Antibiofilm Effect of Siegesbeckia pubescens against S. mutans According to Environmental Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Preparation and Indicator Microorganisms
2.2. High-Performance Liquid Chromatography (HPLC) Analysis
2.3. Inhibition of GTase Activity
2.4. Inhibition of Acid Production
2.5. Inhibition of Biofilm Formation
2.6. Antibacterial Activities
2.7. Radical Scavenging Activity
2.8. Superoxide Dismutase (SOD)-like Activity
2.9. Statistical Analysis
3. Results
3.1. Quantitative Analysis of Kirenol from SPY, SPC, and SPS
3.2. Antibacterial Activity of S. pubescens against Periodontitis-Associated Pathogens
3.3. Inhibition of GTase Activity
3.4. Inhibition of Acid Production of S. mutans
3.5. Antibiofilm Activity of S. pubescens
3.6. Radical Scavenging Activities of S. pubescens Extracts
3.7. SOD-Like Activity of S. pubescens Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanz, M.; del Castillo, A.M.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and Cardiovascular Diseases: Consensus Report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative Stress and Antioxidant System in Periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef] [PubMed]
- Ellison, S.A. Oral Bacteria and Periodontal Disease. J. Dent. Res. 1970, 49, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, J.L. Biofilm-Related Disease. Expert Rev. Anti Infect. Ther. 2017, 16, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Leme, A.P.; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A. The Role of Sucrose in Cariogenic Dental Biofilm Formation—New Insight. J. Dent. Res. 2006, 85, 878–887. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, L.; Li, J.; Li, Y. Inhibition of Streptococcus mutans polysaccharide Synthesis by Molecules Targeting Glycosyltransferase Activity. J. Oral Microbiol. 2016, 8, 31095. [Google Scholar] [CrossRef]
- Sondorová, M.; Kučera, J.; Kačírová, J.; Nagyová, Z.K.; Hudáková, N.Š; Lipták, T.; Maďar, M. Prevalence of Periodontal Pathogens in Slovak Patients with Periodontitis and Their Possible Aspect of Transmission from Companion Animals to Humans. Biology 2022, 11, 1529. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y.; Zhou, H.; Xu, J.; Gu, Q. Diverse Diterpenoids and Sesquiterpenoids from Siegesbeckia pubescens and Their Activity against RANKL-Induced Osteoclastogenesis. Bioorg. Chem. 2021, 107, 104537. [Google Scholar] [CrossRef]
- Sang, W.; Zhong, Z.; Linghu, K.; Xiong, W.; Tse, A.K.W.; Cheang, W.S.; Yu, H.; Wang, Y. Siegesbeckia pubescens Makino Inhibits Pam3CSK4-Induced Inflammation in RAW 264.7 Macrophages through Suppressing TLR1/TLR2-Mediated NF-ΚB Activation. Chin. Med. 2018, 13, 37. [Google Scholar] [CrossRef]
- Lee, D.-S.; Lee, M.; Sung, S.H.; Jeong, G.S. Involvement of Heme Oxygenase-1 Induction in the Cytoprotective and Neuroinflammatory Activities of Siegesbeckia pubescens Isolated from 5,3′-Dihydroxy-3,7,4′-Trimethoxyflavone in HT22 Cells and BV2 Cells. Int. Immunopharmacol. 2016, 40, 65–72. [Google Scholar] [CrossRef]
- Akanda, R.; Kim, M.-J.; Kim, I.-S.; Ahn, D.; Tae, H.-J.; Rahman, M.; Park, Y.-G.; Seol, J.-W.; Nam, H.-H.; Choo, B.-K.; et al. Neuroprotective Effects of Sigesbeckia pubescens Extract on Glutamate-Induced Oxidative Stress in HT22 Cells via Downregulation of MAPK/Caspase-3 Pathways. Cell. Mol. Neurobiol. 2017, 38, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wei, J.; Hong, L.; Fan, S.; Hu, G.; Jia, J. Comparative Analysis of Chemical Composition, Anti-Inflammatory Activity and Antitumor Activity in Essential Oils from Siegesbeckia orientalis, S. glabrescens and S. pubescens with an ITS Sequence Analysis. Molecules 2018, 23, 2185. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, B.P.; Ramírez, M.I.N.; Monteagudo, C.M.A.; Trejo, J.F.G.; Pérez, A.A.F. Temperature and Precipitation Effect on the Production of Flavonoids in Wild Populations of Stevia salicifolia in Queretaro. EasyChair 2020. No. 3751. Available online: https://easychair.org/publications/preprint/N3TQ (accessed on 20 March 2023).
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Amic, D.; Davidovic-Amic, D.; Beslo, D.; Rastija, V.; Lucic, B.; Trinajstic, N. SAR and QSAR of the Antioxidant Activity of Flavonoids. Curr. Med. Chem. 2007, 14, 827–845. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Shukla, S. Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Zayed, S.M.; Aboulwafa, M.M.; Hashem, A.M.; Saleh, S.E. Biofilm Formation by Streptococcus mutans and Its Inhibition by Green Tea Extracts. AMB Express 2021, 11, 73. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Krzyściak, W.; Jurczak, A.; Kościelniak, D.; Bystrowska, B.; Skalniak, A. The Virulence of Streptococcus mutans and the Ability to Form Biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 33, 499–515. [Google Scholar] [CrossRef]
- Koo, H.; Xiao, J.; Klein, M.I.; Jeon, J.G. Exopolysaccharides Produced by Streptococcus mutans Glucosyltransferases Modulate the Establishment of Microcolonies within Multispecies Biofilms. J. Bacteriol. 2010, 192, 3024–3032. [Google Scholar] [CrossRef]
- Nett, J.; Lincoln, L.; Marchillo, K.; Massey, R.; Holoyda, K.; Hoff, B.; VanHandel, M.; Andes, D. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance. Antimicrob. Agents Chemother. 2006, 51, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Shahidi, F.; de Camargo, A.C.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Flores, M.A.; Quintero-Cabello, K.P.; Palafox-Rivera, P.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Ortega-Ramirez, L.A.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines 2021, 9, 1669. [Google Scholar] [CrossRef] [PubMed]
Indicators | AMX 1 | SPY | SPC | SPS |
---|---|---|---|---|
Streptococcus mutans KACC 16833 | 15.0 2 | 12.0 | 11.0 | 10.0 |
Streptococcus sanguinis KACC 11301 | 15.5 | 15.0 | 13.0 | 11.5 |
Streptococcus downei KACC 13827 | 15.0 | 14.0 | 13.0 | 12.0 |
Streptococcus gordonii KACC 13829 | 15.0 | 15.5 | 13.0 | 12.0 |
Streptococcus ferus KACC 13881 | 15.0 | 15.0 | 12.0 | 10.5 |
Streptococcus mitis KACC 16832 | 15.0 | 14.0 | 11.5 | 9.5 |
Porphyromonas gingivalis KCTC 5352 | 15.0 | 14.0 | 12.5 | 11.0 |
Treponema denticola KCTC 15104 | 15.5 | 15.5 | 12.0 | 10.5 |
Campylobacter gracilis KCTC 15224 | 15.0 | 13.0 | 11.0 | 10.5 |
Campylobacter rectus KCTC 5636 | 15.0 | 13.0 | 11.0 | 9.5 |
Fusobacterium nucleatum KCTC 2640 | 15.0 | 14.5 | 12.5 | 10.0 |
Parvimonas micra KCTC 15021 | 15.0 | 14.5 | 11.0 | 10.5 |
Prevotella intermedia KCTC 15693 | 14.5 | 11.0 | 11.0 | 10.5 |
Prevotella nigrescens KCTC 15081 | 15.0 | 14.5 | 12.0 | 11.0 |
Aggregatibacter actinomycetemcomitans KCTC 2581 | 15.5 | 12.0 | 11.0 | 10.0 |
Eikenella corrodens KCTC 15198 | 14.5 | 12.5 | 11.0 | 10.5 |
Indicators | SPY | SPC | SPS | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
S. mutans KACC 16833 | ≥0.31 1 | 0.63 | ≥3.13 | 6.30 | ≥18.75 | 37.50 |
S. sanguinis KACC 11301 | ≥0.31 | 0.63 | ≥0.80 | 1.60 | ≥18.75 | 37.50 |
S. downei KACC 13827 | ≥0.20 | 0.40 | ≥0.20 | 0.40 | ≥18.75 | 37.50 |
S. gordonii KACC 13829 | ≥0.31 | 0.63 | ≥0.40 | 0.80 | ≥18.75 | 37.50 |
S. ferus KACC 13881 | ≥1.30 | 3.00 | ≥3.13 | 6.30 | ≥18.75 | 37.50 |
S. mitis KACC 16832 | ≥0.40 | 0.80 | ≥1.60 | 3.13 | ≥9.38 | 18.75 |
P. gingivalis KCTC 5352 | ≥0.20 | 0.40 | ≥0.40 | 0.80 | ≥18.75 | 37.50 |
T. denticola KCTC 15104 | ≥0.20 | 0.40 | ≥0.40 | 0.80 | ≥18.75 | 37.50 |
C. gracilis KCTC 15224 | ≥0.40 | 0.80 | ≥0.80 | 1.60 | ≥18.75 | 37.50 |
C. rectus KCTC 5636 | ≥0.40 | 0.80 | ≥0.40 | 0.80 | ≥18.75 | 37.50 |
F. nucleatum KCTC 2640 | ≥0.20 | 0.40 | ≥0.20 | 0.40 | ≥18.75 | 37.50 |
P. micra KCTC 15021 | ≥0.40 | 0.80 | 1.60 | 3.13 | ≥18.75 | 37.50 |
P. intermedia KCTC 15693 | ≥0.40 | 0.80 | ≥0.80 | 1.60 | ≥18.75 | 37.50 |
P. nigrescens KCTC 15081 | ≥0.40 | 0.80 | ≥0.80 | 1.60 | ≥18.75 | 37.50 |
A. actinomycetemcomitans KCTC 2581 | ≥0.40 | 0.80 | ≥0.20 | 0.40 | ≥18.75 | 37.50 |
E. corrodens KCTC 15198 | ≥0.20 | 0.40 | ≥0.40 | 0.80 | ≥9.38 | 18.75 |
Rate of Change | SPY | SPC | SPS |
---|---|---|---|
pH increase (%) | 14.91 | 3.10 | 6.03 |
15.42 | 21.44 | 20.35 | |
15.56 | 54.26 | 30.83 | |
66.68 | 62.52 | 35.13 | |
66.94 | 63.72 | 51.76 | |
67.73 | 64.98 | 54.20 | |
Cell growth decrease (%) | 20.60 | 12.14 | 20.92 |
25.00 | 62.86 | 30.39 | |
25.60 | 91.54 | 58.89 | |
93.16 | 92.67 | 75.73 | |
93.53 | 92.93 | 85.13 | |
93.80 | 93.35 | 86.73 |
Region (2016–2022) | Average Temperature (°C) | Total Precipitation (mm) | Relative Humidity (%) | Total Sunshine (h) |
---|---|---|---|---|
Yeongcheon | 13.51 * | 1011.66 | 64.13 | 2318.27 |
Chungju | 12.23 | 1201.54 | 67.03 | 2274.07 |
Suncheon | 13.16 | 1401.80 | 72.64 | 2216.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Bellere, A.D.; Oh, S.; Yu, D.; Fang, M.; Yi, T.-H. Antibiofilm Effect of Siegesbeckia pubescens against S. mutans According to Environmental Factors. Appl. Sci. 2023, 13, 6179. https://doi.org/10.3390/app13106179
Zheng S, Bellere AD, Oh S, Yu D, Fang M, Yi T-H. Antibiofilm Effect of Siegesbeckia pubescens against S. mutans According to Environmental Factors. Applied Sciences. 2023; 13(10):6179. https://doi.org/10.3390/app13106179
Chicago/Turabian StyleZheng, Shengdao, Arce Defeo Bellere, Sarang Oh, Duna Yu, Minzhe Fang, and Tae-Hoo Yi. 2023. "Antibiofilm Effect of Siegesbeckia pubescens against S. mutans According to Environmental Factors" Applied Sciences 13, no. 10: 6179. https://doi.org/10.3390/app13106179
APA StyleZheng, S., Bellere, A. D., Oh, S., Yu, D., Fang, M., & Yi, T. -H. (2023). Antibiofilm Effect of Siegesbeckia pubescens against S. mutans According to Environmental Factors. Applied Sciences, 13(10), 6179. https://doi.org/10.3390/app13106179