Application of Shape Memory Alloy Actuators to Vibration and Motion Control of Structural Systems: A Review
Abstract
:1. Introduction
2. Application to Flexible Structures
2.1. Structural Vibration Control
2.2. Other Structural Applications
3. Aerospace Engineering Applications
3.1. Aplication to Wing Morphing
3.2. Other Applications to Aerospace
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ölander, A. An electrochemical investigation of solid cadmium-gold alloys. Am. Chem. Soc. 1932, 54, 3819–3833. [Google Scholar] [CrossRef]
- Buehler, W.J.; Gilfrich, J.V.; Wiley, R.C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Appl. Phys. 1963, 34, 1475–1477. [Google Scholar] [CrossRef]
- Kauffman, G.; Mayo, I. The story of Nitinol: The serendipitous discovery of the memory metal and its applications. Chem. Educator 1997, 2, 1–21. [Google Scholar] [CrossRef]
- Jani, F.M.; Leary, M.; Subic, A. Designing Shape Memory Alloy Linear Actuators: A Review. J. Intell. Mater. Syst. 2017, 28, 1699–1718. [Google Scholar] [CrossRef]
- Yuan, H.; Fauroux, J.-C.; Chapelle, F.; Balandraud, X. A Review of Rotary Actuators based on Shape Memory Alloys. J. Intell. Mater. Syst. 2017, 28, 1863–1885. [Google Scholar] [CrossRef]
- Hu, K.; Rabenorosoa, K.; Ouisse, M. A Review of SMA-Based Actuators for Bidirectional Rotational Motion: Application to Origami Robots. Front. Robot. AI 2021, 8, 678486. [Google Scholar] [CrossRef]
- Dana, A.; Vollach, S.; Shillo, D. Use the Force: Review of High-Rate Actuation of Shape Memory Alloys. Actuators 2021, 10, 140. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Zhang, J.; Wu, H.; Ji, Y.; Kumar, D.D. Iron-Based Shape Memory Alloys in Construction: Research, Applications and Opportunities. Materials 2022, 15, 1723. [Google Scholar] [CrossRef]
- Ruth, D.J.S.; Sohn, J.W.; Dhanalakshmi, K.; Choi, S.-B. Control Aspects of Shape Memory Alloys in Robotics Applications: A Review over the Last Decade. Sensors 2022, 22, 4860. [Google Scholar] [CrossRef]
- Suman, A.; Fabbri, E.; Fortini, A.; Merlin, M.; Pinelli, M. On the Design Strategies for SMA-Based Morphing Actuators: State of the Art and Common Practices Applied to a Fascinating Case Study. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 2114–2130. [Google Scholar] [CrossRef]
- Baz, A.; Imam, K.; McCoy, J. Active Vibration Control of Flexible Beams Using Shape Memory Alloy Actuators. J. Sound Vib. 1990, 140, 437–456. [Google Scholar] [CrossRef]
- Choi, S.B.; Cheong, C.C. Vibration Control of a Flexible Beam Using Shape Memory Alloy Actuators. J. Guid. Control Dyn. 1996, 19, 1178–1180. [Google Scholar] [CrossRef]
- Choi, S.B.; Hwang, J.H. Structural Vibration Control Using Shape Memory Actuators. J. Sound Vib. 2000, 231, 1168–1174. [Google Scholar] [CrossRef]
- Sohn, J.W.; Han, Y.M.; Choi, S.B.; Lee, Y.S.; Han, M.S. Vibration and Position Tracking Control of a Flexible Beam Using SMA Wire Actuators. J. Vib. Control 2009, 15, 263–281. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kagawa, Y. Active Vibration Control of a Flexible Cantilever Beam Using Shape Memory Alloy Actuators. Smart Mater. Struct. 2010, 19, 085014. [Google Scholar] [CrossRef]
- Dhanalakshmi, K.; Avinash, A.; Umpathy, M.; Marimuthu, M. Experimental Study on Vibration Control of Shape Memory Alloy Actuated Flexible Beam. J. Smart Sens. Intell. Syst. 2010, 3, 156–175. [Google Scholar] [CrossRef] [Green Version]
- Wierschem, N.; Andrawes, B. Superelastic SMA-FRP Composite Reinforcement for Concrete Structures. Smart Mater. Struct. 2010, 19, 025011. [Google Scholar] [CrossRef]
- Hadi, A.; Yousefi-Koma, A.; Elahinia, M.; Moghaddam, M.M.; Ghazavi, A. A Shape Memory Alloy Spring-Based Actuator with Stiffness and Position Controllability. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 2011, 225, 902–917. [Google Scholar] [CrossRef]
- Scirè Mammano, G.; Dragoni, E. Increasing Stroke and Output Force of Linear Shape Memory Actuators by Elastic Compensation. Mechatronics 2011, 21, 570–580. [Google Scholar] [CrossRef]
- Saito, S.; Deng, M.; Minami, M.; Jiang, C.; Yanou, A. Operator-Based Vibration Control System Design of a Flexible Arm Using an SMA Actuator with Hysteresis. SICE J. Control Meas. Syst. Integr. 2012, 5, 115–123. [Google Scholar] [CrossRef]
- Damanpack, A.R.; Bodaghi, M.; Aghdam, M.M.; Shakeri, M. On the Vibration Control Capability of Shape Memory Alloy Composite Beams. Compos. Struct. 2014, 110, 325–334. [Google Scholar] [CrossRef]
- Holanda, S.A.; Silva, A.A.; de Araújo, C.J.; de Aquino, A.S. Study of the Complex Stiffness of a Vibratory Mechanical System with Shape Memory Alloy Coil Spring Actuator. Shock Vib. 2014, 2014, 162781. [Google Scholar] [CrossRef] [Green Version]
- Zakerzadeh, M.R.; Sayyaadi, H. Precise Position Control of Shape Memory Alloy Actuator Using Inverse Hysteresis Model and Model Reference Adaptive Control System. Mechatronics 2013, 23, 1150–1162. [Google Scholar] [CrossRef]
- Chenal, T.P.; Case, J.C.; Paik, J.; Kramer, R.K. Variable Stiffness Fabrics with Embedded Shape Memory Materials for Wearable Applications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2827–2831. [Google Scholar] [CrossRef]
- Kim, W.; Argento, A.; Mohanty, P.S. Damping Characteristics of a Spray-Deposited Shape Memory Alloy Beam. J. Sound Vib. 2014, 333, 3356–3366. [Google Scholar] [CrossRef]
- Wang, J.; Mak, C.M. Adaptive-Passive Vibration Isolation between Nonrigid Machines and Nonrigid Foundations Using a Dual-beam Periodic Structure with Shape Memory Alloy Transverse Connection. J. Sound Vib. 2014, 333, 6005–6023. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Zhang, D.; Scarpa, F.; Liu, B.; Hong, J. Tuning the Vibration of a Rotor with Shape Memory Alloy Metal Rubber Supports. J. Sound Vib. 2015, 351, 1–16. [Google Scholar] [CrossRef]
- Suzuki, Y. SMA Actuators for Vibration Control and Experimental Determination of Model Parameters Dependent on Ambient Airflow Velocity. Smart Mater. Struct. 2016, 25, 055026. [Google Scholar] [CrossRef]
- Mekaouche, A.; Chapelle, F.; Balandraud, X. Using Shape Memory Alloys to Obtain Variable Compliance Maps of a Flexible Structure: Concept and Modeling. Meccanica 2016, 51, 1287–1299. [Google Scholar] [CrossRef]
- Santos, F.A.; Cismaşiu, C. Adaptive Underslung Beam Using Shape-Memory Alloys for Frequency-Tuning. J. Intell. Mater. Syst. 2017, 28, 1260–1271. [Google Scholar] [CrossRef]
- Shen, C.; Su, W.; Sun, G.; Zhou, B.; Sun, T.; Liu, Y. Preliminary Study of Vibration Characteristics of Intelligent Beam with the Influence of SMA’s Restoring Force. MATEC Web Conf. 2018, 238, 05007. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, V.C.; Silva, T.M.P.; Junior, C.D.M. Aeroelastic Flutter Enhancement by Exploiting the Combined Use of Shape Memory Alloys and Nonlinear Piezoelectric Circuits. J. Sound Vib. 2017, 407, 46–62. [Google Scholar] [CrossRef]
- Alipour, A.; Kadkhodaei, M.; Safaei, M. Design, Analysis, and Manufacture of a Tension–Compression Self-Centering Damper based on Energy Dissipation of Pre-Stretched Superelastic Shape Memory Alloy Wires. J. Intell. Mater. Syst. 2017, 28, 2129–2139. [Google Scholar] [CrossRef]
- Santos, F.A.D.; Nunes, J. Toward an Adaptive Vibration Absorber Using Shape-Memory Alloys, for Civil Engineering Applications. J. Intell. Mater. Syst. 2018, 29, 729–740. [Google Scholar] [CrossRef]
- Vishal, P.; Kaliperumal, D.; Padhi, R. Active Vibration Suppression of Nonlinear Cantilever Beam Using Shape Memory Alloy Actuators. IFAC-PapersOnLine 2018, 51, 130–135. [Google Scholar] [CrossRef]
- Lin, C.J.; Lee, C.Y.; Chen, C.K.; Li, Y.S. Interval Type-2 Fuzzy Vibration Control of Multiple-Degree-of-Freedom Structure Using Shape-Memory-Material Absorber. Sens. Mater. 2018, 30, 2455–2467. [Google Scholar] [CrossRef]
- Das, S.; Sajeer, M.M.; Chakraborty, A. Vibration Control of Horizontal Axis Offshore Wind Turbine Blade Using SMA Stiffener. Smart Mater. Struct. 2019, 28, 095025. [Google Scholar] [CrossRef]
- Joseph, F.O.M.; Podder, T. Sliding Mode control of a shape memory alloy actuated active flexible needle. Robotica 2018, 36, 1188–1205. [Google Scholar] [CrossRef]
- Garafolo, N.G.; McHugh, G.R. Mitigation of Flutter Vibration Using Embedded Shape Memory Alloys. J. Fluids Struct. 2018, 76, 592–605. [Google Scholar] [CrossRef]
- Zhang, K.; Cui, S.T.; Chen, Y.C.; Tang, Z.P. Hydraulic Shape Memory Alloy Shock Absorber: Design, Analysis, and Experiments. J. Intell. Mater. Syst. 2018, 29, 1986–1994. [Google Scholar] [CrossRef]
- Alves, M.T.S.; Steffen, V., Jr.; Castro dos Santos, M.; Savi, M.A.; Enemark, S.; Santos, I.F. Vibration Control of a Flexible Rotor Suspended by Shape Memory Alloy Wires. J. Intell. Mater. Syst. 2018, 29, 2309–2323. [Google Scholar] [CrossRef] [Green Version]
- Ameduri, S.; Brindisi, A.; Ciminello, M.; Concilio, A.; Quaranta, V.; Brandizzi, M. Car Soundproof Improvement through an SMA Adaptive System. Actuators 2018, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.; Minglei, G. Traverse Vibration of Axially Moving Laminated SMA Beam Considering Random Perturbation. Shock Vib. 2019, 2019, 6341289. [Google Scholar] [CrossRef]
- Ghasemi, M.R.; Shabakhty, N.; Enferadi, M.H. Optimized SMA Dampers in Vibration Control of Jacket-Type Offshore Structures (Regular Waves). Int. J. Coast. Offshore Eng. 2019, 2, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Jiang, J.; Liu, M.; Feng, Q.; Zhang, P.; Ho, S.C.M. Implementation of Shape Memory Alloy Sponge as Energy Dissipating Material on Pounding Tuned Mass Damper: An Experimental Investigation. Appl. Sci. 2019, 9, 1079. [Google Scholar] [CrossRef] [Green Version]
- Utter, B. Enhancing the Actuation Frequency of Shape Memory Alloy Wire by Vibration-Enhanced Cooling. J. Intell. Mater. Syst. 2019, 30, 3177–3189. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Liu, Z. Theoretical Analysis on the Adaptive Vibration Attenuation of a Fixed-Fixed Beam Realized by a Piezo-Shape Memory Alloy Ferrule. J. Intell. Mater. Syst. 2019, 30, 2079–2090. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.M.; Youn, J.R.; Song, Y.S. Smart Noise Control Using Shape Memory Sound Absorber. Adv. Mater. Technol. 2019, 4, 1800410. [Google Scholar] [CrossRef]
- Liu, A.R.; Liu, C.H.; Fu, J.Y.; Pi, Y.L.; Huang, Y.H.; Zhang, J.P. A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables. Int. J. Struct. Stab. Dyn. 2017, 17, 1750076. [Google Scholar] [CrossRef]
- Ali, A.; Conte, A.L.; Biffi, C.A.; Tuissi, A. Cohesive Surface Model for Delamination and Dynamic Behavior of Hybrid Composite with SMA-GFRP Interface. Int. J. Lightweight Mater. Manuf. 2019, 2, 146–155. [Google Scholar] [CrossRef]
- Keshtkar, N.; Keshtkar, S.; Poznyak, A. Deflection Sliding Mode Control of a Flexible Bar Using a Shape Memory Alloy Actuator with an Uncertainty Model. Appl. Sci. 2020, 10, 471. [Google Scholar] [CrossRef] [Green Version]
- Gol Zardian, M.; Moslemi, N.; Mozafari, F.; Gohari, S.; Yahya, M.Y.; Burvill, C.; Ayob, A. Flexural and Free Vibration Control of Smart Epoxy Composite Beams Using Shape Memory Alloy Wires Actuator. J. Intell. Mater. Syst. 2020, 31, 1557–1566. [Google Scholar] [CrossRef]
- Alambeigi, K.; Mohammadimehr, M.; Bamdad, M.; Rabczuk, T. Free and Forced Vibration Analysis of a Sandwich Beam Considering Porous Core and SMA Hybrid Composite Face Layers on Vlasov’s Foundation. Acta Mech. 2020, 231, 3199–3218. [Google Scholar] [CrossRef]
- Cao, S.; Ozbulut, O.E.; Wu, S.; Sun, Z.; Deng, J. Multi-Level SMA/Lead Rubber Bearing Isolation System for Seismic Protection of Bridges. Smart Mater. Struct. 2020, 29, 055045. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, J.; Han, Q.; Hao, G. Hysteretic Behavior of a Shape Memory Alloy-Friction Damper and Seismic Performance Assessment of Cable Supported Structures and Reticulated Shells. Smart Mater. Struct. 2020, 29, 115003. [Google Scholar] [CrossRef]
- Patterson, R.; Scholten, W.; Strganac, T.; Turner, T.; Hartl, D. Experimental Validation of a Shape-Memory Alloy Slat-Cove Filler: Structural Response and Computational Model Development. J. Intell. Mater. Syst. 2020, 31, 1986–2001. [Google Scholar] [CrossRef]
- Vignoli, L.L.; Savi, M.A.; El-Borgi, S. Nonlinear Dynamics of Earthquake-Resistant Structures Using Shape Memory Alloy Composites. J. Intell. Mater. Syst. 2020, 31, 771–787. [Google Scholar] [CrossRef]
- Mao, J.; Jia, D.; Yang, Z.; Xiang, N. Seismic Performance of Concrete Bridge Piers Reinforced with Hybrid Shape Memory Alloy (SMA) and Steel Bars. J. Earthq. Tsunami 2020, 14, 2050001. [Google Scholar] [CrossRef]
- Akbari, S.; Sakhaei, A.H.; Panjwani, S.; Kowsari, K.; Ge, Q. Shape Memory Alloy based 3D Printed Composite Actuators with Variable Stiffness and Large Reversible Deformation. Sens. Actuators A Phys. 2021, 321, 112598. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, A.; Barua, I. Optimal Tuning of SMA Inerter for Simultaneous Wind Induced Vibration Control of High-Rise Building and Energy Harvesting. Smart Mater. Struct. 2021, 30, 025027. [Google Scholar] [CrossRef]
- Srivastava, R.; Bhattacharya, B. De-Coupling the Eigenmodes of SMA-Reinforced Bimorph Composites Using Multi-Objective Optimization. J. Vib. Eng. Technol. 2022, 10, 2151–2161. [Google Scholar] [CrossRef]
- Janzen, F.C.; Tusset, A.M.; Piccirillo, V.; Balthazar, J.M.; Brasil, R.M.L.R.F. Motion and Vibration Control of a Slewing Flexible Structure by SMA Actuators and Parameter Sensitivity Analysis. Eur. Phys. J. Spec. Top. 2015, 224, 3041–3054. [Google Scholar] [CrossRef]
- Quintanar-Guzmán, S.; Kannan, S.; Aguilera-González, A.; Olivares-Mendez, M.A.; Voos, H. Operational Space Control of a Lightweight Robotic Arm Actuated by Shape Memory Alloy Wires: A Comparative Study. J. Intell. Mater. Syst. 2019, 30, 1368–1384. [Google Scholar] [CrossRef] [Green Version]
- Matsumori, H.; Deng, M.C.; Noge, Y. An Operator-Based Nonlinear Vibration Control System Using a Flexible Arm with Shape Memory Alloy. Int. J. Autom. Comput. 2020, 17, 139–150. [Google Scholar] [CrossRef]
- Li, H.; Guo, D.; Tzou, H. Responses of Rings with Light-Activated Shape Memory Polymers Regulated by Neural Network and Phase Shift. J. Intell. Mater. Syst. 2017, 28, 3079–3090. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Wang, H.; Chen, G.; Liu, S.; Yue, H. Experiments on Active Stiffness Control of a Thin-Walled Cylindrical Shell with Novel SMA Driven Screw-Type Actuators. Thin-Walled Struct. 2021, 159, 107334. [Google Scholar] [CrossRef]
- Tai, N.T.; Ahn, K.K. Output Feedback Direct Adaptive Controller for a SMA Actuator with a Kalman Filter. IEEE Trans. Control Syst. Technol. 2012, 20, 1081–1091. [Google Scholar] [CrossRef]
- Ayvali, E.; Desai, J.P. Pulse Width Modulation–Based Temperature Tracking for Feedback Control of a Shape Memory Alloy Actuator. J. Intell. Mater. Syst. 2014, 25, 720–730. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Pan, Y.; Wee, L.B.; Yu, H. Design and Control of a Novel Compliant Differential Shape Memory Alloy Actuator. Sens. Actuators A Phys. 2015, 225, 71–80. [Google Scholar] [CrossRef]
- Faroughi, S. Adaptive Tunable Vibration Absorber Using Shape Memory Alloy. Mech. Adv. Compos. Struct. 2015, 2, 55–60. [Google Scholar] [CrossRef]
- Nalini, D.; Ruth, D.J.S.; Dhanalakshmi, K. Design of a Variable Stiffness Actuator Using Shape Memory Alloy Wire. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Gurley, A.; Kubik, K.; Lambert, T.R.; Beale, D.; Broughton, R. Bowden Tube NiTi Actuators with Linear Parameter Varying Model and Sliding Mode Control. In Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, USA, 18–20 September 2017; Volume 58264, p. V002T03A038. [Google Scholar] [CrossRef]
- Berardengo, M.; Della Porta, G.E.; Manzoni, S.; Vanali, M. A Multi-Modal Adaptive Tuned Mass Damper based on Shape Memory Alloys. J. Intell. Mater. Syst. 2019, 30, 536–555. [Google Scholar] [CrossRef]
- Braga, M.T.; Alves, M.T.S.; Ap Cavalini, A.; Steffen, V. Influence of Temperature on the Passive Control of a Rotating Machine Using Wires of Shape Memory Alloy in the Suspension. Smart Mater. Struct. 2020, 29, 035040. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Li, C.; Wang, J.; Li, Z.; Mao, K. Sound Radiation of Orthogonal Antisymmetric Composite Laminates Embedded with Pre-Strained SMA Wires in Thermal Environment. Materials 2020, 13, 3657. [Google Scholar] [CrossRef]
- Qian, H.; Li, H.; Song, G.; Guo, W. Recentering Shape Memory Alloy Passive Damper for Structural Vibration Control. Math. Probl. Eng. 2013, 2013, 963530. [Google Scholar] [CrossRef] [Green Version]
- Azimi, M. Design of Structural Vibration Control Using Smart Materials and Devices for Earthquake-Resistant and Resilient Buildings [Order No. 10601004]. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2017. [Google Scholar]
- Cao, S.; Ozbulut, O.E. Long-Stroke Shape Memory Alloy Restrainers for Seismic Protection of Bridges. Smart Mater. Struct. 2020, 29, 115005. [Google Scholar] [CrossRef]
- Tiwari, N.D.; Gogoi, A.; Hazra, B.; Wang, Q. A Shape Memory Alloy-Tuned Mass Damper Inerter System for Passive Control of Linked-SDOF Structural Systems under Seismic Excitation. J. Sound Vib. 2021, 494, 115893. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, S.; Casciati, F.; Chen, K.; Jiang, H. Cyclic Behavior and Deformation Mechanism of Superelastic SMA U-Shaped Dampers under In-Plane and Out-of-Plane Loadings. Smart Mater. Struct. 2021, 30, 055009. [Google Scholar] [CrossRef]
- Hartl, D.J.; Lagoudas, D.C. Aerospace Applications of Shape Memory Alloys. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2007, 221, 535–552. [Google Scholar] [CrossRef]
- Barbarino, S.; Dettmer, W.G.; Friswell, M.I. Morphing Trailing Edges with Shape Memory Alloy Rods. In Proceedings of the 21st International Conference on Adaptive Structures and Technologies (ICAST), University Park, PA, USA, 4–6 October 2010. [Google Scholar]
- Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D. SMA Actuators for Morphing Wings. Phys. Procedia. 2010, 10, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Calkins, F.T.; Mabe, J.H. Shape Memory Alloy based Morphing Aerostructures. J. Mech. Design. 2010, 132, 111012. [Google Scholar] [CrossRef]
- Coutu, D.; Brailovski, V.; Terriault, P. Optimized Design of an Active Extrados Structure for an Experimental Morphing Laminar Wing. Aeros. Sci. Technol. 2010, 14, 451–458. [Google Scholar] [CrossRef]
- Popov, A.V.; Grigorie, T.L.; Botez, R.M.; Mébarki, Y.; Mamou, M. Modeling and Testing of a Morphing Wing in Open-Loop Architecture. J. Aircr. 2010, 47, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Popov, A.V.; Grigorie, L.T.; Botez, R.; Mamou, M.; Mebarki, Y. Closed-Loop Control Validation of a Morphing Wing Using Wind Tunnel Tests. J. Aircr. 2010, 47, 1309–1317. [Google Scholar] [CrossRef]
- Sofla, A.Y.N.; Meguid, S.A.; Tan, K.T.; Yeo, W.K. Shape Morphing of Aircraft Wing: Status and Challenges. Mater. Design. 2010, 31, 1284–1292. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Popov, A.V.; Botez, R.M.; Mamou, M.; Mébarki, Y. On–off and Proportional–Integral Controller for a Morphing Wing. Part 1: Actuation Mechanism and Control Design. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2012, 226, 131–145. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Popov, A.V.; Botez, R.M.; Mamou, M.; Mébarki, Y. On–off and Proportional–Integral Controller for a Morphing Wing. Part 2: Control Validation–Numerical Simulations and Experimental Tests. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2012, 226, 146–162. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Botez, R.M.; Popov, A.V.; Mamou, M.; Mébarki, Y. A Hybrid Fuzzy Logic Proportional-Integral-Derivative and Conventional On-Off Controller for Morphing Wing Actuation Using Shape Memory Alloy Part 1: Morphing System Mechanisms and Controller Architecture Design. Aeronaut. J. 2012, 116, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Grigorie, T.L.; Botez, R.M.; Popov, A.V.; Mamou, M.; Mébarki, Y. A Hybrid Fuzzy Logic Proportional-Integral-Derivative and Conventional On-Off Controller for Morphing Wing Actuation Using Shape Memory Alloy Part 2: Controller Implementation and Validation. Aeronaut. J. 2012, 116, 451–465. [Google Scholar] [CrossRef]
- Kang, W.R.; Kim, E.H.; Jeong, M.S.; Lee, I.; Ahn, S.M. Morphing Wing Mechanism Using an SMA Wire Actuator. Int. J. Aeronaut. Space Sci. 2012, 13, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, M. Analysis of SMA Actuated Plain Flap Wing. J. Eng. Sci. Technol. Rev. 2012, 5, 39–43. [Google Scholar] [CrossRef]
- Song, G.; Ma, N. Shape Memory Alloy Actuated Adaptive Exhaust Nozzle for Jet Engine. U.S. Patents 8245516, 21 August 2012. [Google Scholar]
- Bil, C.; Massey, K.; Abdullah, E.J. Wing Morphing Control with Shape Memory Alloy Actuators. J. Intell. Mater. Syst. 2013, 24, 879–898. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Z.; Zhu, Q. Structural Design of Morphing Trailing Edge Actuated by SMA. Front. Mech. Eng. 2013, 8, 268–275. [Google Scholar] [CrossRef]
- Barbarino, S.; Flores, E.S.; Ajaj, R.M.; Dayyani, I.; Friswell, M.I. A Review on Shape Memory Alloys with Applications to Morphing Aircraft. Smart Mater. Struct. 2014, 23, 063001. [Google Scholar] [CrossRef]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Design. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Karagiannis, D.; Stamatelos, D.; Spathopoulos, T.; Solomou, A.; Machairas, T.; Chrysohoidis, N.; Saravanos, D.; Kappatos, V. Airfoil Morphing based on SMA Actuation Technology. Aircr. Eng. Aerosp. Technol. 2014, 86, 295–306. [Google Scholar] [CrossRef]
- Ko, S.H.; Bae, J.S.; Rho, J.H. Development of a Morphing Flap Using Shape Memory Alloy Actuators: The Aerodynamic Characteristics of a Morphing Flap. Smart Mater. Struct. 2014, 23, 074015. [Google Scholar] [CrossRef]
- Rodrigue, H.; Bhandari, B.; Han, M.W.; Ahn, S.H. A Shape Memory Alloy–Based Soft Morphing Actuator Capable of Pure Twisting Motion. J. Intell. Mater. Syst. 2015, 26, 1071–1078. [Google Scholar] [CrossRef]
- Han, M.W.; Rodrigue, H.; Kim, H.I.; Song, S.H.; Ahn, S.H. Shape Memory Alloy/Glass Fiber Woven Composite for Soft Morphing Winglets of Unmanned Aerial Vehicles. Compos. Struct. 2016, 140, 202–212. [Google Scholar] [CrossRef]
- Sun, J.; Guan, Q.; Liu, Y.; Leng, J. Morphing Aircraft based on Smart Materials and Structures: A State-Of-the-Art Review. J. Intell. Mater. Syst. 2016, 27, 2289–2312. [Google Scholar] [CrossRef]
- Bashir, M.; Lee, C.F.; Rajendran, P. Shape Memory Materials and Their Applications in Aircraft Morphing: An Introspective Study. ARPN J. Eng. Appl. Sci. 2017, 12, 5434–5446. [Google Scholar]
- Hattalli, V.L.; Srivatsa, S.R. Wing Morphing to Improve Control Performance of an Aircraft-An Overview and a Case Study. Mater. Today Proc. 2018, 5, 21442–21451. [Google Scholar] [CrossRef]
- Sellitto, A.; Riccio, A. Overview and Future Advanced Engineering Applications for Morphing Surfaces by Shape Memory Alloy Materials. Materials 2019, 12, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanza, G.; Tata, M.E. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamalakannan, G.M.; Singh, G.K.; Ananda, C.M. A Multi-Segment Morphing System for a Micro Air Vehicle Using Shape Memory Alloy Actuators. Def. Sci. J. 2020, 70, 3–9. [Google Scholar] [CrossRef]
- Kim, N.G.; Han, M.W.; Iakovleva, A.; Park, H.B.; Chu, W.S.; Ahn, S.H. Hybrid Composite Actuator with Shape Retention Capability for Morphing Flap of Unmanned Aerial Vehicle (UAV). Compos. Struct. 2020, 243, 112227. [Google Scholar] [CrossRef]
- Mukherjee, A.; Ali, S.F.; Arockiarajan, A. Modeling of Integrated Shape Memory Alloy and Macro-Fiber Composite Actuated Trailing Edge. Smart Mater. Struct. 2020, 29, 085005. [Google Scholar] [CrossRef]
- Simiriotis, N.; Fragiadakis, M.; Rouchon, J.F.; Braza, M. Shape Control and Design of Aeronautical Configurations Using Shape Memory Alloy Actuators. Comput. Struct. 2021, 244, 106434. [Google Scholar] [CrossRef]
- Hartl, D.J.; Lagoudas, D.C.; Calkins, F.T.; Mabe, J.H. Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: I. Thermomechanical Characterization. Smart Mater. Struct. 2010, 19, 015020. [Google Scholar] [CrossRef]
- Hartl, D.J.; Mooney, J.T.; Lagoudas, D.C.; Calkins, F.T.; Mabe, J.H. Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: II. Experimentally Validated Numerical Analysis. Smart Mater. Struct. 2010, 19, 015021. [Google Scholar] [CrossRef]
- Muhammad, A.; Nguyen, Q.V.; Park, H.C.; Hwang, D.Y.; Byun, D.; Goo, N.S. Improvement of Artificial Foldable Wing Models by Mimicking the Unfolding/Folding Mechanism of a Beetle Hind Wing. J. Bionic Eng. 2010, 7, 134–141. [Google Scholar] [CrossRef]
- Youn, S.H.; Jang, Y.S.; Han, J.H. Compressed Mesh Washer Isolators Using the Pseudoelasticity of SMA for Pyroshock Attenuation. J. Intell. Mater. Syst. 2010, 21, 407–421. [Google Scholar] [CrossRef]
- Kwon, S.C.; Jeon, S.H.; Oh, H.U. Performance Evaluation of Spaceborne Cryocooler Micro-Vibration Isolation System Employing Pseudoelastic SMA Mesh Washer. Cryogenics 2015, 67, 19–27. [Google Scholar] [CrossRef]
- Glücksberg, A.; Soul, H.; Yawny, A. Releasing Systems for Aerospace Industry based upon Shape Memory Alloys: Characterization of Materials for Actuators. Matéria 2018, 23, e-11991. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E. Design and Characterization of a Small-Scale Solar Sail Deployed by NiTi Shape Memory Actuators. Procedia Struct. Integr. 2016, 2, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Costanza, G.; Leoncini, G.; Quadrini, F.; Tata, M.E. Design and Characterization of a Small-Scale Solar Sail Prototype by Integrating NiTi SMA and Carbon Fibre Composite. Adv. Mater. Sci. Eng. 2017, 2017, 8467971. [Google Scholar] [CrossRef] [Green Version]
- Costanza, G.; Tata, M.E. A Novel Methodology for Solar Sail Opening Employing Shape Memory Alloy Elements. J. Intell. Mater. Syst. 2018, 29, 1793–1798. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Costanza, G.; Tata, M.E. Shape Memory Activated Self-Deployable Solar Sails: Small-Scale Prototypes Manufacturing and Planarity Analysis by 3D Laser Scanner. Actuators 2019, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Bovesecchi, G.; Corasaniti, S.; Costanza, G.; Tata, M.E. A Novel Self-Deployable Solar Sail System Activated by Shape Memory, Alloys. Aerospace 2019, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, C.; Wang, Y.; Zhou, M. Neural Network-Based Iterative Learning Control for Hysteresis in Magnetic Shape Memory Alloy Actuator. IEEE ASME Trans. Mechatron. 2022, 27, 928–939. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, C.; Cao, W.; Huang, X.; Zhang, X.; Zhou, M. Neural Network Based Iterative Learning Control for Magnetic Shape Memory Alloy Actuator with Iteration-Dependent Uncertainties. Mech. Syst. Signal Process. 2023, 187, 109950. [Google Scholar] [CrossRef]
Reference | Control Type | Controller | Application |
---|---|---|---|
[15] | Robust Control | H∞ controller based on the state space model | vibration control of a flexible beam |
[28] | gain-scheduled H∞ controller | vibration control of a cantilever beam | |
[38] | adaptive sliding mode controller | vibration control of a flexible needle | |
[51] | penalty-based sliding mode control law | vibration control of a flexible bar | |
[63] | adaptive sliding mode controller | vibration control of a two-link arm | |
[62] | Optimal Control | LQR controller | vibration control of a one-link arm |
[16] | PID Control | PI and PID controller | vibration control of a flexible beam |
[23] | hybrid control with PI controller | control of large tip deflection | |
[30] | PID controller | vibration control of an adaptive-passive beam | |
[18] | Others | hybrid control based on variable structure controller | position and stiffness control of a flexible plate |
[20] | operator-based controller with hysteresis compensator | vibration control of a flexible beam | |
[36] | interval type-2 fuzzy controller | vibration control of a planar structure | |
[64] | operator-based controller | vibration control of a flexible arm | |
[65] | phase shift and neural network controller | vibration control of rings | |
[66] | screw-type active controller | natural frequency control of a cylindrical shell | |
[43] | Passive | passive control (stochastic averaging method) | axial vibration control of composite beam |
[47] | passive control (self-regulation of the stiffness) | vibration control of fixed-fixed beam |
Reference | Control Type | Controller | Application |
---|---|---|---|
[72] | Robust Control | sliding mode controller | fast control of a rotary platform |
[67] | Adaptive Control | direct adaptive controller | position control |
[68] | PID Control | PWM-based nonlinear PID controller | control the radius of curvature |
[69] | PI controller | position control using compliant differential | |
[77] | Others | fuzzy logic controller | vibration control of civil structures |
[71] | stiffness and force feedback controller | stiffness control | |
[70] | Passive | passive controller with phase transformation | adaptive absorber for spring-mass system |
[73] | passive controller (multi-modal tuned mass damper) | control of natural frequency | |
[74] | passive controller (thermal control method) | vibration control of rotating machines | |
[75] | passive controller | sound radiation control | |
[76] | passive controller | seismic vibration control of structure | |
[54] | passive controller (multi-level SMA/lead rubber bearing isolation) | earthquake control | |
[79] | passive controller (tuned mass damper inerter) | vibration control of oscillator | |
[80] | passive controller (super-elastic SMA U-shaped damper) | vibration control of civil structures |
Reference | Control Type | Controller | Application |
---|---|---|---|
[86] | PID Control | self-tuning fuzzy controller, PID controller | morphing wing (camber) |
[87] | PID with on–off controller | morphing wing (camber) | |
[89,90] | on–off and PI controller | morphing wing (camber) | |
[91,92] | fuzzy-PID controller | morphing wing (camber) | |
[96] | PID controller, PID with robust compensator, and PID with anti-windup compensator | Morphing wing (camber) | |
[109] | adaptive control (PID + pulse frequency and pulse with variation) | MAV morphing planar wing | |
[82] | Passive | passive control (stress to temperature modeling) | morphing wing (camber) |
[83] | passive control (thermo-mechanical modeling) | morphing wing (camber) | |
[88] | passive control | morphing wing (sweep angle change and span-wise bending) | |
[93] | passive control | morphing wing (camber) | |
[94] | passive control | morphing wing (camber) | |
[97] | passive control | morphing wing (camber) | |
[100] | passive control | morphing wing (camber) | |
[101] | passive control | morphing wing (camber) | |
[102] | passive control | morphing wing (twisting of soft wing) | |
[103] | passive control | morphing winglet | |
[110] | passive control | UAV morphing wing (camber) | |
[111] | passive control | morphing wing (camber) | |
[112] | passive control | morphing wing (camber) |
Reference | Vehicle | Morphed Geometry | Investigation | ||
---|---|---|---|---|---|
Numerical | Pilot | Wind Tunnel | |||
[82] | Transport Fixed Wing | camber | O | - | - |
[88] | UAV Fixed Wing | sweep angle change span-wise bending | O | O | - |
[83] | UAV Fixed Wing | camber thickness | O | O | O |
[85] | MAV Fixed Wing | camber thickness | O | - | - |
[86,87] | UAV Fixed Wing | camber thickness | O | O | O |
[90,92] | UAV Fixed Wing | camber thickness | O | O | O |
[93] | UAV Fixed Wing | camber | O | O | - |
[94] | UAV Fixed Wing | camber | O | O | O |
[96] | UAV Fixed Wing | camber | O | O | O |
[100] | Transport Fixed Wing | camber | O | O | - |
[101] | UAV Fixed Wing | camber | O | O | O |
[103] | UAV Fixed Wings | dihedral/gull | O | O | O |
[111] | UAV Fixed Wing | camber | O | O | |
[110] | UAV Fixed Wing | camber | O | O | |
[112] | Transport Fixed Wing | camber | O |
Reference | Controller | Application |
---|---|---|
[113,114] | passive control (thermo-mechanical modeling) | active jet engine (VGC) |
[115] | passive control | MAV (flapping wing) |
[116] | passive control (pre-compressive displacement modeling) | compressed mesh washer isolator |
[117] | passive control | micro-vibration isolation spaceborne cryocooler |
[118] | passive control | releasing system |
[120] | passive control | self-deployed solar sail |
[121] | passive control | self-deployed solar sail |
[122] | passive control | self-deployed solar sail |
[123] | passive control | self-deployed solar sail |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohn, J.W.; Ruth, J.S.; Yuk, D.-G.; Choi, S.-B. Application of Shape Memory Alloy Actuators to Vibration and Motion Control of Structural Systems: A Review. Appl. Sci. 2023, 13, 995. https://doi.org/10.3390/app13020995
Sohn JW, Ruth JS, Yuk D-G, Choi S-B. Application of Shape Memory Alloy Actuators to Vibration and Motion Control of Structural Systems: A Review. Applied Sciences. 2023; 13(2):995. https://doi.org/10.3390/app13020995
Chicago/Turabian StyleSohn, Jung Woo, Josephine Selvarani Ruth, Do-Gyeong Yuk, and Seung-Bok Choi. 2023. "Application of Shape Memory Alloy Actuators to Vibration and Motion Control of Structural Systems: A Review" Applied Sciences 13, no. 2: 995. https://doi.org/10.3390/app13020995
APA StyleSohn, J. W., Ruth, J. S., Yuk, D. -G., & Choi, S. -B. (2023). Application of Shape Memory Alloy Actuators to Vibration and Motion Control of Structural Systems: A Review. Applied Sciences, 13(2), 995. https://doi.org/10.3390/app13020995