In Vitro Antiproliferative Activity of Ptaeroxylon obliquum Leaf Extracts, Fractions and Isolated Compounds on Several Cancer Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Preparation of Extracts
2.3. Fractionation and Isolation of Bioactive Compounds from P. obliquum
2.4. In Vitro Cytotoxicity Assay
2.4.1. Cell Cultures
2.4.2. The 3-(4,5-Dimethyltetrazolium Bromide) (MTT) Reduction Assay
2.4.3. Selectivity Index (SI)
2.5. Morphological Study
2.6. Antioxidant Activity of P. obliquum Extracts and Fractions
2.6.1. Quantitative 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) Free Radical Scavenging Method
2.6.2. ABTS Free Radical Scavenging Method
3. Results and Discussion
3.1. Structures of the Isolated Compounds
3.2. Cytotoxicity
3.3. Morphology of HepG2 and HeLa Cells
3.4. Antioxidant Activity of P. obliquum Extracts and Fractions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Position | δC | δH (J in Hz) |
---|---|---|
2 | 162.6 | |
3 | 111.8 | 5.99, s |
4 | 177.6 | |
4a | 108.4 | |
5 | 160.6 | |
6 | 96.3 | 6.26, s |
7 | 157.6 | |
8 | 102.3 | |
8a | 154.2 | |
CH3-2 | 19.7 | 2.28, s |
OMe-5 | 56.3 | 3.91, s |
1′ | 115.2 | 6.69, d (10.4) |
2′ | 127.3 | 5.56, d (10.4) |
3′ | 77.9 | |
(CH3)2-3′ | 28.2 | 1.47, s |
References
- Preiser, J.C. Oxidative stress. J. Parenter. Enter. Nutr. 2012, 36, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ruddon, R.W. Cancer Biology; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Metzcar, J.; Wang, Y.; Heiland, R.; Macklin, P. A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inform. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- Katti, A.; Diaz, B.J.; Caragine, C.M.; Sanjana, N.E.; Dow, L.E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 2022, 22, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.C.; Kayamba, V.; Peek Jr, R.M.; Heimburger, D. Cancer control in low-and middle-income countries: Is it time to consider screening? J. Glob. Oncol. 2019, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Agency for Research on Cancer. 2019. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/lis-46560?src=similardocs&utm_medium=email&utm_source=transaction (accessed on 12 October 2022).
- Made, F.; Wilson, K.; Jina, R.; Tlotleng, N.; Jack, S.; Ntlebi, V.; Kootbodien, T. Distribution of cancer mortality rates by province in South Africa. Cancer Epidemiol. 2017, 51, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Twilley, D.; Rademan, S.; Lall, N. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. J. Ethnopharmacol. 2020, 261, 113101. [Google Scholar] [CrossRef]
- Lubuzo, B.; Hlongwana, K.; Ginindza, T. Cancer care reform in South Africa: A case for cancer care coordination: A narrative review. Palliat. Support. Care 2021, 20, 129–137. [Google Scholar] [CrossRef]
- Markham, M.J.; Wachter, K.; Agarwal, N.; Bertagnolli, M.M.; Chang, S.M.; Dale, W.; Diefenbach, C.S.; Rodriguez-Galindo, C.; George, D.J.; Gilligan, T.D. Clinical cancer advances 2020: Annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 2020, 38, 1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.; Hannan, M.A.; Dash, R.; Rahman, M.; Islam, R.; Uddin, M.J.; Sohag, A.A.M.; Rhim, H. Phytochemicals as a complement to cancer chemotherapy: Pharmacological modulation of autophagy-apoptosis pathway. Front. Pharmacol. 2021, 12, 718. [Google Scholar] [CrossRef]
- Saed, G.M.; Diamond, M.P.; Fletcher, N.M. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol. Oncol. 2017, 145, 595–602. [Google Scholar] [CrossRef]
- Juárez, P. Plant-derived anticancer agents: A promising treatment for bone metastasis. BoneKEy Rep. 2014, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinlaor, S.; Ma, N.; Hiraku, Y.; Yongvanit, P.; Semba, R.; Oikawa, S.; Murata, M.; Sripa, B.; Sithithaworn, P.; Kawanishi, S. Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2′-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase. Carcinogenesis 2004, 25, 1535–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, N.; Wakasugi, H. Cancer and oxidative stress. Jpn. Med. Assoc. J. 2001, 44, 535–539. [Google Scholar]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lin, W.; Yu, B.; Lee, T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas. J. Anim. Sci. 2017, 30, 299. [Google Scholar] [CrossRef]
- Ramadwa, T.E.; McGaw, L.J.; Adamu, M.; Madikizela, B.; Eloff, J.N. Anthelmintic, antimycobacterial, antifungal, larvicidal and cytotoxic activities of acetone leaf extracts, fractions and isolated compounds from Ptaeroxylon obliquum (Rutaceae). J. Ethnopharmacol. 2021, 280, 114365. [Google Scholar] [CrossRef] [PubMed]
- Pujol, J. The Herbalist Handbook: African Flora Medicinal Plants; Natural Healers Foundation: Ithaca, NY, USA, 1990. [Google Scholar]
- Watt, J.M.; Breyer-Brandwijk, M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal; E. & S. Livingstone Ltd.: Edinburgh, UK, 1962. [Google Scholar]
- Hutchings, A. Zulu Medicinal Plants: An Inventory; University of Natal Press: Scottsville, South Africa, 1996. [Google Scholar]
- Venter, F.; Venter, J. Making the most of indigenous trees, Briza Publications. Pretoria South Afr. 2002. [Google Scholar]
- Abuto, J.; Muchugi, A.; Mburu, D.; Machocho, A.; Karau, G. Variation in antimicrobial activity of Warburgia ugandensis extracts from different populations across the Kenyan Rift Valley. J. Microbiol. Res. 2016, 6, 55–64. [Google Scholar] [CrossRef]
- Suffness, M. Drugs of plant origin. Methods Cancer Res. 1979, 26, 73–126. [Google Scholar]
- Eloff, J. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J. Ethnopharmacol. 1998, 60, 1–8. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.d.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2 ‘-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Agostinho, D.; Boudesocque, L.; Thery-Kone, I.; Debierre-Grockiego, F.; Gueiffier, A.; Enguehard-Gueiffier, C.; Allouchi, H. A new meroterpenoid isolated from roots of Ptaeroxylon obliquum Radlk. Phytochem. Lett. 2013, 6, 560–566. [Google Scholar] [CrossRef]
- Malefo, M.S.; Ramadwa, T.E.; Famuyide, I.M.; McGaw, L.J.; Eloff, J.N.; Sonopo, M.S.; Selepe, M.A. Synthesis and Antifungal Activity of Chromones and Benzoxepines from the Leaves of Ptaeroxylon obliquum. J. Nat. Prod. 2020, 83, 2508–2517. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xu, F.; Zhang, P.; Deng, J.; Sun, H.; Wen, X.; Liu, J. Practical Synthesis of α-Amyrin, β-Amyrin, and Lupeol: The Potential Natural Inhibitors of Human Oxidosqualene Cyclase. Arch. Pharm. (Weinh.) 2017, 350. [Google Scholar] [CrossRef] [PubMed]
- Ramadwa, T.E.; Awouafack, M.D.; Sonopo, M.S.; Eloff, J.N. Antibacterial and antimycobacterial activity of crude extracts, fractions, and isolated compounds from leaves of sneezewood, ptaeroxylon obliquum (rutaceae). Nat. Prod. Commun. 2019, 14, 1934578X19872927. [Google Scholar] [CrossRef] [Green Version]
- Okorie, D.A. Chromones and limonoids from Harrisonia abyssinica. Phytochemistry 1982, 21, 2424–2426. [Google Scholar] [CrossRef]
- Ahluwalia, V.K.; Jain, A.; Gupta, R. A Convenient Synthesis of Linear 2-Methylpyranochromones. Bull. Chem. Soc. Jpn. 1982, 55, 2649–2652. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Wachtel-Galor, S. Herbal Medicine: Biomolecular and Clinical Aspects; CRC Press: Taylor, Francis; Boca Raton, FL, USA; Victoria, Australia, 2011. [Google Scholar]
- Wong, Y.H.; Abdul Kadir, H.; Ling, S.K. Bioassay-guided isolation of cytotoxic cycloartane triterpenoid glycosides from the traditionally used medicinal plant Leea indica. Evid.-Based Complement. Altern. Med. 2012, 2012, 164689. [Google Scholar] [CrossRef] [Green Version]
- Ondo, J.P.; Lekana-Douki, J.-B.; Bongui, J.-B.; Zang Edou, E.; Zatra, R.; Toure-Ndouo, F.S.; Elomri, A.; Lebibi, J.; Seguin, E. In vitro antiplasmodial activity and cytotoxicity of extracts and fractions of Vitex madiensis, medicinal plant of Gabon. Trop. Med. Int. Health 2012, 17, 316–321. [Google Scholar] [CrossRef]
- Artun, F.T.; Karagoz, A.; Ozcan, G.; Melikoglu, G.; Anil, S.; Kultur, S.; Sutlupinar, N. In vitro anticancer and cytotoxic activities of some plant extracts on HeLa and Vero cell lines. Proceedings 2017, 1, 1019. [Google Scholar]
- Ogbole, O.O.; Segun, P.A.; Adeniji, A.J. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement. Altern. Med. 2017, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Juckmeta, T.; Pipatrattanaseree, W.; Jaidee, W.; Dechayont, B.; Chunthorng-Orn, J.; Andersen, R.J.; Itharat, A. Cytotoxicity to five cancer cell lines of the respiratory tract system and anti-inflammatory activity of Thai traditional remedy. Nat. Prod. Commun. 2019, 14, 1934578X19845815. [Google Scholar] [CrossRef]
- Mukeshwar, P.; Mousumi, D.; Shobit, G.; Surender, K.C. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J. Pharmacogn. Phytother. 2011, 3, 27–37. [Google Scholar] [CrossRef]
- Poyton, R.O.; Ball, K.A.; Castello, P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 2009, 20, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Waris, G.; Ahsan, H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog. 2006, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Nkadimeng, S.M.; Nabatanzi, A.; Steinmann, C.M.; Eloff, J.N. Phytochemical, cytotoxicity, antioxidant and anti-inflammatory effects of Psilocybe natalensis magic mushroom. Plants 2020, 9, 1127. [Google Scholar] [CrossRef]
- Phongpaichit, S.; Nikom, J.; Rungjindamai, N.; Sakayaroj, J.; Hutadilok-Towatana, N.; Rukachaisirikul, V.; Kirtikara, K. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunol. Med. Microbiol. 2007, 51, 517–525. [Google Scholar] [CrossRef]
Extracts | IC50 (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
MCF7 | SI | HEPG2 | SI | A549 | SI | HELA | SI | VERO | |
Walter Sisulu | |||||||||
Acetone | 197.3 ± 26.5 | 0.6 | 14.5 ± 0.2 | 8.6 | 147.4 ± 9.6 | 0.8 | 87.2 ± 9.6 | 1.4 | 126.1 ± 4.5 |
H2O (cold) | 487.8 ± 11.9 | 0.9 | 832.1 ± 42.1 | 0.5 | 353.1 ± 59.5 | 1.3 | 946.6 ± 104.9 | 0.5 | 449.5 ± 0,8 |
H2O (hot) | 418.7 ± 175.4 | 0.5 | 455.8 ± 24.1 | 0.5 | 830 ± 60.9 | 0.3 | 911.6 ± 56.6 | 0.2 | 214.3 ± 15.1 |
UP Hatfield | |||||||||
Acetone | 194.7 ± 27.2 | 0.6 | 8.6 ± 0.8 | 14.2 | 64.1 ± 20.4 | 1.9 | 34.8 ± 6.9 | 3.5 | 122.1 ± 6.1 |
H2O (cold) | >1000 | 0.3 | 754.6 ± 22.2 | 0.7 | >1000 | 0.2 | >1000 | 0.4 | 535.3 ± 20.5 |
H2O (hot) | 666.7 ± 109.6 | 1.5 | 372.2 ± 8.3 | 2.74 | 490.8 ± 117.1 | 2.1 | >1000 | 1 | >1000 |
Sanbi | |||||||||
Acetone | 23.3 ± 6.6 | 0.7 | 85.8 ± 6.8 | 0.2 | 166.9 ± 20.6 | 0.0 | 99.6 ± 4.9 | 0.2 | 16.1 ± 0.7 |
H2O (cold) | 764.1 ± 18.9 | 0.6 | >1000 | 0.5 | 188.7 ± 12.3 | 2.6 | 820.4 ± 169.8 | 0.6 | 485.9 ± 121.9 |
H2O (hot) | >1000 | 0.4 | 607 ± 146.9 | 0.8 | >1000 | 0.2 | 694.5 ± 61 | 0.7 | 464.4 ± 90.3 |
CHCl3 fraction | 357.6 ± 11.9 | 0.0 | 213.3 ± 18.8 | 0.1 | 129.4 ± 25.4 | 0.2 | 67.2 ± 5.6 | 0.5 | 32.6 ± 3.1 |
Hexane fraction | 167.5 ± 34.6 | 0.2 | 295.4 ± 18.1 | 0.1 | 250.9 ± 34.9 | 0.1 | 971.6 ± 81.3 | 0.0 | 37.8 ± 4.2 |
Nelspruit | |||||||||
Acetone | 269.8 ± 33.2 | 0.4 | 248.4 ± 38.9 | 0.40 | 374.7 ± 8.4 | 0.27 | >1000 | 0.07 | 100.3 ± 0.8 |
H2O (cold) | >1000 | 0.7 | 246 ± 4.6 | 3.91 | 961.5 ± 137.1 | 1.00 | >1000 | 0.71 | 961.5 ± 19.2 |
H2O (hot) | 658 ± 162.1 | 0.5 | 550.9 ± 70.4 | 0.59 | 136.6 ± 17.8 | 2.4 | >1000 | 0.18 | 322.5 ± 85.9 |
CHCl3 fraction | 284.2 ± 38.4 | 1.0 | 33.5 ± 3 | 8.5 | 218.9 ± 9 | 1.3 | 824.5 ± 139.1 | 0.34 | 284.2 ± 68.1 |
Hexane fraction | 189.2 ± 12.8 | 1.1 | 312.4 ± 16.7 | 0.7 | 180.4 ± 33.4 | 1.1 | 153.1 ± 2 | 1.3 | 203.2 ± 2.5 |
Obliquumol | 454.2 ± 57 | 0.7 | 52.7 ± 4.8 | 6 | 192.7 ± 1.6 | 1.6 | 188.5 ± 1.6 | 1.7 | 314.8 ± 24.1 |
Lupeol & β-amyrin | 167.8 ± 6.7 | 0.7 | 122.6 ± 1.8 | 1 | 247.1 ± 49.1 | 0.5 | 247.1 ± 2.7 | 0.5 | 122.6 ± 5.5 |
O-methylalloptaeroxylin | 248.2 ± 0.1 | 0.6 | 364.4 ± 15.7 | 0.4 | 279.8 ± 57.6 | 0.5 | 212.7 ± 1.8 | 0.7 | 151.5 ± 38.7 |
Doxorubicin | 0.18 ± 0.01 | 55 | 2.73 ± 0.36 | 3.6 | 1.6 ± 0.04 | 6.3 | 1.6 ± 0.07 | 6.3 | 9.9 ± 1.3 |
DPPH | ABTS | |
---|---|---|
Extracts | IC50 µg/mL | |
Walter Sisulu Acetone | 269.1 ± 4.6 | 251.2 ± 50 |
H2O (cold) | 138.3 ± 17.5 | 37.5 ± 10 |
H2O (hot) | 43.4 ± 6.1 | 21.5 ± 0.2 |
UP Hatfield | ||
Acetone | 150.6 ± 12 | 178.4 ± 17 |
H2O (cold) | 140 ± 9.3 | 86.1 ± 1.5 |
H2O (hot) | 85.4 ± 6.6 | 59 ± 0.2 |
Sanbi | ||
Acetone | 275.5 ± 8.9 | 318.1 ±19.2 |
H2O (cold) | 75.7 ± 2.5 | 43 ± 1.6 |
H2O (hot) | 46.1 ± 9.5 | 29.1 ± 0 |
CHCl3 fraction | 423.5 ±54.3 | 240.4 ±28.8 |
Hexane fraction | 418.5 ± 9.6 | 143.7 ± 3.3 |
Nelspruit | ||
Acetone | 333.2 ±24.9 | 268 ± 29.9 |
H2O (cold) | 62.1 ± 6.1 | 36.6 ± 0.6 |
H2O (hot) | 83.1 ± 3.2 | 56.4 ± 4.4 |
CHCl3 fraction | 387.4 ± 27.3 | 214.2 ±13.1 |
Hexane fraction | 236.5 ± 42.1 | 180.2 ± 2.7 |
Trolox | 2.4 ± 0.8 | 1.6 ± 0.0 |
Ascorbic Acid | 2.6 ± 0.2 | 1.4 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khunoana, E.T.; Eloff, J.N.; Ramadwa, T.E.; Nkadimeng, S.M.; Selepe, M.A.; McGaw, L.J. In Vitro Antiproliferative Activity of Ptaeroxylon obliquum Leaf Extracts, Fractions and Isolated Compounds on Several Cancer Cell Lines. Appl. Sci. 2022, 12, 11004. https://doi.org/10.3390/app122111004
Khunoana ET, Eloff JN, Ramadwa TE, Nkadimeng SM, Selepe MA, McGaw LJ. In Vitro Antiproliferative Activity of Ptaeroxylon obliquum Leaf Extracts, Fractions and Isolated Compounds on Several Cancer Cell Lines. Applied Sciences. 2022; 12(21):11004. https://doi.org/10.3390/app122111004
Chicago/Turabian StyleKhunoana, Edward T., Jacobus N. Eloff, Thanyani E. Ramadwa, Sanah M. Nkadimeng, Mamoalosi A. Selepe, and Lyndy J. McGaw. 2022. "In Vitro Antiproliferative Activity of Ptaeroxylon obliquum Leaf Extracts, Fractions and Isolated Compounds on Several Cancer Cell Lines" Applied Sciences 12, no. 21: 11004. https://doi.org/10.3390/app122111004
APA StyleKhunoana, E. T., Eloff, J. N., Ramadwa, T. E., Nkadimeng, S. M., Selepe, M. A., & McGaw, L. J. (2022). In Vitro Antiproliferative Activity of Ptaeroxylon obliquum Leaf Extracts, Fractions and Isolated Compounds on Several Cancer Cell Lines. Applied Sciences, 12(21), 11004. https://doi.org/10.3390/app122111004