Antioxidant and Enzyme Inhibitory Properties, and HPLC–MS/MS Profiles of Different Extracts of Arabis carduchorum Boiss.: An Endemic Plant to Turkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Total Phenolic and Flavonoid Content
2.3. Quantification of Bioactive Compounds by HPLC-MS/MS System
2.4. Antioxidant Assays
2.5. Enzyme Inhibitory Assays
2.6. Statistical Analysis
2.7. Molecular Docking
3. Results and Discussion
3.1. Chemical Composition
3.2. Antioxidant Potential
3.3. Enzyme Inhibitory Effects
3.4. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gras, A.; Hidalgo, O.; D’Ambrosio, U.; Parada, M.; Garnatje, T.; Vallès, J. The Role of Botanical Families in Medicinal Ethnobotany: A Phylogenetic Perspective. Plants 2021, 10, 163. [Google Scholar] [CrossRef]
- Avato, P.; Argentieri, M. Brassicaceae: A rich source of health improving phytochemicals. Phytochem. Rev. 2015, 14, 1019–1033. [Google Scholar] [CrossRef]
- Shankar, S.; Segaran, G.; Sundar, R.D.V.; Settu, S.; Sathiavelu, M. Brassicaceae-A classical review on its pharmacological activities. Int. J. Pharm. Sci. Rev. Res. 2019, 55, 107–113. [Google Scholar]
- Balpinar, N. The biological activities of Arabis alpina L. subsp. brevifolia (DC.) Cullen against food pathogens. Open Chem. 2018, 16, 930–936. [Google Scholar] [CrossRef]
- Davis, P. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1965; Volume 1, pp. 422–423. [Google Scholar]
- Kjær, A. Naturally Derived isoThiocyanates (Mustard Oils) and Their Parent Glucosides. In Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products/Progrés Dans la Chimie des Substances Organiques Naturelles; Springer: Vienna, Austria, 1960. [Google Scholar]
- Kjaer, A.; Schuster, A.; Vestersjø, E.; Andresen, A.; Pearson, W.; Meisalo, V. Glucosinolates in seeds of Arabis hirsuta (L.) Scop.: Some new, naturally derived isothiocyanates. Acta Chem. Scand. 1972, 26, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Daxenbichler, M.E.; Spencer, G.F.; Carlson, D.G.; Rose, G.B.; Brinker, A.M.; Powell, R.G. Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 1991, 30, 2623–2638. [Google Scholar] [CrossRef]
- Hasapis, X.; MacLeod, A.J.; Moreau, M. Glucosinolates of nine Cruciferae and two Capparaceae species. Phytochemistry 1981, 20, 2355–2358. [Google Scholar] [CrossRef]
- Polatoğlu, K.; Servi, H.; Özçınar, Ö.; Nalbantsoy, A.; Gücel, S. Essential oil composition of endemic Arabis purpurea Sm. & Arabis cypria Holmboe (Brassicaceae) from Cyprus. J. Oleo Sci. 2017, 66, 65–70. [Google Scholar] [PubMed] [Green Version]
- Ozgur, R.; Uzilday, B.; Yalcinkaya, T.; Akyol, T.Y.; Yildirim, H.; Turkan, I. Differential responses of the scavenging systems for reactive oxygen species (ROS) and reactive carbonyl species (RCS) to UV-B irradiation in Arabidopsis thaliana and its high altitude perennial relative Arabis alpina. Photochem. Photobiol. Sci. 2021, 20, 889–901. [Google Scholar] [CrossRef]
- Tang, Y.T.; Qiu, R.L.; Zeng, X.W.; Ying, R.R.; Yu, F.M.; Zhou, X.Y. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exp. Bot. 2009, 66, 126–134. [Google Scholar] [CrossRef]
- Bovet, L.; Kammer, P.M.; Meylan-Bettex, M.; Guadagnuolo, R.; Matera, V. Cadmium accumulation capacities of Arabis alpina under environmental conditions. Environ. Exp. Bot. 2006, 57, 80–88. [Google Scholar] [CrossRef]
- Ying, R.R.; Kong, L.Y.; Wang, L.; Feng, Y.H.; Shan, Y.H.; Zeng, X.W.; Qiu, R.L.; Tang, Y.T.; Deng, S.P. The Zn/Cd accumulation and antioxidative enzymes response in hyperaccumulator Arabis paniculata Franch. under Zn and Cd co-exposure. Fresenius Environ. Bull. 2017, 26, 2797–2805. [Google Scholar]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Kurt-Celep, İ.; Zengin, G.; Sinan, K.I.; Ak, G.; Elbasan, F.; Yıldıztugay, E.; Maggi, F.; Caprioli, G.; Angeloni, S.; Sharmeen, J.B. Comprehensive evaluation of two Astragalus species (A. campylosema and A. hirsutus) based on biological, toxicological properties and chemical profiling. Food Chem. Toxicol. 2021, 154, 112330. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Gerlits, O.; Ho, K.-Y.; Cheng, X.; Blumenthal, D.; Taylor, P.; Kovalevsky, A.; Radić, Z. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem. Biol. Interact. 2019, 309, 108698. [Google Scholar] [CrossRef]
- Rosenberry, T.; Brazzolotto, X.; Macdonald, I.; Wandhammer, M.; Trovaslet-Leroy, M.; Darvesh, S.; Nachon, F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017, 22, 2098. [Google Scholar] [CrossRef] [Green Version]
- Fujieda, N.; Umakoshi, K.; Ochi, Y.; Nishikawa, Y.; Yanagisawa, S.; Kubo, M.; Kurisu, G.; Itoh, S. Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angew. Chem. Int. Ed. 2020, 59, 13385–13390. [Google Scholar] [CrossRef]
- Božić, N.; Rozeboom, H.J.; Lončar, N.; Slavić, M.Š.; Janssen, D.B.; Vujčić, Z. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. Int. J. Biol. Macromol. 2020, 165, 1529–1539. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Thouri, A.; Chahdoura, H.; El Arem, A.; Omri Hichri, A.; Ben Hassin, R.; Achour, L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement. Altern. Med. 2017, 17, 1–10. [Google Scholar] [CrossRef]
- Matławska, I.; Sikorska, M.; Kowalewski, Z. Flavonoids in Arabis Caucasica Willd. (Cruciferae). Part I. Heterozygote similar to quercetin and isorhamnetin. Acta Pol. Pharm. 1992, 49, 45–48. [Google Scholar]
- Park, H.-W.; Baek, N.-I.; Kim, S.-H.; Kwon, B.-M.; Chung, I.-S.; Park, M.-H.; Kim, S.-H.; Kim, D.-K. Phytochemical Components from the Whole Plants of Arabis glabra (L.) Bernh. Korean J. Pharmacogn. 2004, 35, 320–323. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Lin, Y.; Fang, S.; Liu, Y.; Shang, X. Phytochemical content and antioxidant activity in aqueous extracts of Cyclocarya paliurus leaves collected from different populations. PeerJ 2019, 7, e6492. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Zielinska, D.; Szawara-Nowak, D.; Zielinski, H. Determination of the antioxidant activity of rutin and its contribution to the antioxidant capacity of diversified buckwheat origin material by updated analytical strategies. Pol. J. Food Nutr. Sci. 2010, 60. [Google Scholar]
- Magaña, A.A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021, 107, 1299. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.C.; Pinto, D.C.; Silva, A. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem.-Biol. Interact. 2010, 187, 10–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greig, N.H.; Lahiri, D.K.; Sambamurti, K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int. Psychogeriatr. 2002, 14, 77–91. [Google Scholar] [CrossRef]
- Ahmed, F.; Ghalib, R.M.; Sasikala, P.; Ahmed, K.M. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 2013, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.C.D.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.D.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol. 2018, 9, 1192. [Google Scholar] [CrossRef] [Green Version]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Adv. 2021, 11, 22159–22198. [Google Scholar] [CrossRef]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis. Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Front. Pharmacol. 2017, 8, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittiwisut, S.; Amnuoypol, S.; Pathompak, P.; Setharaksa, S. α-Glucosidase and α-amylase inhibitory effects with anti-oxidative activity of Tetracera loureiri (Finet & Gagnep.) Pierre ex Craib leaf extracts. Pharm. Sci. Asia 2021, 48, 175–184. [Google Scholar]
No. | Compound | Arabis carduchorum Extracts | |||||
---|---|---|---|---|---|---|---|
Hexane | EA | DCM | MeOH | H2O | Infusion | ||
1 | Shikimic acid | 0.560 | 0.725 | 0.482 | 2.560 | 0.503 | 8.699 |
2 | Gallic acid | n.d. a | n.d. | n.d. | 0.056 | 0.098 | 0.175 |
3 | Loganic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4 | 3-Caffeoylquinic acid | n.d. | n.d. | n.d. | 9.107 | 0.990 | 0.350 |
5 | Swertiamarin | n.d. | n.d. | n.d. | n.d. | n.d. | 2.634 |
6 | (+)-Catechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
7 | Delphinidin-3,5-diglucoside | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
8 | Sweroside | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
9 | 5-Caffeoylquinic acid | 0.618 | 0.493 | 0.431 | 35.619 | 1.398 | 0.780 |
10 | Vanillic acid | n.d. | 3.307 | 8.189 | 5.354 | 35.906 | 3.307 |
11 | Caffeic acid | n.d. | 0.874 | 0.271 | 1.043 | n.d. | 2.971 |
12 | (-)-Epicatechin | n.d. | n.d. | 0.188 | n.d. | n.d. | n.d. |
13 | Syringic acid | n.d. | 1.465 | 4.777 | 4.013 | 17.771 | 6.369 |
14 | p-Coumaric acid | 1.017 | 25.452 | 5.065 | 58.868 | 89.978 | 20.011 |
15 | Ferulic acid | 0.961 | 8.576 | 30.840 | 33.242 | 87.204 | 27.376 |
16 | 3,5-Dicaffeoylquinic acid | n.d. | n.d. | n.d. | 2.606 | 0.485 | n.d. |
17 | Naringin | n.d. | 0.522 | 0.043 | n.d. | n.d. | n.d. |
18 | Rutin | 1.210 | 2.017 | 0.506 | 96.110 | 0.082 | 1.607 |
19 | Hyperoside | 0.269 | 1.636 | 0.183 | 23.712 | 0.733 | 4.176 |
20 | Resveratrol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
21 | Amarogentin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
22 | Kaempferol-3-glucoside | 0.048 | 0.055 | 0.021 | 0.219 | n.d. | 0.014 |
23 | Quercitrin | 0.682 | 7.233 | 0.195 | 49.633 | 1.310 | 44.799 |
24 | Quercetin | 0.078 | 0.699 | n.d. | 4.019 | 6.039 | 2.757 |
25 | Isogentisin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Total content | 5.441 | 53.054 | 51.190 | 326.162 | 242.496 | 126.024 |
Extracts | TPC (mg GAE/g) | TFC (mg RE/g) | PBD (mmol TE/g) |
---|---|---|---|
n-hexane | 13.73 ± 0.41 e | 9.04 ± 0.44 c | 1.45 ± 0.03 b |
Ethyl acetate | 18.25 ± 0.22 d | 19.73 ± 0.59 b | 1.85 ± 0.06 a |
DCM | 19.66 ± 0.53 c | 3.82 ± 0.65 e | 1.52 ± 0.02 b |
Methanol | 25.97 ± 0.48 ab | 52.95 ± 0.34 a | 1.59 ± 0.14 b |
Water | 25.17 ± 0.17 b | 2.66 ± 0.04 e | 0.90 ± 0.03 c |
Infusion | 26.62 ± 0.11 a | 7.33 ± 0.04 d | 1.06 ± 0.01 c |
Extracts | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | MCA (mg EDTAE/g) |
---|---|---|---|---|---|
n-hexane | 5.09 ± 0.15 e | 12.58 ± 0.61 d | 40.80 ± 1.07 e | 17.56 ± 0.28 d | 22.46 ± 0.54 a |
Ethyl acetate | 6.58 ± 0.34 d | 12.79 ± 0.80 d | 45.33 ± 1.34 d | 18.01 ± 0.71 cd | 28.52 ± 3.42 a |
DCM | 4.36 ± 0.43 e | 12.62 ± 0.11 d | 54.51 ± 0.43 c | 18.73 ± 0.25 c | 27.02 ± 0.94 a |
Methanol | 32.13 ± 0.67 a | 49.41 ± 3.42 c | 73.45 ± 1.52 a | 39.40 ± 0.50 a | na |
Water | 20.05 ± 0.82 c | 53.90 ± 1.39 b | 52.81 ± 0.74 c | 30.50 ± 0.15 b | 12.21 ± 0.54 b |
Infusion | 26.49 ± 0.58 b | 67.73 ± 0.95 a | 61.13 ± 0.36 b | 38.58 ± 0.24 a | 27.58 ± 5.36 a |
Extracts | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) |
---|---|---|---|---|
n-hexane | 2.73 ± 0.01 a | 5.11 ± 0.08 a | 53.28 ± 0.47 c | 0.55 ± 0.01 c |
Ethyl acetate | 1.07 ± 0.12 c | 4.28 ± 0.48 a | 53.57 ± 0.87 c | 0.63 ± 0.01 a |
DCM | 0.96 ± 0.11 c | 4.70 ± 0.56 a | 57.49 ± 0.62 b | 0.60 ± 0.01 b |
Methanol | 1.32 ± 0.15 b | 1.86 ± 0.47 b | 59.22 ± 0.28 a | 0.34 ± 0.01 d |
Water | na | 2.68 ± 0.22 b | 40.24 ± 0.55 d | 0.09 ± 0.01 f |
Infusion | na | 2.39 ± 0.24 b | 40.34 ± 0.66 d | 0.13 ± 0.01 e |
Compound | AChE | BChE | Tyrosinase | Amylase |
---|---|---|---|---|
Kcal/mol | ||||
Shikimic acid | −8.25 | −8.56 | −4.26 | −4.44 |
5-Caffeoylquinic acid | −9.76 | −9.68 | −4.99 | −7.74 |
3-Caffeoylquinic acid | −11.30 | −11.32 | −4.08 | −5.78 |
Vanillic acid | −7.44 | −6.99 | −5.20 | −5.77 |
Caffeic acid | −8.85 | −6.79 | −3.37 | −4.87 |
Syringic acid | −6.74 | −6.52 | −3.67 | −5.78 |
p-Coumaric acid | −7.10 | −6.58 | −1.56 | −4.70 |
Ferulic acid | −6.99 | −6.99 | −2.49 | −4.33 |
Rutin | −13.89 | −11.63 | −6.23 | −9.88 |
Hyperoside | −8.97 | −8.32 | −3.10 | −9.95 |
Kaempferol-3-O-glucoside | −11.21 | −11.92 | −6.17 | −9.95 |
Quercitrin | −8.68 | −8.78 | −3.34 | −9.19 |
Quercetin | −6.89 | −6.78 | −4.67 | −6.22 |
Compound | GI Absorption | BBB Permeant | CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | CYP3A4 | Lipinksi Rule | PAINS |
---|---|---|---|---|---|---|---|---|---|
Shikimic acid | High | No | No | No | No | No | No | Yes; 0 violation | 0 alert |
5-Caffeoylquinic acid | Low | No | No | No | No | No | No | Yes; 1 violation: NHorOH > 5 | 1 alert: catechol Amine |
3-Caffeoylquinic acid | Low | No | No | No | No | No | No | Yes; 1 violation: NHorOH > 5 | 1 alert: catechol Amine |
Vanillic acid | High | No | No | No | No | No | No | Yes; 0 violation | 0 alert |
Caffeic acid | High | No | No | No | No | No | No | Yes; 0 violation | 1 alert: catechol Amine |
Syringic acid | High | No | No | No | No | No | No | Yes; 0 violation | 0 alert |
p-Coumaric acid | High | Yes | No | No | No | No | No | Yes; 0 violation | 0 alert: |
Ferulic acid | High | Yes | No | No | No | No | No | Yes; 0 violation | 0 alert: |
Rutin | Low | No | No | No | No | No | No | No; 3 violations: MW > 500; HBA > 10; HBD > 5 | 1 alert: catechol Amine |
Hyperoside | Low | No | No | No | No | No | No | No; 2 violations: NorO > 10, NHorOH > 5 | 1 alert: catechol Amine |
Kaempferol-3-O-glucoside | Low | No | No | No | No | No | No | No; 3 violations: MW > 500; HBA > 10; HBD > 5 | 0 alert |
Quercitrin | Low | No | No | No | No | No | No | No; 2 violations: NorO > 10, NHorOH > 5 | 1 alert: catechol Amine |
Quercetin | High | No | Yes | No | No | Yes | Yes | Yes; 0 violation | 1 alert: catechol Amine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uba, A.I.; Zengin, G.; Montesano, D.; Cakilcioglu, U.; Selvi, S.; Ulusan, M.D.; Caprioli, G.; Sagratini, G.; Angeloni, S.; Jugreet, S.; et al. Antioxidant and Enzyme Inhibitory Properties, and HPLC–MS/MS Profiles of Different Extracts of Arabis carduchorum Boiss.: An Endemic Plant to Turkey. Appl. Sci. 2022, 12, 6561. https://doi.org/10.3390/app12136561
Uba AI, Zengin G, Montesano D, Cakilcioglu U, Selvi S, Ulusan MD, Caprioli G, Sagratini G, Angeloni S, Jugreet S, et al. Antioxidant and Enzyme Inhibitory Properties, and HPLC–MS/MS Profiles of Different Extracts of Arabis carduchorum Boiss.: An Endemic Plant to Turkey. Applied Sciences. 2022; 12(13):6561. https://doi.org/10.3390/app12136561
Chicago/Turabian StyleUba, Abdullahi Ibrahim, Gokhan Zengin, Domenico Montesano, Ugur Cakilcioglu, Selami Selvi, Musa Denizhan Ulusan, Giovanni Caprioli, Gianni Sagratini, Simone Angeloni, Sharmeen Jugreet, and et al. 2022. "Antioxidant and Enzyme Inhibitory Properties, and HPLC–MS/MS Profiles of Different Extracts of Arabis carduchorum Boiss.: An Endemic Plant to Turkey" Applied Sciences 12, no. 13: 6561. https://doi.org/10.3390/app12136561
APA StyleUba, A. I., Zengin, G., Montesano, D., Cakilcioglu, U., Selvi, S., Ulusan, M. D., Caprioli, G., Sagratini, G., Angeloni, S., Jugreet, S., Hasan, M. M., & Mahoomodally, M. F. (2022). Antioxidant and Enzyme Inhibitory Properties, and HPLC–MS/MS Profiles of Different Extracts of Arabis carduchorum Boiss.: An Endemic Plant to Turkey. Applied Sciences, 12(13), 6561. https://doi.org/10.3390/app12136561