2–1.2 | <0.01 | 0.1–0.8 |
Cl% | 0.01–0.22 | 1.3–8.1 | 0.004–0.02 | 0.14–2.2 | 0.006–0.03 | 0.31–0.66 | 0.007–0.01 | 0.23–1.4 |
Cu mg/kg | 13–36 | 35–90 | 19–51 | 49–85 | <10–575 | 30–167 | 33–43 | 38–92 |
Ni mg/kg | <10 | 24–65 | <10 | 16–83 | <10 | 13–21 | 11–21 | 14–28 |
Cr mg/kg | 11–30 | 33–95 | 11–21 | 40–125 | <10–24 | 38–70 | 47–73 | 41–60 |
Zn mg/kg | 25–194 | 22–249 | 28–186 | 159–357 | 32–244 | 82–358 | 27–45 | 115–765 |
Pb mg/kg | <10–12 | 22–135 | <10–23 | 39–173 | <10–58 | 31–133 | <10 | 14–75 |
Cd mg/kg | <4 | <4 | <4 | <4 | <4 | <4–5 | <4 | <4 |
Hg mg/kg | <0.001 | 0.01–0.22 | <0.002 | 0.10–0.31 | <0.001 | 0.08–0.16 | <0.005 | 0.05–0.52 |
Mn mg/kg | 581–1160 | 2671–6482 | 125–830 | 914–3282 | 229–433 | 1016–1526 | 1452–2094 | 1648–4264 |
Fe% | 0.4–1.6 | 0.9–3.5 | 0.4–1.1 | 1.6–3.9 | 0.4–0.7 | 1.3–1.7 | 2.6–4.6 | 2.3–4.1 |
Al% | 0.6–3.3 | 1.9–6.6 | 0.7–2.7 | 3.5–8.2 | 1.8–2.3 | 3.8–6.0 | 5.6–8.1 | 5.1–8.5 |
Ca% | 1.5–5.7 | 8.2–31 | 0.8–4.8 | 3.0–15 | 0.5–3.2 | 3.9–17 | 3.4–6.7 | 3.0–8.2 |
Na% | 0.2–2.7 | 0.8–2.3 | 0.1–0.6 | 0.6–1.6 | 0.1–0.3 | 0.6–1.2 | 0.5–0.8 | 0.6–0.9 |
K% | 0.5–2.8 | 3.9–7.5 | 0.5–2.2 | 2.5–4.5 | 1.6–1.9 | 3.4–3.7 | 3.0–3.5 | 3.1–4.8 |
Mg% | 0.2–2.5 | 1.3–2.8 | 0.1–0.5 | 0.7–1.6 | 0.1–0.2 | 0.7–1.1 | 0.8–1.2 | 0.9–1.6 |
P% | 0.1–0.3 | 0.3–0.7 | 0.02–0.1 | 0.3–1.1 | 0.04–0.1 | 0.4–3.8 | 0.2–0.3 | 0.3–0.5 |
Si% | 33–40 | 7.5–23 | 32–37 | 16–27 | 39–40 | 21–29 | 25–30 | 19–25 |
ng/kg | BFB1 Ash Blend | BFB3 Ash Blend | BFB4 Ash Blend | GF Ash Blend | ||||
---|---|---|---|---|---|---|---|---|
BA | FA | BA | FA | BA | FA | BA | FA | |
2,3,7,8-TCDF | ND(2.0) 1 | 30 | ND(2.0) | 121 | ND(2.0) | 88 | ND(2.0) | 447 |
1,2,3,7,8-PeCDF | ND(12) | 14 | ND(12) | 43 | ND(12) | 93 | ND(12) | 386 |
2,3,4,7,8-PeCDF | ND(12) | 19 | ND(12) | 49 | ND(12) | 191 | ND(12) | 620 |
1,2,3,4,7,8-HxCDF | ND(12) | ND(12) | ND(12) | 23 | ND(12) | 111 | ND(12) | 386 |
1,2,3,6,7,8-HxCDF | ND(12) | ND(12) | ND(12) | 26 | ND(12) | 131 | ND(12) | 468 |
2,3,4,6,7,8-HxCDF | ND(12) | ND(12) | ND(12) | 27 | ND(12) | 202 | ND(12) | 640 |
1,2,3,7,8,9-HxCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) | 64 | ND(12) | 183 |
1,2,3,4,6,7,8-HpCDF | 28 | ND(12) | ND(12) | 35 | ND(12) | 333 | ND(12) | 976 |
1,2,3,4,7,8,9-HpCDF | ND(12) | ND(12) | ND(12) | ND(12) | ND(12) | 93 | ND(12) | 244 |
OCDF | 101 | ND(25) | ND(24) | 27 | ND(24) | 333 | ND(24) | 366 |
2,3,7,8-TCDD | 5.8 | 6.0 | ND(2.0) | 26 | ND(2.0) | 11 | ND(2.0) | 122 |
1,2,3,7,8-PeCDD | ND(12) | ND(12) | ND(12) | 18 | ND(12) | 48 | ND(12) | 264 |
1,2,3,4,7,8-HxCDD | ND(12) | 17 | ND(12) | ND(12) | ND(12) | 48 | ND(12) | 366 |
1,2,3,6,7,8-HxCDD | ND(12) | 33 | ND(12) | 21 | ND(12) | 83 | ND(12) | 1220 |
1,2,3,7,8,9-HxCDD | ND(12) | 23 | ND(12) | 13 | ND(12) | 45 | ND(12) | 793 |
1,2,3,4,6,7,8-HpCDD | 98 | 315 | ND(12) | 121 | ND(12) | 584 | 20 | 9048 |
OCDD | 523 | 274 | 33 | 161 | ND(24) | 685 | 121 | 7523 |
Σ PCDD/F MB 2 LB/UB 2 | 823 755/890 | 789 733/844 | 126 33/219 | 731 713/749 | 105 0/209 | 3141 | 228 141/315 | 24052 |
I-TEQ MB | 18.4 | 35.9 | 11.9 | 88.3 | 11.9 | 224 | 12.2 | 1144 |
WHO1998-TEQ MB | 20.9 | 38.6 | 14.9 | 97.2 | 14.9 | 247 | 15.1 | 1270 |
WHO2005-TEQ MB LB/UB | 19.7 7.3/32.1 | 34.6 25.9/43.2 | 13.5 0.01/27.1 | 86.5 85.2/87.8 | 13.5 0/27.1 | 207 same | 13.8 0.2/27.3 | 1139 same |
mg/kg | BFB1 Ash Blends | BFB3 Ash Blends | GF Ash Blends | |||
---|---|---|---|---|---|---|
BA | FA | BA | FA | BA | FA | |
NaP | 0.016 | 1.727 | ND(0.005) | 0.776 | 0.060 | 2.338 |
Acy | ND(0.005) 1 | 0.075 | 0.008 | 0.100 | ND(0.005) | 0.066 |
Ace | ND(0.005) | 0.006 | ND(0.005) | 0.006 | 0.006 | ND(0.005) |
FL | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) |
Phe | 0.009 | 0.163 | 0.011 | 0.232 | ND(0.005) | 0.061 |
Ant | ND(0.005) | 0.006 | ND(0.005) | 0.011 | ND(0.005) | ND(0.005) |
Flut | ND(0.005) | 0.025 | 0.005 | 0.171 | ND(0.005) | 0.023 |
Pyr | ND(0.005) | 0.020 | ND(0.005) | 0.181 | ND(0.005) | 0.022 |
BaA * | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) |
Chry * | ND(0.005) | ND(0.005) | ND(0.005) | 0.006 | ND(0.005) | ND(0.005) |
BbFA * | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) |
BkFA * | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) |
BaP *** | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) |
DahA ** | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) |
BghiP | ND(0.005) | ND(0.005) | ND(0.005) | 0.006 | ND(0.005) | ND(0.005) |
IP * | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) | ND(0.005) |
Σ16 PAH MB 2 | 0.060 | 2.045 | 0.057 | 1.507 | 0.101 | 2.539 |
LB/UB 2 | 0.02/0.10 | 1.90/2.07 | 0.02/0.09 | 1.49/1.52 | 0.07/0.14 | 2.51/2.57 |
Σ 7 Carc. MB | 0.018 | 0.018 | 0.018 | 0.021 | 0.018 | 0.018 |
LB/UB | 0/0.04 | 0/0.04 | 0/0.04 | 0.006/0.04 | 0/0.04 | 0/0.04 |
BaP-EQ US-EPA 3 MB | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
BaP-EQ N&L 4 MB | 0.016 | 0.018 | 0.016 | 0.018 | 0.016 | 0.019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, H.; Proença, S. Insights into PCDD/Fs and PAHs in Biomass Boilers Envisaging Risks of Ash Use as Fertilizers. Appl. Sci. 2020, 10, 4951. https://doi.org/10.3390/app10144951
Lopes H, Proença S. Insights into PCDD/Fs and PAHs in Biomass Boilers Envisaging Risks of Ash Use as Fertilizers. Applied Sciences. 2020; 10(14):4951. https://doi.org/10.3390/app10144951
Chicago/Turabian StyleLopes, Helena, and Susana Proença. 2020. "Insights into PCDD/Fs and PAHs in Biomass Boilers Envisaging Risks of Ash Use as Fertilizers" Applied Sciences 10, no. 14: 4951. https://doi.org/10.3390/app10144951
APA StyleLopes, H., & Proença, S. (2020). Insights into PCDD/Fs and PAHs in Biomass Boilers Envisaging Risks of Ash Use as Fertilizers. Applied Sciences, 10(14), 4951. https://doi.org/10.3390/app10144951