The Effect of Adding Spices to Green Walnut Tinctures on Their Polyphenolic Profile, Antioxidant Capacity and Action on Renal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Preparation of Tinctures
2.2. Total Phenolic and Flavonoid Content and Antioxidant Capacity Measurements
2.3. HPLC-DAD Polyphenolic Profile
2.4. Cell Culture and Media
2.5. Real-Time Cell Analysis
2.6. MTS Test
2.7. Statistical Evaluation
3. Results and Discussion
3.1. Polyphenol Content and Antioxidant Capacity
3.2. Polyphenolic Profile by HPLC-DAD
3.3. The Effect on VERO Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudz, N.; Makowicz, E.; Shanaida, M.; Białon, M.; Jasicka-Misiak, I.; Yezerska, O.; Svydenko, L.; Wieczorek, P.P. Phytochemical evaluation of tinctures and essential oil obtained from Satureja montana herb. Molecules 2020, 25, 4763. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2001. [Google Scholar]
- Petrović, M.; Pastor, F.; Đurović, S.; Veljović, S.; Gorjanović, S.; Sredojević, M.; Vukosavljević, P. Evaluation of novel green walnut liqueur as a source of antioxidants: Multi-method approach. J. Food Sci. Technol. 2021, 58, 2160–2169. [Google Scholar] [CrossRef] [PubMed]
- Tiurikova, I.; Peresichnyi, M. Prospects of Using Walnut in Technologies of Drinks. Acta Univ. Cibiniensis Ser. E Food Technol. 2015, 19, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Ionica, M.; Tutulescu, F. Phenolics content, antioxidant activity and color of green walnut extracts for preparing walnut liquor. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Soto-Maldonado, C.; Vergara-Castro, M.; Jara-Quezada, J.; Caballero-Valdés, E.; Müller-Pavez, A.; Zúñiga-Hansen, M.E.; Altamirano, C. Polyphenolic extracts of walnut (Juglans regia) green husk containing juglone inhibit the growth of HL-60 cells and induce apoptosis. Electron. J. Biotechnol. 2019, 39, 1–7. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croitoru, A.; Ficai, D.; Craciun, L.; Ficai, A.; Andronescu, E. Evaluation and Exploitation of Bioactive Compounds of Walnut, Juglans regia. Curr. Pharm. Des. 2019, 25, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Coutinho, J.A.P.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol. 2020, 137, 111189. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Influence of preparing method on antioxidant activity and polyphenols content of green walnuts comfiture. South-West J. Hortic. Biol. Environ. 2014, 5, 83–94. [Google Scholar]
- Sharma, P.; Ravikumar, G.; Kalaiselvi, M.; Gomathi, D.; Uma, C. In vitro antibacterial and free radical scavenging activity of green hull of Juglans regia. J. Pharm. Anal. 2013, 3, 298–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Alamprese, C.; Pompei, C.; Scaramuzzi, F. Characterization and antioxidant activity of nocino liqueur. Food Chem. 2005, 90, 495–502. [Google Scholar] [CrossRef]
- Alamprese, C.; Pompei, C. Influence of processing variables on some characteristics of nocino liqueur. Food Chem. 2005, 92, 203–209. [Google Scholar] [CrossRef]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional walnut liqueur–cocktail of phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Jakopic, J.; Solar, A.; Colaric, M.; Hudina, M.; Veberic, R.; Stampar, F. The influence of ethanol concentration on content of total and individual phenolics in walnut alcoholic drink. Acta Aliment. 2008, 37, 233–239. [Google Scholar] [CrossRef]
- Cortés-Rojas, D.F.; de Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Mele, M.A. Bioactive compounds and biological activity of ginger. J. Multidiscip. Sci. 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and biological activities of laurel tree (Laurus nobilis). Nat. Prod. Commun. 2017, 12, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.; Verma, P.K.; Peshin, R.; Kour, H. Potential of Juniperus communis L as a nutraceutical in human and veterinary medicine. Heliyon 2019, 5, e02376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karki, N.; Aggarwal, S.; Laine, R.A.; Greenway, F.; Losso, J.N. Cytotoxicity of Juglone and Thymoquinone against Pancreatic Cancer Cells; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 327, ISBN 2255784890. [Google Scholar]
- Harati, K.; Behr, B.; Daigeler, A.; Hirsch, T.; Jacobsen, F.; Renner, M.; Harati, A.; Wallner, C.; Lehnhardt, M.; Becerikli, M. Curcumin and Viscum album Extract Decrease Proliferation and Cell Viability of Soft-Tissue Sarcoma Cells: An In Vitro Analysis of Eight Cell Lines Using Real-Time Monitoring and Colorimetric Assays. Nutr. Cancer 2017, 69, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, B.; Liu, Z.; Jiang, Y.; Liu, Y.; Fu, L.; Wang, X.; Kuang, H. Cytotoxicity of triterpenes from green walnut husks of Juglans mandshurica Maxim in HepG-2 cancer cells. Molecules 2015, 20, 19252–19262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Biju, J.; Reddy, V.; Sulaiman, C.T. Total Phenolics and Flavonoids in Selected Justicia Species. J. Pharmacogn. Phytochem. 2013, 2, 51–52. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘‘Antioxidant Power’’: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Miłek, M.; Marcinčáková, D.; Legáth, J. Polyphenols content, antioxidant activity, and cytotoxicity assessment of Taraxacum officinale extracts prepared through the micelle-mediated extraction method. Molecules 2019, 24, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowa, P.; Marcinčáková, D.; Miłek, M.; Sidor, E.; Legáth, J.; Dżugan, M. Analysis of cytotoxicity of selected Asteraceae plant extracts in real time, their antioxidant properties and polyphenolic profile. Molecules 2020, 25, 5517. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Ochocka, J.R. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol. Rep. 2020, 7, 335–344. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Durak, A.; Pecio, Ł.; Kowalska, I. Nutraceutical potential of tinctures from fruits, green husks, and leaves of Juglans regia L. Sci. World J. 2014, 2014, 501392. [Google Scholar] [CrossRef] [Green Version]
- Jakopic, J.; Colaric, M.; Veberic, R.; Hudina, M.; Solar, A.; Stampar, F. How much do cultivar and preparation time influence on phenolics content in walnut liqueur? Food Chem. 2007, 104, 100–105. [Google Scholar] [CrossRef]
- Wright, D.A.; Mitchelmore, C.L.; Dawson, R.; Cutler, H.G. The influence of water quality on the toxicity and degradation of juglone (5-hydroxy 1,4-naphthoquinone). Environ. Technol. 2007, 28, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Postnikova, E.; Cong, Y.; DeWald, L.E.; Dyall, J.; Yu, S.; Hart, B.J.; Zhou, H.; Gross, R.; Logue, J.; Cai, Y.; et al. Testing therapeutics in cell-based assays: Factors that influence the apparent potency of drugs. PLoS ONE 2018, 13, e0194880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, C.C.; Henderson, T.D.; Stanker, L.H.; Cheng, L.W. Influence of food matrices on the stability and bioavailability of abrin. Toxins 2018, 10, 502. [Google Scholar] [CrossRef] [Green Version]
- Atienzar, F.A.; Tilmant, K.; Gerets, H.H.; Toussaint, G.; Speeckaert, S.; Hanon, E.; Depelchin, O.; Dhalluin, S. The use of real-time cell analyzer technology in drug discovery: Defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J. Biomol. Screen. 2011, 16, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Erisen, S.; Arasoǧlu, T.; Mansuroglu, B.; Kocacaliskan, I.; Derman, S. Cytotoxic and mutagenic potential of juglone: A comparison of free and nano-encapsulated form. Arh. Hig. Rada Toksikol. 2020, 71, 69–77. [Google Scholar] [CrossRef]
- Shah, U.N.; Mir, J.I.; Ahmed, N.; Jan, S.; Fazili, K.M. Bioefficacy potential of different genotypes of walnut Juglans regia L. J. Food Sci. Technol. 2018, 55, 605–618. [Google Scholar] [CrossRef]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [Green Version]
- Makhafola, T.J.; McGaw, L.J.; Eloff, J.N. In vitro cytotoxicity and genotoxicity of five Ochna species (Ochnaceae) with excellent antibacterial activity. S. Afr. J. Bot. 2014, 91, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Njeru, S.N.; Muema, J.M. In vitro cytotoxicity of Aspilia pluriseta Schweinf. extract fractions. BMC Res. Notes 2021, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Grover, M.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Virmani, T.; Rachamalla, M.; Farasani, A.; Chigurupati, S.; Alsubayiel, A.M.; et al. In vitro phytochemical screening, cytotoxicity studies of curcuma longa extracts with isolation and characterisation of their isolated compounds. Molecules 2021, 26, 7509. [Google Scholar] [CrossRef] [PubMed]
- See, I.; Ee, G.C.L.; Jong, V.Y.M.; Teh, S.S.; Acuña, C.L.C.; Mah, S.H. Cytotoxic activity of phytochemicals from Garcinia mangostana L. and G. benthamiana (Planch. & Triana) Pipoly against breast cancer cells. Nat. Prod. Res. 2021, 35, 6184–6189. [Google Scholar] [CrossRef] [PubMed]
Sample | Description | |
---|---|---|
1 | Control tincture | 100 g walnuts + 100 mL 40% ethanol (control; kept in light) |
2 | Control tincture kept in dark | 100 g walnuts + 100 mL 40% ethanol (control; kept in dark) |
3 | Tincture with ginger | 100 g walnuts + 2 g fresh, grated ginger + 100 mL 40% ethanol (kept in light) |
4 | Tincture with cloves | 100 g walnuts + 2 g crushed cloves + 100 mL 40% ethanol (kept in light) |
5 | Tincture with bay leaves | 100 g walnuts + 2 g shredded bay leaves + 100 mL 40% ethanol (kept in light) |
6 | Tincture with juniper fruit | 100 g walnuts + 2 g crushed juniper fruit + 100 mL 40% ethanol (kept in light) |
Tincture | TPC [mg GAE mL−1] | TFC [mg QE mL−1] | FRAP [μmol TE mL−1] | DPPH [μmol TE mL−1] | ABTS [μmol TE mL−1] |
---|---|---|---|---|---|
1 | 3.56 ± 0.03 a | 1.80 ± 0.06 a | 21.77 ± 0.15 a | 11.37 ± 0.51 a | 40.58 ± 1.82 a,b |
2 | 4.30 ± 0.05 c | 2.18 ± 0.01 c | 26.64 ± 0.44 d | 13.69 ± 0.33 b | 46.91 ± 0.50 c |
3 | 4.05 ± 0.05 b | 1.99 ± 0.03 b | 25.31 ± 1.02 d,c | 12.23 ± 0.22 a,b | 43.30 ± 0.79 b |
4 | 3.88 ± 0.05 a | 2.40 ± 0.06 d | 24.41 ± 0.60 c | 11.59 ± 1.37 a,b | 48.27 ± 0.32 c,d |
5 | 4.29 ± 0.04 c | 1.93 ± 0.09 a,b | 25.21 ± 0.43 c,d | 13.15 ± 0.85 a,b | 44.78 ± 0.10 b,c |
6 | 3.95 ± 0.03 b | 1.87 ± 0.04 a,b | 23.78 ± 0.34 b | 12.09 ± 0.80 a,b | 41.23 ± 0.78 a,b |
TPC | TFC | FRAP | DPPH | ABTS | |
---|---|---|---|---|---|
TPC | 1.000 | ||||
TFC | 0.618 | 1.000 | |||
FRAP | 0.910 | 0.855 | 1.000 | ||
DPPH | 0.876 | 0.676 | 0.893 | 1.000 | |
ABTS | 0.752 | 0.942 | 0.931 | 0.773 | 1.000 |
Peak No. | Retention Time [min] | Absorption Maxima [nm] | Identification | Sample | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
1 | 2.12 | 272 | Gallic acid | + | + | + | + | + | + |
2 | 3.50 | 265, 426 | Naphthoquinone | + | − | − | − | − | − |
3 | 3.64 | 311, 295 sh | Coumaric acid derivative | + | + | + | + | + | + |
4 | 4.68 | 275 | (+)-catechin | + | - | tr | + | + | + |
5 | 5.00 | 219, 266, 422 | Naphthoquinone | + | + | + | − | + | + |
6 | 5.13 | 263, 317 sh | Dihydroxybenzoic acid isomer | − | − | − | + | − | − |
7 | 5.68 | 273 | (−)-epicatechin | + | tr | tr | + | + | tr |
8 | 5.85 | 276 | Syringic acid | + | + | + | tr | + | + |
9 | 6.42 | 260, 326 sh | Dihydroxybenzoic acid isomer | + | + | + | + | + | + |
10 | 6.81 | 223, 345 sh, 359 | unknown | + | + | + | − | + | + |
11 | 7.31 | 234 sh, 259 sh, 363 | Rutin | tr | tr | tr | tr | + | tr |
12 | 7.50 | 266 | Gallic acid derivative | + | + | + | + | + | + |
13 | 7.89 | 272, 301 sh, 318 sh, 383 | Naphthoquinone | − | + | + | − | − | + |
14 | 7.96 | 269, 378 | Naphthoquinone | + | + | + | + | + | + |
15 | 8.41 | 258, 348 | Quercitrin | tr | tr | + | tr | + | tr |
16 | 13.43 | 230 sh, 283 | Eugenol | − | − | − | + | − | − |
Sample | 48 h | 125 µg mL−1 | 250 µg mL−1 | 500 µg mL−1 | 1000 µg mL−1 |
---|---|---|---|---|---|
1 | PA | 112.93 ±2.04 * | 92.52 ± 0.01 *** | 50.45 ± 4.87 ** | 12.55 ± 1.92 *** |
MA | 78.43 ± 2.72 *** | 77.13 ± 3.18 *** | 78.30 ± 1.07 *** | 67.93 ± 6.30 *** | |
2 | PA | 85.55 ± 7.98 | 64.74 ± 3.70 ** | 39.41 ± 0.53 *** | 10.08 ± 3.01 *** |
MA | 79.77 ± 9.88 *** | 89.48 ± 3.48 * | 64.08 ± 7.92 *** | 77.50 ± 6.85 *** | |
3 | PA | 96.15 ± 3.01 * | 66.77 ± 0.90 *** | 24.91 ± 1.32 *** | 14.63 ± 0.78 *** |
MA | 63.27 ± 5.43 *** | 74.21 ± 3.77 *** | 59.36 ± 8.86 *** | 83.72 ± 7.21 ** | |
4 | PA | 85.50 ± 2.39 * | 80.60 ± 6.55 * | 64.51 ± 4.89 ** | 19.25 ± 0.74 *** |
MA | 101.33 ± 5.51 | 94.36 ± 3.69 | 84.64 ± 2.94 ** | 76.07 ± 2.14 *** | |
5 | PA | 93.38 ± 5.33 | 124.73 ± 4.28 * | 58.08 ±3.21 ** | 23.37 ± 0.42 *** |
MA | 85.56 ± 4.55 * | 91.94 ± 4.32 *** | 69.31 ± 1.48 *** | 65.52 ± 6.35 *** | |
6 | PA | 68.74 ± 5.94 * | 50.13 ± 0.70 *** | 35.90 ± 0.23 *** | 14.91 ± 1.33 *** |
MA | 83.64 ± 3.48 ** | 68.37 ± 3.72 *** | 68.98 ± 1.67 *** | 57.92 ± 1.64 *** | |
Control | PA | 100 ± 3.85 | |||
MA | 100 ± 2.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miłek, M.; Marcinčáková, D.; Kolesárová, M.; Legáthová, D.; Dżugan, M. The Effect of Adding Spices to Green Walnut Tinctures on Their Polyphenolic Profile, Antioxidant Capacity and Action on Renal Cells. Appl. Sci. 2022, 12, 3669. https://doi.org/10.3390/app12073669
Miłek M, Marcinčáková D, Kolesárová M, Legáthová D, Dżugan M. The Effect of Adding Spices to Green Walnut Tinctures on Their Polyphenolic Profile, Antioxidant Capacity and Action on Renal Cells. Applied Sciences. 2022; 12(7):3669. https://doi.org/10.3390/app12073669
Chicago/Turabian StyleMiłek, Michał, Dana Marcinčáková, Mária Kolesárová, Diana Legáthová, and Małgorzata Dżugan. 2022. "The Effect of Adding Spices to Green Walnut Tinctures on Their Polyphenolic Profile, Antioxidant Capacity and Action on Renal Cells" Applied Sciences 12, no. 7: 3669. https://doi.org/10.3390/app12073669
APA StyleMiłek, M., Marcinčáková, D., Kolesárová, M., Legáthová, D., & Dżugan, M. (2022). The Effect of Adding Spices to Green Walnut Tinctures on Their Polyphenolic Profile, Antioxidant Capacity and Action on Renal Cells. Applied Sciences, 12(7), 3669. https://doi.org/10.3390/app12073669