Bearing Fault Diagnostics Based on the Square of the Amplitude Gains Method
Abstract
:1. Introduction
2. Condition Monitoring Based on the Squared Amplitude Gain of Signals
- green color if the parameter value did not exceed µ ± σ,
- blue color if the parameter value exceeded µ ± σ,
- red color if the parameter value exceeded µ ± 2σ,
- black color if the parameter value exceeded µ ± 3σ.
3. Experimental Test Stand
4. Experimental Results
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ambrożkiewicz, B.; Syta, A.; Meier, N.; Litak, G.; Georgiadis, A. Radial internal clearance analysis in ball bearings. Eksploat. I Niezawodn.—Maint. Reliab. 2021, 23, 42–54. [Google Scholar] [CrossRef]
- Boudiaf, A.; Moussaoui, A.; Dahane, A.; Atoui, I. A Comparative Study of Various Methods of Bearing Faults Diagnosis Using the Case Western Reserve University Data. J. Fail. Anal. Prev. 2016, 16, 271–284. [Google Scholar] [CrossRef]
- Cerrada, M.; Sánchez, R.V.; Li, C.; Pacheco, F.; Cabrera, D.; Valente de Oliveira, J.; Vásquez, R.E. A review on data-driven fault severity assessment in rolling bearings. Mech. Syst. Signal Process. 2018, 99, 169–196. [Google Scholar] [CrossRef]
- Gupta, P.; Pradhan, M.K. Fault detection analysis in rolling element bearing: A review. Mater. Today Proc. 2017, 4, 2085–2094. [Google Scholar] [CrossRef]
- Huang, L.; Hu, N.; Yang, Y.; Chen, L.; Wen, J.; Shen, G. Study on Electromagnetic–Dynamic Coupled Modeling Method—Detection by Stator Current of the Induction Motors with Bearing Faults. Machines 2022, 10, 682. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Prosvirin, A.E.; Kim, J.M. Data-driven prognostic scheme for rolling-element bearings using a new health index and variants of least-square support vector machines. Mech. Syst. Signal Process. 2021, 160, 107853. [Google Scholar] [CrossRef]
- Orhan, S.; Nizami, A.; Celik, V. Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: Comprehensive case studies. NDT E Int. 2006, 39, 293–298. [Google Scholar] [CrossRef]
- Satwara, N.; Patel, V.N. Vibration Monitoring of Defective Shaft Bearing System. In Recent Advances in Machines and Mechanisms; Gupta, V.K., Amarnath, C., Tandon, P., Ansari, M.Z., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Singh, M.; Shaik, A.G. Faulty bearing detection, classification and location in a three-phase induction motor based on Stockwell transform and support vector machine. Measurement 2019, 131, 524–533. [Google Scholar] [CrossRef]
- Tengfei, Z.; Shuyong, L.; Sua, Z. Review on Fault Diagnosis on the Rolling Bearing. J. Phys. Conf. Ser. 2021, 1820, 012107. [Google Scholar]
- Zarei, M.A.; Tajeddine, H.R.K. Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics 2014, 24, 151–157. [Google Scholar] [CrossRef]
- Zheng, H.L.; Wang, R.X.; Yang, Y.T.; Yin, J.C.; Li, Y.B.; Li, Y.Q.; Xu, M.Q. Cross-domain fault diagnosis using knowledge transfer strategy: A review. IEEE Access 2019, 7, 129260–129290. [Google Scholar] [CrossRef]
- Altaf, M.; Akram, T.; Khan, M.A.; Iqbal, M.; Ch, M.M.I.; Hsu, C.H. A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals. Sensors 2022, 22, 2012. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kim, J.-M. Bearing Fault Diagnosis under Variable Rotational Speeds Using Stockwell Transform-Based Vibration Imaging and Transfer Learning. Appl. Sci. 2018, 8, 2357. [Google Scholar] [CrossRef]
- Janjarasjitta, S.; Ocak, H.; Loparo, K.A. Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. J. Sound Vib. 2008, 317, 112–126. [Google Scholar] [CrossRef]
- Karacay, T.; Akturk, N. Experimental diagnostics of ball bearings using statistical and spectral methods. Tribol. Int. 2009, 42, 836–843. [Google Scholar] [CrossRef]
- Khan, M.A.; Asad, B.; Kudelina, K.; Vaimann, T.; Kallaste, A. The Bearing Faults Detection Methods for Electrical Machines—The State of the Art. Energies 2023, 16, 296. [Google Scholar] [CrossRef]
- Kudelina, K.; Baraškova, T.; Shirokova, V.; Vaimann, T.; Rassõlkin, A. Fault detecting accuracy of mechanical damages in rolling bearings. Machines 2022, 10, 86. [Google Scholar] [CrossRef]
- Lei, Y. Fault diagnosis of rotating machinery based on empirical mode decomposition. In Structural Health Monitoring. Smart Sensors, Measurement and Instrumentation; Yan, R., Chen, X., Mukhopadhyay, S., Eds.; Springer: Cham, Switzerland, 2017; Volume 26, pp. 259–292. [Google Scholar]
- Li, B.; Zhang, P.L.; Liu, D.S.; Mi, S.S.; Ren, G.Q.; Tian, H. Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization. J. Sound Vib. 2011, 330, 2388–2399. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings. Measurement 2020, 149, 107002. [Google Scholar] [CrossRef]
- López, C.; Naranjo, Á.; Lu, S.; Moore, K.J. Hidden Markov Model based Stochastic Resonance and its Application to Bearing Fault Diagnosis. J. Sound Vib. 2022, 528, 116890. [Google Scholar] [CrossRef]
- Lu, S.; Zheng, P.; Liu, Y.; Cao, Z.; Yang, H.; Wang, Q. Sound-aided vibration weak signal enhancement for bearing fault detection by using adaptive stochastic resonance. J. Sound Vib. 2019, 449, 18–29. [Google Scholar] [CrossRef]
- Muruganatham, B.; Sanjith, M.A.; Krishnakumar, B.; Satya Murtyk, S.A.V. Roller element bearing fault diagnosis using singular spectrum analysis. Mech. Syst. Signal Process. 2013, 35, 150–166. [Google Scholar] [CrossRef]
- Patel, V.N.; Tandon, N.; Pandey, R.K. Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator. Measurement 2012, 45, 960–970. [Google Scholar] [CrossRef]
- Peng, B.; Bi, Y.; Xue, B.; Zhang, M.; Wan, S. A Survey on Fault Diagnosis of Rolling Bearings. Algorithms 2022, 15, 347. [Google Scholar] [CrossRef]
- Tandon, N.; Choudhury, A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 1999, 32, 469–480. [Google Scholar] [CrossRef]
- Tiboni, M.; Remino, C.; Bussola, R.; Amici, C. A Review on Vibration-Based Condition Monitoring of Rotating Machinery. Appl. Sci. 2022, 12, 972. [Google Scholar] [CrossRef]
- Wu, D.; Wang, J.; Wang, H.; Liu, H.; Lai, L.; He, T.; Xie, T. An Automatic Bearing Fault Diagnosis Method Based on Characteristics Frequency Ratio. Sensors 2020, 20, 1519. [Google Scholar] [PubMed]
- Al-Dossary, S.; Raja Hamzah, R.I.; Mba, D. Observations of changes in acoustic emission waveform for varying seeded defect sizes in a rolling element bearing. Appl. Acoust. 2009, 70, 58–81. [Google Scholar] [CrossRef]
- Al-Ghamd, A.M.; Mba, D. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size. Mech. Syst. Signal Process. 2006, 20, 1537–1571. [Google Scholar] [CrossRef]
- Pham, M.T.; Kim, J.-M.; Kim, C.H. Intelligent Fault Diagnosis Method Using Acoustic Emission Signals for Bearings under Complex Working Conditions. Appl. Sci. 2020, 10, 7068. [Google Scholar] [CrossRef]
- Chao, J.; Bo, W.; Youmin, H. Heat generation modeling of ball bearing based on internal load distribution. Tribol. Int. 2012, 45, 8–15. [Google Scholar]
- Cristea, A.F.; Pascovici, M.; Fillon, M. Clearance and lubricant selection for avoiding seizure in a circumferential groove journal bearing based on a lumped model analysis. Mech. Ind. 2011, 12, 399–408. [Google Scholar] [CrossRef]
- Takabi, J.; Khonsari, M.M. Experimental testing and thermal analysis of ball bearings. Tribol. Int. 2013, 60, 93–103. [Google Scholar] [CrossRef]
- Arun, P.; Lincon, S.A.; Prabhakaran, N. Non-intrusive detection and characterization of bearing faults from the temporal features of vibration. Aust. J. Mech. Eng. 2020, 18 (Suppl. S1), S132–S139. [Google Scholar] [CrossRef]
- Kecik, K.; Smagala, A.; Lyubitska, K. Ball Bearing Fault Diagnosis Using Recurrence Analysis. Materials 2022, 15, 5940. [Google Scholar] [CrossRef]
- Rai, A.; Upadhyay, S.H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol. Int. 2016, 96, 289–306. [Google Scholar] [CrossRef]
- Wen, J.; Khonsari, M.M.; Huad, Y. Three-dimensional heat transfer analysis of pin-bushing system with oscillatory Motion: Theory and experiment. J. Tribol.-Trans. Asme 2011, 133, 011101. [Google Scholar] [CrossRef]
- Cai, J.H.; Xiao, Y.L. Bearing fault diagnosis method based on the generalized s transform time-frequency spectrum de-noised by singular value decomposition. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 2467–2477. [Google Scholar] [CrossRef]
- Chandra, N.H.; Sekhar, A.S. Fault detection in rotor bearing systems using time frequency techniques. Mech. Syst. Signal Process. 2016, 72–73, 105–133. [Google Scholar] [CrossRef]
- Dhamande, L.S.; Chaudhari, M.B. Compound gear-bearing fault feature extraction using statistical features based on timefrequency method. Measurement 2018, 125, 63–77. [Google Scholar] [CrossRef]
- Feng, Z.P.; Liang, M.; Chu, F.L. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mech. Syst. Signal Process. 2013, 38, 165–205. [Google Scholar] [CrossRef]
- Sun, G.D.; Yang, X.; Xiong, C.Y.; Hu, Y.; Liu, M.Y. Rolling bearing fault diagnosis based on time-frequency compression fusion and residual time-frequency mixed attention network. Appl. Sci. 2022, 12, 4831. [Google Scholar] [CrossRef]
- Rai, V.K.; Mohanty, A.R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mech. Syst. Signal Process. 2007, 6, 2607–2615. [Google Scholar] [CrossRef]
- Wang, R.; Fang, H.; Yu, L.; Yu, L.; Chen, J. Sparse and low-rank decomposition of the time-frequency representation for bearing fault diagnosis under variable speed conditions. ISA Trans. 2022, 128, 579–598. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wang, K. Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. J. Intell. Manuf. 2013, 24, 1213–1227. [Google Scholar] [CrossRef]
- Zheng, K.; Luo, J.F.; Zhang, Y.; Li, T.L.; Wen, J.F.; Xiao, H. Incipient fault detection of rolling bearing using maximum autocorrelation impulse harmonic to noise deconvolution and parameter optimized fast eemd. ISA Trans. 2019, 89, 256–271. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Miao, Q.; Zhang, X. Time-frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2018, 103, 60–75. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y. Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis. Mech. Syst. Signal Process. 2020, 138, 106545. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Z.; Haizhou, H.; Xiang, J. Asymmetric penalty sparse model based cepstrum analysis for bearing fault detections. Appl. Acoust. 2020, 165, 107288. [Google Scholar] [CrossRef]
- Ma, J.; Wu, J.; Wang, X.; Fan, Y.; Leng, T. A fault detection method of rolling bearing based on wavelet packet-cepstrum. Res. J. Appl. Sci. 2013, 5, 3402–3406. [Google Scholar] [CrossRef]
- Verma, A.; Srivastava, S. Review on condition monitoring techniques oil analysis, thermography and vibration analysis. Int. J. Enhanc. Res. Sci. Technol. Eng. 2014, 3, 18–25. [Google Scholar]
- Lee, J.; Kim, H. Development of enhanced Wigner–Ville distribution function. Mech. Syst. Signal Process. 2001, 15, 367–398. [Google Scholar] [CrossRef]
- Safizadeh, M.S.; Lakis, A.A.; Thomas, M. Time-frequency algorithms and their applications. Int. J. Comput. Appl. 2000, 7, 167–186. [Google Scholar]
- Quinde, I.R.; Sumba, J.C.; Ochoa, L.E.; Guevara, A.J.V.; Morales-Menendez, R. Bearing fault diagnosis based on optimal timefrequency representation method. IFAC-Pap. 2019, 52, 194–199. [Google Scholar]
- Peter, W.T.; Peng, Y.H.; Yam, R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their affectivities and flexibilities. J. Vib. Acoust. 2001, 123, 303–310. [Google Scholar]
- Unal, M.; Onat, M.; Demetgul, M.; Kucuk, H. Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network. Measurement 2015, 58, 187–196. [Google Scholar] [CrossRef]
- Han, D.Y.; Li, P.; An, S.J.; Shi, P.M. Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance. Mech. Syst. Signal Process. 2016, 70–71, 995–1010. [Google Scholar] [CrossRef]
- Liang, P.; Wang, W.; Yuan, X.; Liu, S.; Zhang, L.; Cheng, Y. Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment. Eng. Appl. Artif. Intell. 2022, 115, 105269. [Google Scholar] [CrossRef]
- Malhotra, A.; Minhas, A.M.; Singh, S.; Zuo, M.J.; Kumara, R.; Kankar, P.K. Bearing fault diagnosis based on flexible analytical wavelet transform and fuzzy entropy approach. Mater. Today Proc. 2021, 43, 625–635. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Yi, C.; Tsui, K.L.; Lin, J. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2018, 101, 290–308. [Google Scholar] [CrossRef]
- Chen, Z.; Mauricio, A.; Li, W.; Gryllias, K. A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks. Mech. Syst. Signal Process. 2020, 140, 106683. [Google Scholar] [CrossRef]
- Dibaj, A.; Hassannejad, R.; Ettefagh, M.M. Incipient fault diagnosis of bearings based on parameter-optimized VMD and envelope spectrum weighted kurtosis index with a new sensitivity assessment threshold. ISA Trans. 2020, 114, 413–433. [Google Scholar] [CrossRef]
- Gao, S.; Xu, L.; Zhang, Y.; Pei, Z. Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN. ISA Trans. 2021, 128, 485–502. [Google Scholar] [CrossRef]
- Hakim, M.; Omran, A.A.B.; Ahmed, A.N.; Al-Waily, M.; Abdellatif, A. A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges, weaknesses and recommendations. Ain Shams Eng. J. 2022, 14, 101945. [Google Scholar] [CrossRef]
- Hasan, M.J.; Islam, M.M.M.; Kim, J.-M. Bearing Fault Diagnosis Using Multidomain Fusion-Based Vibration Imaging and Multitask Learning. Sensors 2022, 22, 56. [Google Scholar] [CrossRef]
- Li, G.; Deng, C.; Wu, J.; Xu, X.; Shao, X.; Wang, Y. Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform. Sensors 2019, 19, 2750. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [Google Scholar] [CrossRef]
- Ma, J.; Dong, S.; Chen, G.; Peng, P.; Qian, L. A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mech. Syst. Signal Process. 2021, 156, 107612. [Google Scholar] [CrossRef]
- Mao, W.; Feng, W.; Liu, Y.; Zhang, D.; Liang, X. A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis. Mech. Syst. Signal Process. 2021, 150, 107233. [Google Scholar] [CrossRef]
- Neupane, D.; Seok, J. Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review. IEEE Access 2020, 8, 93155–93178. [Google Scholar] [CrossRef]
- Sohaib, M.; Kim, C.H.; Kim, J.M. A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors 2017, 17, 2876. [Google Scholar] [CrossRef]
- Toma, R.N.; Prosvirin, A.E.; Kim, J.M. Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers. Sensors 2020, 20, 1884. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, Y.; Ma, C.; Zhang, K. The Enfigram: A robust method for extracting repetitive transients in rolling bearing fault diagnosis. Mech. Syst. Signal Process. 2021, 158, 107779. [Google Scholar] [CrossRef]
- Yin, A.; Yan, Y.; Zhang, Z.; Li, C.; Sánchez, R.-V. Fault Diagnosis of Wind Turbine Gearbox Based on the Optimized LSTM Neural Network with Cosine Loss. Sensors 2020, 20, 2339. [Google Scholar] [CrossRef]
- Zeng, W.; Li, M.; Yuan, C.; Wang, Q.; Liu, F.; Wang, Y. Classification of focal and non-focal EEG signals using empirical mode decomposition (EMD), phase space reconstruction (PSR) and neural networks. Artif. Intell. Rev. 2019, 52, 625–647. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Hu, B.; Tang, J. Intelligent fault diagnosis of rolling bearings using variational mode decomposition and self-organizing feature map. J. Vib. Control 2020, 26, 1866–1897. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Lin, Y. Machine Learning Based Bearing Fault Diagnosis Using the Case Western Reserve University Data: A Review. IEEE Access 2021, 9, 155598–155608. [Google Scholar]
- Zhang, Y.; Xing, K.; Bai, R.; Sun, D.; Meng, Z. An enhanced convolutional neural network for bearing fault diagnosis based on time–frequency image. Measurement 2020, 157, 107667. [Google Scholar] [CrossRef]
- Lindstedt, P.; Kotowski, A. Basics for innovations in vibroacoustic diagnostics of transport machilles rotor blades. Arch. Transp. 2004, 16, 47–61. [Google Scholar]
- Kotowski, A.; Lindstedt, P. The using of signals of impulse acoustic response in tests of rotor blades in stationary conditions. In Proceedings of the 4th International Symposium: Stability Control of Rotating Machinery ISCORMA-4, Calgary, AB, Canada, 27–31 August 2007; pp. 160–169. [Google Scholar]
- Lindstedt, P.; Rokicki, E.; Borowczyk, H.; Majewski, P. Application of the correlation function and Fourier trans-formation to evaluation of technical condition demonstrated by blade sof a rotor machine during the operation process. J. KONES Powertrain Transp. 2009, 16, 2. [Google Scholar]
- Lindstedt, P.; Rokicki, E.; Borowczyk, H.; Majewski, P. Rotor blades condition monitoring method based on the elimination of the environment signal. Res. Work. AFIT 2009, 25, 15–24. [Google Scholar] [CrossRef]
- Lindstedt, P.; Grądzki, R. Parametrical models of working rotor machine blade diagnostics with its unmesurable en-vironment elimination. Acta Mech. Autom. 2010, 4, 56–63. [Google Scholar]
- Grądzki, R. Parametric Diagnostic Models of the Blades of a Working Rotary Machine with the Elimination of Non-Mesurable Environmental Signals. Ph.D. Thesis, Bialystok University of Technology, Bialystok, Poland, 2012. [Google Scholar]
- Grądzki, R.; Lindstedt, P.; Kulesza, Z.; Bartoszewicz, B. Rotor blades diagnosis method based on differences in phase shifts. Shock Vib. 2018, 2018, 9134607. [Google Scholar] [CrossRef]
- Grądzki, R.; Lindstedt, P.; Kulesza, Z.; Bartoszewicz, B. Assessment of rotor blades stationarity condition based on differences in phase shifts. Eng. Fail. Anal. 2020, 118, 104874. [Google Scholar] [CrossRef]
- Gradzki, R.; Kulesza, Z.; Bartoszewicz, B. Method of shaft crack detection based on squared gain of vibration amplitude. Nonlinear Dyn. 2019, 98, 671–690. [Google Scholar] [CrossRef] [Green Version]
- Technical Specification SKF Bearings. Available online: https://www.skf.com/us/products/rolling-bearings/ball-bearings/self-aligning-ball-bearings/productid-1207%20EKTN9 (accessed on 11 January 2023).
The Predominant Color in the Damage Map | Technical Condition | Stationary Condition |
---|---|---|
Black and red | “Serious failure” | “Strong” changes of bearing technical condition |
Red | “Excessive wear” | “Weak” changes of bearing technical condition |
Green and blue | “Slight or no wear” | “Slight” changes of bearing technical condition |
Parameter Description | Value [Unit] |
---|---|
Bearing type | SKF 1207K EKTN9 |
Rotational speed | max 2 000 [rpm] |
Shaft critical speed | 3200 [rpm] |
Load torque | No external forces |
Radial force | |
Sampling time | 60 [s] |
Sampling rate | 8192 [Hz] |
Parameter | Value [Unit] |
---|---|
Manufacturer’s model | 1207 EKTN9 |
Outer diameter | 72 [mm] |
Inner diameter | 35 [mm] |
Outer ring periphery diameter | 60.9 [mm] |
Inner ring periphery diameter | 47 [mm] |
Width | 17 [mm] |
Weight | 0.32 [kg] |
Parameter | Value [Unit] |
---|---|
Rotational frequencies: | |
Inner ring | 15 [Hz] |
Outer ring | 0 [Hz] |
Rolling element set and cage | 6.285 [Hz] |
The rolling element about its axis | 44.581 [Hz] |
Frequencies of over-rolling: | |
A point on the inner ring | 130.72 [Hz] |
A point on the outer ring | 94.28 [Hz] |
Rolling element | 89.162 [Hz] |
Selection | Bearing No 1 | Bearing No 2 | ||||||
---|---|---|---|---|---|---|---|---|
black | red | blue | green | black | red | blue | green | |
Undamaged bearing | 0 | 11 | 77 | 272 | 1 | 13 | 117 | 229 |
Damaged outer race | 101 | 53 | 96 | 110 | 149 | 31 | 57 | 123 |
Cut ball at a depth of 1 mm | 6 | 40 | 102 | 212 | 63 | 42 | 113 | 142 |
Cut ball at a depth of 2 mm | 6 | 43 | 109 | 202 | 91 | 56 | 81 | 130 |
Cut ball at a depth of 3 mm | 35 | 34 | 107 | 184 | 157 | 39 | 66 | 96 |
Damaged inner race | 259 | 18 | 34 | 49 | 256 | 9 | 41 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grądzki, R.; Bartoszewicz, B.; Martínez, J.E. Bearing Fault Diagnostics Based on the Square of the Amplitude Gains Method. Appl. Sci. 2023, 13, 2160. https://doi.org/10.3390/app13042160
Grądzki R, Bartoszewicz B, Martínez JE. Bearing Fault Diagnostics Based on the Square of the Amplitude Gains Method. Applied Sciences. 2023; 13(4):2160. https://doi.org/10.3390/app13042160
Chicago/Turabian StyleGrądzki, Rafał, Błażej Bartoszewicz, and José Emiliano Martínez. 2023. "Bearing Fault Diagnostics Based on the Square of the Amplitude Gains Method" Applied Sciences 13, no. 4: 2160. https://doi.org/10.3390/app13042160
APA StyleGrądzki, R., Bartoszewicz, B., & Martínez, J. E. (2023). Bearing Fault Diagnostics Based on the Square of the Amplitude Gains Method. Applied Sciences, 13(4), 2160. https://doi.org/10.3390/app13042160