Characterization of Localized Atmospheric Turbulence Layer Using Laser Light Backscattered off Moving Target
Abstract
:1. Introduction
2. Target-in-the-Loop Atmospheric Sensing Concept
- 1.
- Autocorrelation function of the signal,
- 2.
- Interference metric variance, also referred to here as the TILAS received power signal variance, given by the expression [8]
3. Numerical Simulation Approach and Settings
4. Numerical Simulation Results and Analysis
4.1. Correlation Properties of TILAS Received Power Signal
4.2. Estimation of Turbulence Layer Position Based on TILAS Measurements
4.3. Estimation of Turbulence Layer Strength Based on TILAS Measurements
4.4. Evaluation of Turbulence Layer Outer Scale Based on TILAS Measurements
5. Discussion and Conclusions
- Step 1.
- The relative turbulence layer position z/L is estimated using the set of functions τcor (z/L) computed for given TILAS parameters, known distance to the target and target speed, as well as various turbulence strengths of the layer , as in Figure 4a. Since the functions τcor (z/L) are weakly dependent on the turbulence strength, the turbulence layer position will be estimated with some error due to the uncertainty of .
- Step 2.
- The turbulence layer strength is defined using the set of functions computed for the estimated interval of z/L values, as in Figure 5b. The error in the layer position will introduce the corresponding error in the turbulence layer strength estimates.
Author Contributions
Funding
Conflicts of Interest
References
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 1941, 30, 299–303. [Google Scholar]
- Mahrt, L. Stratified atmospheric boundary layers. Bound. Layer Meteorol. 1999, 90, 375–396. [Google Scholar] [CrossRef]
- Poulos, G.S.; Blumen, W.; Fritts, D.C.; Lundquist, J.K.; Sun, J.; Burns, S.P.; Nappo, C.; Banta, R.; Newsom, R.; Cuxart, J.; et al. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Am. Meteorol. Soc. 2002, 83, 555–581. [Google Scholar] [CrossRef]
- Mahalov, A.; Moustaoui, M. Characterization of atmospheric optical turbulence for laser propagation. Laser Photonics Rev. 2010, 4, 144–159. [Google Scholar] [CrossRef]
- Azouit, M.; Vernin, J. Optical turbulence profiling with balloons relevant to astronomy and atmospheric physics. Publ. Astron. Soc. Pac. 2005, 117, 536–543. [Google Scholar] [CrossRef]
- Ince, T.; Frasier, S.J.; Muschinski, A.; Pazmany, A.L. An S-band frequency-modulated continuous-wave boundary layer profiler: Description and initial results. Radio Sci. 2003, 38, 1072. [Google Scholar] [CrossRef]
- Beckers, J.M. Adaptive optics for astronomy: Principles, performance, and applications. Annu. Rev. Astron. Astrophys. 1993, 31, 13–62. [Google Scholar] [CrossRef]
- Vorontsov, M.A.; Lachinova, S.L.; Majumdar, A.K. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics. Appl. Opt. 2016, 55, 5172–5179. [Google Scholar] [CrossRef] [PubMed]
- Polnau, E.; Vorontsov, M.A.; Gudimetla, R. Experimental demonstration of target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics. J. Opt. 2019, 21, 095602. [Google Scholar] [CrossRef]
- Shapiro, J.H. Reciprocity of the turbulent atmosphere. J. Opt. Soc. Am. 1971, 61, 492–495. [Google Scholar] [CrossRef]
- Vorontsov, M.A.; Shmal’gauzen, V.I. Interference criteria for the focusing of light. Kvant. Elektron. 1980, 7, 500–505. [Google Scholar] [CrossRef]
- Vorontsov, M.A.; Kolosov, V.V.; Kohnle, A. Adaptive laser beam projection on an extended target: Phase- and field-conjugate precompensation. J. Opt. Soc. Am. A 2007, 24, 1975–1993. [Google Scholar] [CrossRef] [PubMed]
- Vorontsov, M.A. Conservation laws for counter-propagating optical waves in atmospheric turbulence with application to directed energy and laser communications. In Imaging and Applied Optics, Proceedings of the Propagation Through and Characterization of Distributed Volume Turbulence, Arlington, VA, USA, 23–27 June 2013; Optical Society of America: Arlington, VA, USA, 2013; p. 31. [Google Scholar] [CrossRef]
- Minet, J.; Vorontsov, M.A.; Polnau, E.; Dolfi, D. Enhanced correlation of received power-signal fluctuations in bidirectional optical links. J. Opt. 2013, 15, 022401. [Google Scholar] [CrossRef]
- Fleck, J.A.; Morris, J.R.; Feit, M.D. Time-dependent propagation of high-energy laser beams through the atmosphere. Appl. Phys. 1976, 10, 129–160. [Google Scholar] [CrossRef]
- Martin, J.M.; Flatte, S.M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. Appl. Opt. 1988, 27, 2111–2126. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB. In Press Monograph Series; SPIE Press: Bellingham, WA, USA, 2010; Volume PM199, p. 212. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation Through Random Media. In Press Monograph Series; SPIE Press: Bellingham, WA, USA, 1998; Volume PM53. [Google Scholar]
- Roggemann, M.C.; Welsh, B. Imaging Through Turbulence; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Vorontsov, A.M.; Paramonov, P.V.; Valley, M.T.; Vorontsov, M.A. Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence. Waves Random Complex Media 2008, 18, 91–108. [Google Scholar] [CrossRef]
- Voelz, D.G.; Roggemann, M.C. Digital simulation of scalar optical diffraction: Revisiting chirp function sampling criteria and consequences. Appl. Opt. 2009, 48, 6132–6142. [Google Scholar] [CrossRef] [PubMed]
- Tatarski, V.I. Wave Propagation in a Turbulent Medium; In Electrical Engineering; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
- Gardner, C.S. Effects of random path fluctuations on the accuracy of laser ranging systems. Appl. Opt. 1976, 15, 2539–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorontsov, A.M.; Vorontsov, M.A.; Rao Gudimetla, V.S. Large-scale turbulence effects simulations for piston phase retrieval. In Proceedings of the 2012 AMOS Conference; Ryan, S., Ed. The Maui Economic Development Board: Maui, HI, USA, 2012. [Google Scholar]
z/L | z/L Estimate after 1st Iteration | z/L Estimate after 2nd Iteration | |||||
---|---|---|---|---|---|---|---|
0.1 | 1×10−14 | 0.73 | 0.268 | [0.10; 0.15] | [0.6; 1.0] × 10−14 | [0.10; 0.12] | [0.8; 1.0] × 10−14 |
0.5 | 1×10−15 | 0.21 | 0.097 | [0.36; 0.51] | [0.9; 1.0] × 10−15 | [0.49; 0.51] | [0.9; 1.0] × 10−15 |
0.9 | 1×10−16 | 0.08 | 0.004 | [0.83; 0.90] | [0.7; 1.0] × 10−16 | [0.88; 0.90] | [0.8; 1.0] × 10−16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikov, V.A.; Lachinova, S.L.; Vorontsov, M.A.; Gudimetla, V.S.R. Characterization of Localized Atmospheric Turbulence Layer Using Laser Light Backscattered off Moving Target. Appl. Sci. 2020, 10, 6887. https://doi.org/10.3390/app10196887
Kulikov VA, Lachinova SL, Vorontsov MA, Gudimetla VSR. Characterization of Localized Atmospheric Turbulence Layer Using Laser Light Backscattered off Moving Target. Applied Sciences. 2020; 10(19):6887. https://doi.org/10.3390/app10196887
Chicago/Turabian StyleKulikov, Victor A., Svetlana L. Lachinova, Mikhail A. Vorontsov, and Venkata S. Rao Gudimetla. 2020. "Characterization of Localized Atmospheric Turbulence Layer Using Laser Light Backscattered off Moving Target" Applied Sciences 10, no. 19: 6887. https://doi.org/10.3390/app10196887