Dynamic Transaction Confirmation Sharding Protocol for Alliance Chain
Abstract
:1. Introduction
2. Related Concepts
2.1. Alliance Chain
2.2. Practical Byzantine Fault Tolerance
2.3. Sharding Protocol
3. Dynamic Transaction Confirmation Sharding Protocol
3.1. Network Infrastructure
Algorithm 1 Node assignment and selection |
|
3.2. Transaction Consensus and Review Mechanism
Algorithm 2 Transaction consensus |
|
3.3. Reputation Model
3.4. Adjustment of Transaction Confirmation Threshold
4. Correctness Argument
4.1. Performance Analysis
4.2. Stability and Safety
5. Experimental Design
5.1. Experiment and Configuration
5.2. Experimental Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Qiao, L.; Lv, Z. An optimized byzantine fault tolerance algorithm for consortium blockchain. Peer -Peer Netw. Appl. 2021, 14, 2826–2839. [Google Scholar] [CrossRef]
- Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.L. Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–17 May 2017; pp. 1085–1100. [Google Scholar]
- Li, C.; Zhang, J.; Yang, X.; Youlong, L. Lightweight blockchain consensus mechanism and storage optimization for resource-constrained IoT devices. Inf. Process. Manag. 2021, 58, 102602. [Google Scholar] [CrossRef]
- Du, Z.; Qian, H.f.; Pang, X. Partitionchain: A scalable and reliable data storage strategy for permissioned blockchain. IEEE Trans. Knowl. Data Eng. 2021, 35, 4124–4136. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, Z.; Jin, C.; Zhou, A. BFT-Store: Storage partition for permissioned blockchain via erasure coding. In Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1926–1929. [Google Scholar]
- Antwi, R.; Gadze, J.D.; Tchao, E.T.; Sikora, A.; Nunoo-Mensah, H.; Agbemenu, A.S.; Obour Agyekum, K.O.B.; Agyemang, J.O.; Welte, D.; Keelson, E. A survey on network optimization techniques for blockchain systems. Algorithms 2022, 15, 193. [Google Scholar] [CrossRef]
- Amiri, M.J.; Agrawal, D.; El Abbadi, A. Sharper: Sharding permissioned blockchains over network clusters. In Proceedings of the 2021 International Conference on Management of Data, Xi’an, China, 20–25 June 2021; pp. 76–88. [Google Scholar]
- Kim, S.; Kwon, Y.; Cho, S. A survey of scalability solutions on blockchain. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 1204–1207. [Google Scholar]
- Xu, C.; Zhang, C.; Xu, J.; Pei, J. Slimchain: Scaling blockchain transactions through off-chain storage and parallel processing. Proc. Vldb Endow. 2021, 14, 2314–2326. [Google Scholar] [CrossRef]
- Decker, C.; Wattenhofer, R. A fast and scalable payment network with bitcoin duplex micropayment channels. In Proceedings of the Stabilization, Safety, and Security of Distributed Systems: 17th International Symposium, SSS 2015, Edmonton, AB, Canada, 18–21 August 2015; Proceedings 17; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–18. [Google Scholar]
- Khalil, R.; Gervais, A. Revive: Rebalancing off-blockchain payment networks. In Proceedings of the 2017 Acm Sigsac Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 439–453. [Google Scholar]
- Yang, D.; Long, C.; Xu, H.; Peng, S. A review on scalability of blockchain. In Proceedings of the 2020 the 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; pp. 1–6. [Google Scholar]
- Pawar, M.K.; Patil, P.; Hiremath, P. A study on blockchain scalability. In Proceedings of the ICT Systems and Sustainability: Proceedings of ICT4SD 2020; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 307–316. [Google Scholar]
- Cai, T.; Chen, W.; Psannis, K.E.; Goudos, S.K.; Yu, Y.; Zheng, Z.; Wan, S. Scalable On-Chain and Off-Chain Blockchain for Sharing Economy in Large-Scale Wireless Networks. IEEE Wirel. Commun. 2022, 29, 32–38. [Google Scholar] [CrossRef]
- Garzik, J. Block size increase to 2MB. Bitcoin Improv. Propos. 2015, 102, 28. [Google Scholar]
- Du, M.; Chen, Q.; Ma, X. MBFT: A new consensus algorithm for consortium blockchain. IEEE Access 2020, 8, 87665–87675. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, G.; Saha, R.; Conti, M.; Alazab, M.; Thomas, R. A survey and taxonomy of consensus protocols for blockchains. J. Syst. Archit. 2022, 127, 102503. [Google Scholar] [CrossRef]
- Milutinovic, M.; He, W.; Wu, H.; Kanwal, M. Proof of luck: An efficient blockchain consensus protocol. In Proceedings of the 1st Workshop on System Software for Trusted Execution, Trento, Italy, 12–16 December 2016; pp. 1–6. [Google Scholar]
- Ismail, L.; Materwala, H. A review of blockchain architecture and consensus protocols: Use cases, challenges, and solutions. Symmetry 2019, 11, 1198. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.; Salles, M.A.V.; Zhang, Z.; Li, T.; Hu, B.; Henglein, F.; Lu, R. Building blocks of sharding blockchain systems: Concepts, approaches, and open problems. Comput. Sci. Rev. 2022, 46, 100513. [Google Scholar] [CrossRef]
- Yu, G.; Wang, X.; Yu, K.; Ni, W.; Zhang, J.A.; Liu, R.P. Survey: Sharding in blockchains. IEEE Access 2020, 8, 14155–14181. [Google Scholar] [CrossRef]
- Luu, L.; Narayanan, V.; Zheng, C.; Baweja, K.; Gilbert, S.; Saxena, P. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 17–30. [Google Scholar]
- Al-Bassam, M.; Sonnino, A.; Bano, S.; Hrycyszyn, D.; Danezis, G. Chainspace: A sharded smart contracts platform. arXiv 2017, arXiv:1708.03778. [Google Scholar]
- Hong, Z.; Guo, S.; Li, P.; Chen, W. Pyramid: A layered sharding blockchain system. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [Google Scholar]
- Huang, H.; Peng, X.; Zhan, J.; Zhang, S.; Lin, Y.; Zheng, Z.; Guo, S. BrokerChain: A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, UK, 2–5 May 2022. [Google Scholar]
- Hellings, J.; Sadoghi, M. Byshard: Sharding in a byzantine environment. Proc. VLDB Endow. 2021, 14, 2230–2243. [Google Scholar] [CrossRef]
- Secure, A. The Zilliqa Project: A Secure, Scalable Blockchain Platform; Zilliqa: Singapore, 2018. [Google Scholar]
- Chen, H.; Wang, Y. Sschain: A full sharding protocol for public blockchain without data migration overhead. Pervasive Mob. Comput. 2019, 59, 101055. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H. Monoxide: Scale out blockchains with asynchronous consensus zones. In Proceedings of the 16th USENIX Symposium on Networked SYSTEMS design and Implementation (NSDI 19), Boston, MA, USA, 27–28 February 2019; pp. 95–112. [Google Scholar]
- Croman, K.; Decker, C.; Eyal, I.; Gencer, A.E.; Juels, A.; Kosba, A.; Miller, A.; Saxena, P.; Shi, E.; Gün Sirer, E.; et al. On scaling decentralized blockchains. In Proceedings of the International Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 22–26 February 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 106–125. [Google Scholar]
- Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. Sok: Sharding on blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, Zurich, Switzerland, 21–23 October 2019; pp. 41–61. [Google Scholar]
- Mao, C.; Golab, W. Sharding techniques in the era of blockchain. In Proceedings of the 2021 40th International Symposium on Reliable Distributed Systems (SRDS), Chicago, IL, USA, 20–23 September 2021; pp. 343–344. [Google Scholar]
- Qi, X. S-Store: A Scalable Data Store towards Permissioned Blockchain Sharding. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, UK, 2–5 May 2022; pp. 1978–1987. [Google Scholar]
- Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. Omniledger: A secure, scale-out, decentralized ledger via sharding. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 583–598. [Google Scholar]
- Zamani, M.; Movahedi, M.; Raykova, M. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 931–948. [Google Scholar]
- Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.C.; Lin, Q.; Ooi, B.C. Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 123–140. [Google Scholar]
- Asgaonkar, A. Scaling Blockchains and the Case for Ethereum. In Handbook on Blockchain; Springer: Berlin/Heidelberg, Germany, 2022; pp. 197–213. [Google Scholar]
- Hashim, F.; Shuaib, K.; Zaki, N. Sharding for Scalable Blockchain Networks. SN Comput. Sci. 2023, 4, 1–17. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Li, D.; Yu, H.; Wu, Q. Fleetchain: A secure scalable and responsive blockchain achieving optimal sharding. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, New York, NY, USA, 2–4 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 409–425. [Google Scholar]
- Li, X.; Lv, F.; Xiang, F.; Sun, Z.; Sun, Z. Research on key technologies of logistics information traceability model based on consortium chain. IEEE Access 2020, 8, 69754–69762. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Wong, C.W.; Lai, K.H. Relational stability and alliance performance in supply chain. Omega 2008, 36, 600–608. [Google Scholar] [CrossRef]
- Stuart, T.E.; Ozdemir, S.Z.; Ding, W.W. Vertical alliance networks: The case of university–biotechnology–pharmaceutical alliance chains. Res. Policy 2007, 36, 477–498. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, H.; Zhan, S.X.; Qiu, W.W.; Li, Q.L. Research on high-performance consortium blockchain technology. J. Softw. 2019, 30, 1577–1593. [Google Scholar]
- Chen, Y.; Li, M.; Zhu, X.; Fang, K.; Ren, Q.; Guo, T.; Chen, X.; Li, C.; Zou, Z.; Deng, Y. An improved algorithm for practical byzantine fault tolerance to large-scale consortium chain. Inf. Process. Manag. 2022, 59, 102884. [Google Scholar] [CrossRef]
- Wang, F.; Ji, Y.; Liu, M.; Li, Y.; Li, X.; Zhang, X.; Shi, X. An optimization strategy for PBFT consensus mechanism based on consortium blockchain. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure, Hong Kong, China, 7–11 June 2021; pp. 71–76. [Google Scholar]
- Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455. [Google Scholar] [CrossRef]
- Fitzi, M.; Gaži, P.; Kiayias, A.; Russell, A. Proof-of-stake blockchain protocols with near-optimal throughput. Cryptology ePrint Archive. 2020. Available online: https://eprint.iacr.org/2020/037 (accessed on 15 January 2020).
Software and Hardware Environment | Configure |
---|---|
CPU | 2.40 GHz Intel Core i5-9300H |
RAM | 16 GB 2667 MHz DDR4 |
System | Windows 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; Li, J.; Zhang, Y. Dynamic Transaction Confirmation Sharding Protocol for Alliance Chain. Appl. Sci. 2023, 13, 6911. https://doi.org/10.3390/app13126911
Sun N, Li J, Zhang Y. Dynamic Transaction Confirmation Sharding Protocol for Alliance Chain. Applied Sciences. 2023; 13(12):6911. https://doi.org/10.3390/app13126911
Chicago/Turabian StyleSun, Nigang, Junlong Li, and Yuanyi Zhang. 2023. "Dynamic Transaction Confirmation Sharding Protocol for Alliance Chain" Applied Sciences 13, no. 12: 6911. https://doi.org/10.3390/app13126911
APA StyleSun, N., Li, J., & Zhang, Y. (2023). Dynamic Transaction Confirmation Sharding Protocol for Alliance Chain. Applied Sciences, 13(12), 6911. https://doi.org/10.3390/app13126911