Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement
Abstract
:1. Introduction
2. Material and Methods
2.1. Multifrequency Impedance Measurement
2.2. Data Augmentation
2.3. Feature Selection
2.4. Neural Network Model
3. Results
3.1. Pre-Verification
3.1.1. Impedance Verification
3.1.2. Frequency Ratio Verification
3.2. Neural Network Training
3.3. Discussions Compared with EALs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gordon, M.; Chandler, N.T. Electronic apex locators. Int. Endod. J. 2004, 37, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Minetti, E.; Palermo, A.; Ferrante, F.; Schmitz, J.H.; Lung Ho, H.K.; Hann, D.; Ng, S.; Giacometti, E.; Gambardella, U.; Contessi, M.; et al. Autologous Tooth Graft after Endodontical Treated Used for Socket Preservation: A Multicenter Clinical Study. Appl. Sci. 2019, 9, 5396. [Google Scholar] [CrossRef] [Green Version]
- Razumova, S.; Brago, A.; Howijieh, A.; Barakat, H.; Kozlova, Y.; Baykulova, M. Evaluation of Cross-Sectional Root Canal Shape and Presentation of New Classification of Its Changes Using Cone-Beam Computed Tomography Scanning. Appl. Sci. 2020, 10, 4495. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.H.; Hong, J.R.; Kum, K.Y.; Oh, S.; Al-Ghamdi, A.S.; Al-Ghamdi, F.A.; Mandorah, A.O.; Jang, J.H.; Chang, S.W. Three-Dimensional Analysis of Root Anatomy and Root Canal Curvature in Mandibular Incisors Using Micro-Computed Tomography with Novel Software. Appl. Sci. 2020, 10, 4385. [Google Scholar] [CrossRef]
- Yildirim, C.; Aktan, A.M.; Karataslioglu, E.; Aksoy, F.; Isman, O.; Culha, E. Performance of theWorking Length Determination using Cone Beam Computed Tomography, Radiography and Electronic Apex Locator, in Comparisons to Actual Length. Iran. J. Radiol. 2017, 14, 1. [Google Scholar]
- Marjanović, T.; Lacković, I.; Stare, Z. Comparison of electrical equivalent circuits of human tooth used for measuring the root canal length. Automatika 2011, 52, 39–48. [Google Scholar] [CrossRef]
- Meredith, N.; Gulabivala, K. Electrical impedance measurements of root canal length. Dent. Traumatol. 1997, 13, 126–131. [Google Scholar] [CrossRef]
- Ushiyama, J. New principle and method for measuring the root canal length. J. Endod. 1983, 9, 97–104. [Google Scholar] [CrossRef]
- Kobayashi, C. Electronic canal length measurement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1995, 79, 226–231. [Google Scholar] [CrossRef]
- Kobayashi, C.; Suda, H. New electronic canal measuring device based on the ratio method. J. Endod. 1994, 20, 111–114. [Google Scholar] [CrossRef]
- Ali, R.; Okechukwu, N.C.; Brunton, P.; Nattress, B. An overview of electronic apex locators: Part 2. Br. Dent. J. 2013, 214, 227–231. [Google Scholar] [CrossRef]
- Üstün, Y.; Aslan, T.; Şekerci, A.E.; Sağsen, B. Evaluation of the reliability of cone-beam computed tomography scanning and electronic apex locator measurements in working length determination of teeth with large periapical lesions. J. Endod. 2016, 42, 1334–1337. [Google Scholar] [CrossRef]
- Nekoofar, M.H.; Ghandi, M.M.; Hayes, S.J.; Dummer, P.M. The fundamental operating principles of electronic root canal length measurement devices. Int. Endod. J. 2016, 37, 595–609. [Google Scholar] [CrossRef]
- Stober, E.K.; Duran-Sindreu, F.; Mercade, M.; Vera, J.; Bueno, R.; Roig, M. An evaluation of root ZX and iPex apex locators: An in vivo study. J. Endod. 2011, 37, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Welk, A.R.; Baumgartner, J.C.; Marshall, J.G. An in vivo comparison of two frequency-based electronic apex locators. J. Endod. 2003, 29, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, Y. Neural network methods for natural language processing. Synth. Lect. Hum. Lang. Technol. 2017, 10, 1–309. [Google Scholar] [CrossRef]
- Duan, F.; Dai, L. Recognizing the gradual changes in sEMG characteristics based on incremental learning of wavelet neural network ensemble. IEEE Trans. Ind. Electron. 2017, 64, 4276–4286. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, F.; Sole-Casals, J.; Dinares-Ferran, J.; Cichocki, A.; Yang, Z.; Sun, Z. A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 2019, 7, 15945–15954. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Tanner, M.A.; Wong, W.H. The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 1987, 82, 528–540. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2015, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Jan, J.; Krizaj, D. Accuracy of root canal length determination with the impedance ratio method. Int. Endod. J. 2009, 42, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Nam, K.C.; Lee, S.J. Development of a frequency-dependent-type apex locator with automatic compensation. Crit. Rev.TM Biomed. Eng. 2000, 28, 473–479. [Google Scholar] [CrossRef]
- Nam, K.C.; Kim, S.C.; Lee, S.J.; Kim, Y.J.; Kim, N.G.; Kim, D.W. Root canal length measurement in teeth with electrolyte compensation. Med. Biol. Eng. Comput. 2002, 40, 200. [Google Scholar] [CrossRef]
- Martins, J.N.; Marques, D.; Mata, A.; Carames, J. Clinical efficacy of electronic apex locators: Systematic review. J. Endod. 2014, 40, 759–777. [Google Scholar] [CrossRef]
- Vasconcelos, B.C.; Bueno Mde, M.; Luna-Cruz, S.M.; Duarte, M.A.; Fernandes, C.A. Accuracy of five electronic foramen locators with different operating systems: An ex vivo study. J. Appl. Oral Sci. 2013, 21, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Nawab, S.; Rana, M.J.A.; Yar, A. Comparative evaluation of working length with digital radiography and third generation electronic apex locator. Pak. Oral Dent. J. 2016, 36, 308–311. [Google Scholar]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tooth Type | Incisor | Canine | Molar |
---|---|---|---|
Sample 1 | 1 | 0 | 0 |
Sample 2 | 0 | 1 | 0 |
Sample 3 | 0 | 0 | 1 |
Frequency Combination (kHz) | Group 1 | Group 2 | Group 3 | Total |
---|---|---|---|---|
5/0.5 | 66.67% | 83.33% | 100.00% | 85.71% |
10/0.5 | 50.00% | 83.33% | 100.00% | 80.95% |
10/1 | 50.00% | 83.33% | 89.89% | 76.19% |
Multifrequency | 83.33% | 100.00% | 100.00% | 95.24% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Zhang, Z.; Chen, X. Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement. Appl. Sci. 2020, 10, 7430. https://doi.org/10.3390/app10217430
Qiao X, Zhang Z, Chen X. Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement. Applied Sciences. 2020; 10(21):7430. https://doi.org/10.3390/app10217430
Chicago/Turabian StyleQiao, Xiaoyue, Zheng Zhang, and Xin Chen. 2020. "Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement" Applied Sciences 10, no. 21: 7430. https://doi.org/10.3390/app10217430