Phase-Pure Epitaxial b-Axis-Oriented Bronze TiO2 Films
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Phase Identification and Epitaxy
3.2. Stability Range from First-Principle Calculations
3.3. MAO as Thin Film Template
3.4. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Dharma, H.N.; Jaafar, J.; Widiastuti, N.; Matsuyama, H.; Rajabsadeh, S.; Othman, M.H.; Rahman, M.A.; Jafri, N.N.; Suhaimin, N.S.; Nasir, A.M.; et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Moma, J.; Baloyi, J. Modified Titanium Dioxide for Photocatalytic Applications. In Photocatalysts; Khan, S.B., Akhtar, K., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 3; ISBN 978-1-78985-476-3. [Google Scholar]
- Wisz, G.; Sawicka-Chudy, P.; Wal, A.; Potera, P.; Bester, M.; Płoch, D.; Sibiński, M.; Cholewa, M.; Ruszała, M. TiO2:ZnO/CuO thin film solar cells prepared via reactive direct-current (DC) magnetron sputtering. Appl. Mater. Today 2022, 29, 101673. [Google Scholar] [CrossRef]
- Sawicka-Chudy, P.; Wisz, G.; Głowa, Ł.; Sibiński, M.; Potera, P.; Cholewa, M.; Wielgosz, M.; Górny, S. Optical and structural properties of TiO2 as intermediate buffer layer prepared by DC reactive magnetron sputtering for solar cells. Optik 2019, 181, 1122–1129. [Google Scholar] [CrossRef]
- Rahimi, N.; Pax, R.A.; Gray, E. MacA. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 2016, 44, 86–105. [Google Scholar] [CrossRef]
- Marchand, R.; Brohan, L.; Tournoux, M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O. Mater. Res. Bull. 1980, 15, 1129–1133. [Google Scholar] [CrossRef]
- Armstrong, A.R.; Armstrong, G.; Canales, J.; Bruce, P.G. TiO2–B nanowires as negative electrodes for rechargeable lithium batteries. J. Power Sources 2005, 146, 501–506. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A.R.; Grey, C.P.; Bruce, P.G. Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2012, 51, 2164–2167. [Google Scholar] [CrossRef]
- Brutti, S.; Gentili, V.; Menard, H.; Scrosati, B.; Bruce, P.G. TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity. Adv. Energy Mater. 2012, 2, 322–327. [Google Scholar] [CrossRef]
- Liang, S.; Wang, X.; Qi, R.; Cheng, Y.-J.; Xia, Y.; Müller-Buschbaum, P.; Hu, X. Bronze-Phase TiO2 as Anode Materials in Lithium and Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2201675. [Google Scholar] [CrossRef]
- Zhang, K.; Du, X.; Katz, M.B.; Li, B.; Kim, S.J.; Song, K.; Graham, G.W.; Pan, X. Creating high quality Ca:TiO2-B (CaTi5O11) and TiO2-B epitaxial thin films by pulsed laser deposition. Chem. Commun. 2015, 51, 8584–8587. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ji, D.X.; Yuan, Z.S.; Wang, P.; Nie, Y.F.; Gu, Z.B.; Pan, X.Q. Epitaxial growth of bronze phase titanium dioxide by molecular beam epitaxy. AIP Adv. 2019, 9, 035230. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Gao, X.; Sohn, C.; Ha, Y.; Yoon, S.; Ok, J.M.; Chisholm, M.F.; Noh, T.W.; Lee, H.N. Templated epitaxy of TiO2(B) on a perovskite. Appl. Phys. Lett. 2020, 117, 133903. [Google Scholar] [CrossRef]
- Jokisaari, J.R.; Bayerl, D.; Zhang, K.; Xie, L.; Nie, Y.; Schlom, D.G.; Kioupakis, E.; Graham, G.W.; Pan, X. Polarization-Dependent Raman Spectroscopy of Epitaxial TiO2(B) Thin Films. Chem. Mater. 2015, 27, 7896–7902. [Google Scholar] [CrossRef]
- Murakami, M.; Matsumoto, Y.; Nakajima, K.; Makino, T.; Segawa, Y.; Chikyow, T.; Ahmet, P.; Kawasaki, M.; Koinuma, H. Anatase TiO2 thin films grown on lattice-matched LaAlO3 substrate by laser molecular-beam epitaxy. Appl. Phys. Lett. 2001, 78, 2664–2666. [Google Scholar] [CrossRef]
- Sakama, H.; Osada, G.; Tsukamoto, M.; Tanokura, A.; Ichikawa, N. Epitaxial growth of anatase TiO2 thin films on LaAlO3(100) prepared using pulsed laser deposition. Thin Solid Films 2006, 515, 535–539. [Google Scholar] [CrossRef]
- Okimura, K.; Furumi, T. Epitaxial Growth of Rutile TiO2 Films on MgO Substrate in Inductively Coupled Plasma-Assisted Sputtering. Jpn. J. Appl. Phys. 2004, 43, L655. [Google Scholar] [CrossRef]
- Garapon, C.; Champeaux, C.; Mugnier, J.; Panczer, G.; Marchet, P.; Catherinot, A.; Jacquier, B. Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications. Appl. Surf. Sci. 1996, 96–98, 836–841. [Google Scholar] [CrossRef]
- Grazulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quiros, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—an open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef] [Green Version]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. Npj Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckeridge, J.; Butler, K.T.; Catlow, C.R.A.; Logsdail, A.J.; Scanlon, D.O.; Shevlin, S.A.; Woodley, S.M.; Sokol, A.A.; Walsh, A. Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination. Chem. Mater. 2015, 27, 3844–3851. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Gao, S.-P. The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs. J. Phys. Chem. C 2014, 118, 11385–11396. [Google Scholar] [CrossRef] [Green Version]
- Zanatta, A.R. Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci. Rep. 2019, 9, 11225. [Google Scholar] [CrossRef] [Green Version]
- Sando, D.; Carrétéro, C.; Grisolia, M.N.; Barthélémy, A.; Nagarajan, V.; Bibes, M. Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films. Adv. Opt. Mater. 2018, 6, 1700836. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herklotz, A.; Herklotz, F.; Rus, F.S. Phase-Pure Epitaxial b-Axis-Oriented Bronze TiO2 Films. Appl. Sci. 2023, 13, 209. https://doi.org/10.3390/app13010209
Herklotz A, Herklotz F, Rus FS. Phase-Pure Epitaxial b-Axis-Oriented Bronze TiO2 Films. Applied Sciences. 2023; 13(1):209. https://doi.org/10.3390/app13010209
Chicago/Turabian StyleHerklotz, Andreas, Frank Herklotz, and Florina Stefania Rus. 2023. "Phase-Pure Epitaxial b-Axis-Oriented Bronze TiO2 Films" Applied Sciences 13, no. 1: 209. https://doi.org/10.3390/app13010209
APA StyleHerklotz, A., Herklotz, F., & Rus, F. S. (2023). Phase-Pure Epitaxial b-Axis-Oriented Bronze TiO2 Films. Applied Sciences, 13(1), 209. https://doi.org/10.3390/app13010209