Recent Trends on UV filters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Usage Frequency of UV Filters in Sunscreens for Adults and Children
3.2. Association of Organic/Inorganic UV Filters in Adults’ and Children’s Sunscreens
3.3. Galenic Forms in Adults’ and Children’s Sunscreens
3.4. SPF Values in Adults’ and Children’s Sunscreens
3.5. Evolution of the Use of UV Filters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaath, N. Sunscreens: Regulations and Commercial Development, 3rd ed.; Taylor & Francis: Abingdon, UK, 2005; Volume 28. [Google Scholar]
- Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm. J. 2019, 27, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Abiola, T.T.; Whittock, A.L.; Stavros, V.G. Unravelling the Photoprotective Mechanisms of Nature-Inspired Ultraviolet Filters Using Ultrafast Spectroscopy. Molecules 2020, 25, 3945. [Google Scholar] [CrossRef] [PubMed]
- Urbach, F. The historical aspects of sunscreens. J. Photochem. Photobiol. B Biol. 2001, 64, 99–104. [Google Scholar] [CrossRef]
- Ma, Y.; Yoo, J. History of sunscreen: An updated view. J. Cosmet. Dermatol. 2021, 20, 1044–1049. [Google Scholar] [CrossRef]
- Hausser, K.W.; Vahle, W. Sonnenbrand und Sonnenbraunung. Wiss. Veraffentlichungen Siemens-Konzerns 1927, 6, 101–120. [Google Scholar] [CrossRef]
- L’Oreal. Garnier Ambre Solaire. 2020. Available online: https://www.loreal.com/it-it/italy/press-release/group/garnier-ambre-solaire/ (accessed on 6 January 2022).
- Kumler, W.D.; Daniels, T.C. Sunscreen Compounds. J. Am. Pharm. Assoc. 1948, 37, 474–476. [Google Scholar] [CrossRef]
- Macki, B.S.; Mackie, L.E. Historical perspective: The PABA story. Australas. J. Dermatol. 1999, 40, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Commission Directive 2008/123/EC of 18 December 2008 Amending Council Directive 76/768/EEC, Concerning Cosmetic Products, for the Purpose of Adapting Annexes II and VII Thereto to Technical Progress. 2008. Available online: https://www.legislation.gov.uk/eudr/2008/123/contents (accessed on 20 April 2022).
- Kligman, A.M. Early Destructive Effect of Sunlight on Human Skin. J. Am. Med. Assoc. 1969, 210, 2377–2380. [Google Scholar] [CrossRef]
- Roelandts, R.; Vanhee, J.; Bonamie, A.; Kerkhofs, L.; Degreef, H. A Survey of Ultraviolet Absorbers in Commercially Available Sun Products. Int. J. Dermatol. 1983, 22, 247–255. [Google Scholar] [CrossRef]
- Chisvert, A.; Salvador, A. Ultraviolet Filters in Cosmetics: Regulatory Aspects and Analytical Methods. In Analysis of Cosmetic Products, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 85–106. [Google Scholar]
- Regulation (EC) n°1223/2009 of the European Parliament and of the Council: Current Consolidated Version (01/03/2022). 2022, Official Journal of the European Union. 02009R1223—EN—03.12.2020—025.001—(1–389). Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwimro215MX7AhUUslYBHficAmwQFnoECA0QAQ&url=https%3A%2F%2Feur-lex.europa.eu%2Flegal-content%2FEN%2FTXT%2FPDF%2F%3Furi%3DCELEX%3A02009R1223-20201203%26rid%3D3&usg=AOvVaw0EQqca4O9KBjZxFMiFsLy0 (accessed on 6 January 2022).
- Scheil, V.; Triebskorn, R.; Kohler, H.R. Cellular and stress protein responses to the UV filter 3-benzylidene camphor in the amphipod crustacean Gammarus fossarum (Koch 1835). Arch. Environ. Contam. Toxicol. 2008, 54, 684–689. [Google Scholar] [CrossRef]
- Holbech, H.N.; Korsgaard, B.; Bjerregaard, P. The Chemical UV-Filter 3-Benzylidene Camphor Causes an Oestrogenic Effect in an in vivo Fish Assay. Pharmacol. Toxicol. 2002, 91, 204–208. [Google Scholar] [CrossRef]
- Jesus, A.; Sousa, E.; Cruz, M.T.; Cidade, H.; Lobo, J.M.S.; Almeida, I.F. UV Filters: Challenges and Prospects. Pharmaceuticals 2022, 15, 263. [Google Scholar] [CrossRef] [PubMed]
- ISO 24444:2010; Cosmetics—Sun Protection Test Methods—In Vivo Determination of the Sun Protection Factor (SPF). ISO: Geneva, Switzerland, 2010.
- ISO 24444:2019; Cosmetics—Sun Protection Test Methods—In Vivo Determination of the Sun Protection Factor (SPF). ISO: Geneva, Switzerland, 2019.
- ISO 24443:2012; Determination of Sunscreen UVA Photoprotection In Vitro. ISO: Geneva, Switzerland, 2012.
- ISO 24443:2021; Cosmetics—Determination of Sunscreen UVA Photoprotection In Vitro. ISO: Geneva, Switzerland, 2021.
- ISO 24442:2011; Cosmetics—Sun Protection Test Methods—In Vivo Determination of Sunscreen UVA Protection. ISO: Geneva, Switzerland, 2011.
- Moyal, D.; Passeron, T.; Josso, M.; Douezan, S.; Delvigne, V.; Seité, S. Formulation of sunscreens for optimal efficacy. J. Cosmet. Sci. 2020, 71, 199–206. [Google Scholar]
- Dahmane, R.; Pandel, R.; Trebse, P.; Poljsak, B. The role of sun exposure in skin aging. In Sun Exposure: Risk Factors, Protection Practices and Health Effects; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2015; pp. 1–40. [Google Scholar]
- Bonda, C.A.; Lott, D. Sunscreen photostability. In Principles and Practice of Photoprotection; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 247–273. [Google Scholar]
- Tarras-Wahlberg, N.; Stenhagen, G.; Larko, O.; Rosen, A.; Wennberg, A.M.; Wennerstrom, O. Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J. Investig. Dermatol. 1999, 113, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downs, C.A.; DiNardo, J.C.; Stien, D.; Rodrigues, A.M.S.; Lebaron, P. Benzophenone Accumulates over Time from the Degradation of Octocrylene in Commercial Sunscreen Products. Chem. Res. Toxicol. 2021, 34, 1046–1054. [Google Scholar] [CrossRef]
- Herzog, B.; Giesinger, J.; Settels, V. Insights into the stabilization of photolabile UV-absorbers in sunscreens. Photochem. Photobiol. Sci. 2020, 19, 1636–1649. [Google Scholar] [CrossRef]
- Wolverton, S.E.; Wu, J.J. Comprehensive Dermatologic Drug Therapy, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Regulation (EC) n° 1223/2009 of the European Parliament and of the Council: Current Consolidated Version (01/10/2021), Official Journal of the European Union L.342/59-209. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (accessed on 6 January 2022).
- Fabian, F. BASF Pushes UV Filter Production Capacities. Available online: https://www.basf.com/global/en/media/news-releases/2019/12/p-19-422.html (accessed on 6 January 2022).
- Whitehouse, L. Nano-Sized UV Filter Passes EU Cosmetic Regulation 2018. Available online: https://www.cosmeticsdesign-europe.com/Article/2018/08/03/Nano-sized-UV-filter-passes-EU-Cosmetic-Regulation (accessed on 6 January 2022).
- BASF Gains EU Approval of Nano-Sized UV Filter in Cosmetics 2018. Available online: https://www.basf.com/global/en/media/news-releases/2018/07/p-18-276.html (accessed on 6 January 2022).
- EU Updates the Use of Nano Titanium Dioxide in Cosmetics with a Warning. Available online: https://www.sgs.com/en/news/2019/12/safeguards-17919-eu-updates-the-use-of-nano-titanium-dioxide-in-cosmetics-with-warning (accessed on 6 January 2022).
- Scientific Committee on Consumer Safety (SCCS). Opinion on Additional Coatings for Titanium Dioxide (Nano Form) as UV-Filter in Dermally Applied Cosmetic Products; Preliminary Version SCCS/1580/16; Unit C2, European Commission Health and Food Safety: Luxembourg, 2016. [Google Scholar]
- Palm, M.D.; O’Donoghue, M.N. Update on photoprotection. Dermatol. Ther. 2007, 20, 360–376. [Google Scholar] [CrossRef]
- Mendrok-Edinger, C. The Quest for Avobenzone Stabilizers and Sunscreen Photostability. Available online: https://www.cosmeticsandtoiletries.com/formulas-products/sun-care/article/21836968/the-quest-for-avobenzone-stabilizers-and-sunscreen-photostability (accessed on 15 November 2021).
- Benevenuto, C.G.; Guerra, L.O.; Gaspar, L.R. Combination of retinyl palmitate and UV-filters: Phototoxic risk assessment based on photostability and in vitro and in vivo phototoxicity assays. Eur. J. Pharm. Sci. 2015, 68, 127–136. [Google Scholar] [CrossRef]
- Nery, E.M.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. A short review of alternative ingredients and technologies of inorganic UV filters. J. Cosmet. Dermatol. 2021, 20, 1061–1065. [Google Scholar] [CrossRef]
- Kerr, A.; Ferguson, J. Photoallergic contact dermatitis. Photodermatol. Photoimmunol. Photomed. 2010, 26, 56–65. [Google Scholar] [CrossRef]
- Novick, R.; Anderson, G.; Miller, E.; Allgeier, D.; Unice, K. Factors that influence sunscreen application thickness and potential preservative exposure. Photodermatol. Photoimmunol. Photomed. 2015, 31, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Chaiyabutr, C.; Sukakul, T.; Kumpangsin, T.; Bunyavaree, M.; Charoenpipatsin, N.; Wongdama, S.; Boonchai, W. Ultraviolet filters in sunscreens and cosmetic products—A market survey. Contact Dermat. 2021, 85, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Mutsuga, M.; Kato, T.; Iida, M.; Tanamoto, K. Estrogenic and Anti-Androgenic Activities of Benzophenones in Human Estrogen and Androgen Receptor Mediated Mammalian Reporter Gene Assays. J. Health Sci. 2005, 51, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Methylene Bis-Benzotriazolyl Tetramethylbutylphenol. Available online: https://incidecoder.com/ingredients/methylene-bis-benzotriazolyl-tetramethylbutylphenol (accessed on 20 May 2022).
- Scientific Committee on Consumer Safety. Opinion on 2,2′-Methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3tetramethylbutyl)phenol) (Nano Form): Submission III, COLIPA S79, European Commission 2018, SCCS/1546/15. Available online: https://data.europa.eu/doi/10.2875/101475 (accessed on 20 April 2022).
- de Groot, A.C.; van Zuuren, E.J.; Hissink, D. Contact allergy to Tinosorb(R) M: Recommendations for diagnostic improvement. Contact Dermat. 2014, 70, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Goncalo, M.; Ferguson, J.; Bonevalle, A.; Bruynzeel, D.P.; Gimenez-Arnau, A.; Goossens, A.; Kerr, A.; Lecha, M.; Neumann, N.; Niklasson, B.; et al. Photopatch testing: Recommendations for a European photopatch test baseline series. Contact Dermat. 2013, 68, 239–243. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, A.; Augusto, I.; Duarte, J.; Sousa, E.; Cidade, H.; Cruz, M.T.; Lobo, J.M.S.; Almeida, I.F. Recent Trends on UV filters. Appl. Sci. 2022, 12, 12003. https://doi.org/10.3390/app122312003
Jesus A, Augusto I, Duarte J, Sousa E, Cidade H, Cruz MT, Lobo JMS, Almeida IF. Recent Trends on UV filters. Applied Sciences. 2022; 12(23):12003. https://doi.org/10.3390/app122312003
Chicago/Turabian StyleJesus, Ana, Inês Augusto, Joana Duarte, Emília Sousa, Honorina Cidade, Maria T. Cruz, José M. Sousa Lobo, and Isabel F. Almeida. 2022. "Recent Trends on UV filters" Applied Sciences 12, no. 23: 12003. https://doi.org/10.3390/app122312003
APA StyleJesus, A., Augusto, I., Duarte, J., Sousa, E., Cidade, H., Cruz, M. T., Lobo, J. M. S., & Almeida, I. F. (2022). Recent Trends on UV filters. Applied Sciences, 12(23), 12003. https://doi.org/10.3390/app122312003