LED Light Quality Affected Bioactive Compounds, Antioxidant Potential, and Nutritional Value of Red and White Cabbage Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Plant Materials and Microgreens Production
2.3. Proximate Analysis
2.4. Determination of Total Dietary Fiber and Fiber Fractions
2.5. Analysis of Photosynthetic Pigments
2.6. Preparation of Extract for Phenolics, Phytosterols, and Antioxidant Potential Analysis
2.7. Quantification of Total Phenolics and Anthocyanins
2.8. Estimation of Phenolic Compounds by UPLC–Q-TOF-MS
2.9. Determination of Individual Phytosterols
2.10. Determination of Antioxidant Potential
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effect of LED Light Treatments on Nutrients
3.2. Effect of LED Light Treatments on Photosynthetic Pigments
3.3. Effect of LED Light Treatments on Phenolic Compounds
3.4. Effect of LED Light Treatments on Antioxidant Potential of Cabbage Microgreens
3.5. Effect of LED Light Treatments on Phytosterols
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zayed, A.; Sheashea, M.; Kassem, I.A.; Farag, M.A. Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits. Crit. Rev. Food Sci. Nutr. 2022, 1–18. [Google Scholar] [CrossRef]
- Frąszczak, B.; Kula-Maximenko, M. The biometric parameters of microgreen crops grown under various light conditions. Agriculture 2022, 12, 576. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Domagała, D.; Kusznierewicz, B. Young shoots of red cabbage are a better source of selected nutrients and glucosinolates in comparison to the vegetable at full maturity. Eur. Food Res. Technol. 2020, 246, 2505–2515. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Dziadek, K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv. 2020, 10, 43021–43034. [Google Scholar] [CrossRef]
- Choe, U.; Yu, L.L.; Wang, T.T. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef]
- Du, M.; Xiao, Z.; Luo, Y. Advances and emerging trends in cultivation substrates for growing sprouts and microgreens toward safe and sustainable agriculture. Curr. Opin. Food Sci. 2022, 46, 100863. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Pintilie, O.; Stoleru, T.; Burducea, M.; Oroian, M.; Zamfirache, M.M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef]
- Liu, Z.; Teng, Z.; Pearlstein, D.J.; Chen, P.; Yu, L.; Zhou, B.; Luo, Y.; Sun, J. Effects of different light-emitting diode illuminations on bioactive compounds in ruby streaks mustard microgreens by Ultra-High Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Food Sci. Technol. 2022, 2, 1483–1494. [Google Scholar] [CrossRef]
- Shibaeva, T.G.; Sherudilo, E.G.; Rubaeva, A.A.; Titov, A.F. Continuous LED lighting enhances yield and nutritional value of four genotypes of brassicaceae microgreens. Plants 2022, 11, 176. [Google Scholar] [CrossRef]
- Appolloni, E.; Pennisi, G.; Zauli, I.; Carotti, L.; Paucek, I.; Quaini, S.; Orsini, F.; Gianquinto, G. Beyond vegetables: Effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. J. Sci. Food Agric. 2022, 102, 472–487. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Ager, E.; Kong, L.; Tan, L. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. J. Future Foods 2021, 1, 58–66. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Marcone, M.F.; Tsao, R. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. J. Agric. Food Chem. 2019, 67, 6075–6090. [Google Scholar] [CrossRef]
- Madar, Á.K.; Vargas-Rubóczki, T.; Hájos, M.T. Microgreen leaf vegetable production by different wavelengths. Acta Agrar. Debr. 2022, 26, 79–84. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Miliauskiene, J.; Vaštakaite-Kairiene, V.; Sutuliene, R.; Laužike, K.; Duchovskis, P.; Małek, S. Effect of different ratios of blue and red led light on Brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef]
- Kamal, K.Y.; Khodaeiaminjan, M.; El-Tantawy, A.A.; Moneim, D.A.; Salam, A.A.; Ash-Shormillesy, S.M.A.I.; Attia, A.; Ali, M.A.S.; Herranz, R.; El-Esawi, M.A.; et al. Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. Physiol. Plant. 2020, 169, 625–638. [Google Scholar] [CrossRef]
- Gao, M.; He, R.; Shi, R.; Zhang, Y.; Song, S.; Su, W.; Liu, H. Differential effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy 2021, 11, 537. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Liu, R.; Lu, Z.; Marcone, M.F.; Tsao, R. LED-induced carotenoid synthesis and related gene expression in Brassica microgreens. J. Agric. Food Chem. 2021, 69, 4674–4685. [Google Scholar] [CrossRef]
- Ying, Q.; Jones-Baumgardt, C.; Zheng, Y.; Bozzo, G. The proportion of blue light from light-emitting diodes (RB light environment) alters microgreen phytochemical profiles in a species-specific manner. HortScience 2021, 56, 13–20. [Google Scholar] [CrossRef]
- Meng, Q.; Kelly, N.; Runkle, E.S. Substituting green or red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environ. Exp. Bot. 2019, 162, 383–391. [Google Scholar] [CrossRef]
- Nozue, H.; Gomi, M. Usefulness of broad-spectrum white LEDs to envision future plant factory. In Smart Plant Factory; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 197–210. [Google Scholar]
- Polka, D.; Podsędek, A.; Koziołkiewicz, M. Comparison of chemical composition and antioxidant capacity of fruit, flower and bark of Viburnum opulus. Plant Foods Hum. Nutr. 2019, 74, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Gouw, V.P.; Jung, J.; Zhao, Y. Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients, LWT-Food Sci. Technol. 2017, 80, 136–144. [Google Scholar]
- Majdoub, N.; El-Guendouz, S.; Rezgui, M.; Carlier, J.; Costa, C.; Kaab, L.B.B.; Miguel, M.G. Growth, photosynthetic pigments, phenolic content and biological activities of Foeniculum vulgare Mill., Anethum graveolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Ind. Crops Prod. 2017, 109, 627–636. [Google Scholar] [CrossRef]
- Sosnowska, D.; Kajszczak, D.; Podsędek, A. The effect of different growth stages of black chokeberry fruits on phytonutrients, anti-lipase activity, and antioxidant capacity. Molecules 2022, 27, 8031. [Google Scholar] [CrossRef]
- Kajszczak, D.; Kowalska-Baron, A.; Sosnowska, D.; Podsędek, A. In vitro inhibitory effects of Viburnum opulus bark and flower extracts on digestion of potato starch and carbohydrate hydrolases activity. Molecules 2022, 27, 3118. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Stobiecka, A.; Bonikowski, R.; Krajewska, A.; Sikora, M.; Kula, J. A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland. J. Sci. Food Agric. 2017, 97, 3576–3583. [Google Scholar] [CrossRef]
- Podsędek, A.; Sosnowska, D.; Redzynia, M.; Anders, B. Antioxidant capacity and content of Brassica oleracea dietary antioxidants. Int. J. Food Sci. Technol. 2006, 41, 49–58. [Google Scholar] [CrossRef]
- Kowitcharoen, L.; Phornvillay, S.; Lekkham, P.; Pongprasert, N.; Srilaong, V. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci. 2021, 11, 7981. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Tuohy, K.M.; Conterno, L.; Gasperotti, M.; Viola, R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 2012, 60, 8776–8782. [Google Scholar] [CrossRef] [PubMed]
- Marlett, J.A.; Vollendorf, N.W. Dietary fiber content and composition of vegetables determined by two methods of analysis. J. Agric. Food Chem. 1993, 41, 1608–1612. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- İnanç, A.L. Chlorophyll: Structural properties, health benefits and its occurrence in Virgin olive oils. Akademik GIDA 2011, 9, 26–32. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Gonzales, G.B.; Raes, K.; Vanhoutte, H.; Coelus, S.; Smagghe, G.; Camp, J.V. Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams. J. Chromatogr. A 2015, 1402, 60–70. [Google Scholar] [CrossRef]
- Lin, L.Z.; Harnly, J.M. Identification of the phenolic components of collard greens, kale, and Chinese broccoli. J. Agric. Food Chem. 2009, 57, 7401–7408. [Google Scholar] [CrossRef]
- Mizgier, P.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kolniak-Ostek, J.; Kidoń, M.; Fecka, I. Characterization of phenolic compounds and antioxidant and anti-inflammatory properties of red cabbage and purple carrot extracts. J. Funct. Foods 2016, 21, 133–146. [Google Scholar] [CrossRef]
- Velasco, P.; Francisco, M.; Moreno, D.A.; Ferreres, F.; García-Viguera, C.; Cartea, M.E. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem. Anal. 2011, 22, 144–152. [Google Scholar] [CrossRef]
- Charron, C.S.; Clevidence, B.A.; Britz, S.J.; Novotny, J.A. Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. var. capitata). J. Agric. Food Chem. 2007, 55, 5354–5362. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xiao, Z.; Lin, L.Z.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [PubMed]
- Hooks, T.; Sun, L.; Kong, Y.; Masabni, J.; Niu, G. Adding UVA and far-red light to white LED affects growth, morphology, and phytochemicals of indoor-grown microgreens. Sustainability 2022, 14, 8552. [Google Scholar] [CrossRef]
- Marchioni, I.; Martinelli, M.; Ascrizzi, R.; Gabbrielli, C.; Flamini, G.; Pistelli, L.; Pistelli, L. Small functional foods: Comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods 2021, 10, 427. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Jankauskienė, J.; Viršilė, A.; Sirtautas, R.; Novičkovas, A.; Aakalauskienė, S.; Sakalauskaitė, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Liu, R.; Lu, Z.; Marcone, M.F.; Tsao, R. Amber, red and blue LEDs modulate phenolic contents and antioxidant activities in eight Cruciferous microgreens. J. Food Bioact. 2020, 11, 95–109. [Google Scholar] [CrossRef]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Sci. Hortic. 2020, 265, 109204. [Google Scholar] [CrossRef]
- Rokayya, S.; Li, C.J.; Zhao, Y.; Li, Y.; Sun, C.H. Cabbage (Brassica oleracea L. var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac. J. Cancer Prev. 2013, 14, 6657–6662. [Google Scholar] [CrossRef]
- Lee, W.Y.; Ki, E.H.; Jalil, A.M.M.; Amin, I. Antioxidant capacity and phenolic content of selected commercially available cruciferous vegetables. Malays. J. Nutr. 2007, 13, 71–80. [Google Scholar]
- Singh, J.; Upadhyay, A.K.; Bahadur, A.; Singh, B.; Singh, K.P.; Rai, M. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic. 2006, 108, 233–237. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, Y.J.; Kim, H.J.; Choi, J.; Kim, J.K. Phytochemical profiles of Brassicaceae vegetables and their multivariate characterization using chemometrics. Appl. Biol. Chem. 2018, 61, 131–144. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Kusznierewicz, B. Young shoots of white and red headed cabbages like novel sources of glucosinolates as well as antioxidative substances. Antioxidants 2021, 10, 1277. [Google Scholar] [CrossRef] [PubMed]
- Piironen, V.; Toivo, J.; Puupponen-Pimiä, R.; Lampi, A.M. Plant sterols in vegetables, fruits and berries. J. Sci. Food Agric. 2003, 83, 330–337. [Google Scholar] [CrossRef]
Light Color | Wavelength (nm) | PPFD (W) (μmol m−2 s−1) | % for W light | PPFD (W) (μmol m−2 s−1) | % for W + R | % for W + B |
---|---|---|---|---|---|---|
UV | 320–380 | 0.69 | 0.3 | 0.5 | 0.2 | 0.2 |
Violet | 380–450 | 21.10 | 8.9 | 15.4 | 6.6 | 6.6 |
Blue | 450–495 | 41.51 | 17.6 | 30.3 | 13.0 | 38.9 |
Green | 495–570 | 73.30 | 31.1 | 53.5 | 23.0 | 23.0 |
Gold | 570–590 | 25.62 | 10.9 | 18.7 | 8.1 | 8.1 |
Orange | 590–620 | 29.87 | 12.7 | 21.8 | 9.4 | 9.4 |
Red (R) | 620–700 | 36.17 | 15.3 | 26.4 | 37.2 | 11.4 |
Far Red (FR) | 700–780 | 7.67 | 3.3 | 5.6 | 2.4 | 2.4 |
Sum | 320–780 | 235.9 | 100 | 172.2 | 100 | 100 |
R:FR | 4.7 | - | 4.7 | 15.5 | - |
Factor | White Cabbage Microgreens | Red Cabbage Microgreens | ||||
---|---|---|---|---|---|---|
White | White + Red | White + Blue | White | White + Red | White + Blue | |
Ash | 21.36 ± 0.21 c | 18.79 ± 0.47 b | 16.06 ± 0.23 a | 25.60 ± 0.37 c | 20.14 ± 0.03 b | 19.15 ± 0.12 a |
Protein | 30.48 ± 1.29 c | 13.66 ± 0.71 b | 10.67 ± 0.07 a | 29.27 ± 0.95 b | 16.70 ± 0.14 a | 15.94 ± 0.65 a |
Fat | 7.33 ± 0.27 c | 5.05 ± 0.14 b | 3.78 ± 0.11 a | 7.97 ± 0.30 b | 5.36 ± 0.30 a | 4.90 ± 0.21 a |
Sugars | 2.43 ± 0.12 a | 6.05 ± 0.38 b | 9.76 ± 0.13 c | 5.84 ± 0.26 a | 6.57 ± 0.47 ab | 6.90 ± 0.23 b |
Fiber total | 39.07 ± 0.30 a | 55.42 ± 1.16 b | 53.69 ± 2.03 b | 35.49 ± 0.30 a | 41.18 ± 1.08 b | 38.21 ± 0.55 a |
SDF total | 1.53 ± 0.10 a | 2.71 ± 0.02 b | 3.51 ± 0.22 c | 2.12 ± 0.10 b | 1.90 ± 0.10 ab | 1.67 ± 0.12 a |
IDF total | 37.54 ± 0.41 a | 52.71 ± 1.18 b | 50.18 ± 1.82 b | 33.37 ± 0.39 a | 39.28 ± 0.89 b | 36.54 ± 0.43 a |
Factor | White Cabbage Microgreens | Red Cabbage Microgreens | ||||
---|---|---|---|---|---|---|
White | White + Red | White + Blue | White | White + Red | White + Blue | |
Total carotenoids | 582 ± 9 c | 281 ± 13 b | 167 ± 5 a | 689 ± 16 c | 431 ± 2 b | 350 ± 2 a |
Total chlorophylls | 1129 ± 22 c | 555 ± 17 b | 324 ± 22 a | 1312 ± 31 c | 856 ± 6 b | 693 ±19 a |
Chlorophyll a | 391 ± 11 c | 184 ± 4 b | 117 ± 2 a | 445 ± 18 c | 283 ± 8 b | 229 ± 10 a |
Chlorophyll b | 738 ± 10 c | 369 ± 12 b | 207 ± 3 a | 870 ± 3 c | 571 ± 13 b | 464 ± 11 a |
tR UPLC (min) | [MS-H]- [MS + H]+ (m/z) | MS/MS (m/z) | Tentative Identification | Light Treatments | ||
---|---|---|---|---|---|---|
White | White + Red | White + Blue | ||||
1.45 | 191 | 173/146 | Quinic acid [38] | 0.28 ± 0.02 | 0.10 ± 0.01 | 0.10 ± 0.00 |
3.49 | 353 | Chlorogenic acid | 0.15 ± 0.01 | 0.30 ± 0.00 | 0.26 ± 0.01 | |
3.60 | 447 | 198/141/170/139 | Rhamnosyl-ellagic acid [43] | 0.46 ± 0.01 | 0.51 ± 0.00 | 0.60 ± 0.06 |
3.94 | 547 | 190/171/115/208 | Sinapic acid diglucoside [38] | 0.08 ± 0.01 | - | - |
4.26 | 355 | 121/132/160/193 | Ferulic acid glucoside [38] | 0.17 ± 0.01 | 2.38 ± 0.02 | 3.12 ± 0.01 |
4.33 | 385 | 175/247/190/119 | Sinapic acid glucose [43] | 1.66 ± 0.01 | 1.09 ± 0.02 | 1.39 ± 0.02 |
5.72 | 753 | 240/205/190/164 | 1,2-disinapoylgentiobioside [39] | 0.33 ± 0.00 | 0.63 ± 0.00 | - |
6.51 | 723 | 193/178/134/223 | Sinapoyl-feruloylgentiobioside [43] | - | 0.25 ± 0.01 | - |
7.22 | 753 | 161/223/179 | Disinapoylgentiobioside [43] | 2.63 ± 0.02 | 2.39 ± 0.00 | 2.98 ± 0.02 |
7.44 | 723 | 193/175/134/223 | Sinapoyl-feruloylgentiobioside [43] | 0.73 ± 0.01 | 3.51 ± 0.01 | 4.59 ± 0.09 |
7.88 | 753 | 161/223/179 | Disinapoylgentiobioside [43] | 0.24 ± 0.00 | - | - |
8.40 | 959 | 161/223/205/511 | Trisinapoylgentionbioside [43] | 4.64 ± 0.02 | 1.68 ± 0.00 | 1.58 ± 0.05 |
8.64 | 929 | 191/511/390/205 | Feruloyl-disinapoylgentionbioside [43] | 0.36 ± 0.02 | 1.34 ± 0.00 | 1.53 ± 0.03 |
Total phenolic acids | 11.73 ± 0.08 a | 14.18 ± 0.06 b | 16.15 ± 0.60 c | |||
3.37 | 787 | 191/432/179/300 | Quercetin-3-diglucoside-7-glucoside [38] | - | 0.03 ± 0.00 | 0.19 ± 0.01 |
3.70 | 1111 | 787/949/625/301/462 | Quercetin-3-diglucoside-7-triglucoside [38] | - | - | 0.30 ± 0.01 |
3.63 | 1125 | 771/963 | Kaempferol-3-hydroxyferuloyldiglucoside-7-glucoside [43] | - | - | 0.37 ± 0.01 |
3.67 | 1095 | 609/771 | Kaempferol-3-triglucoside-7-diglucoside [38] | - | 0.18 ± 0.02 | 0.09 ± 0.00 |
3.70 | 933 | 609/447/414/301/576 | Kaempferol-3-caffeoyldiglucoside-7-glucoside [43] | - | - | 0.35 ± 0.00 |
4.15 | 1109 | 771/609/284/591 | Kaempferol-3-feruloyldiglucoside-7-glucoside [38] | - | 0.16 ± 0.00 | - |
4.19 | 477 | 169/139/144/162 | Isorhamnetin-glucoside [39] | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.19 ± 0.01 |
4.21 | 947 | 462/609/300/285 | Kaempferol-3-feruloyldiglucoside-7-glucoside [43] | - | - | 0.15 ± 0.01 |
4.34 | 477 | 190/175/147 | Isorhamnetin-glucoside [39] | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.13 ± 0.01 |
6.23 | 1477 | 1153/285/947 | Kaempferol-3-sinapoyl-feruloyltriglucoside-7-diglucoside [39] | - | 0.36 ± 0.00 | - |
Total flavonols | 0.08 ± 0.00 a | 0.82 ± 0.02 b | 1.76 ± 0.04 c | |||
5.79 | 1155+ | 287/993 | Cyanidin-3-sinapoyl-feruloyldiglucoside-5-glucoside [38] | - | 0.05 ± 0.00 | 0.10 ± 0.01 |
5.85 | 1185+ | 287/449/1023 | Cyanidin-3-disinapoyldiglucosude-5-glucoside [38] | 0.03 ± 0.00 | 0.06 ± 0.00 | 0.09 ± 0.01 |
5.94 | 1125+ | 287 | Cyanidin-3-sinapoyl-feruloyldiglucoside-5-glucoside [43] | - | - | 0.06 ± 0.01 |
Total anthocyanins | 0.03 ± 0.00 a | 0.11 ± 0.00 b | 0.25 ± 0.01 c | |||
Sum of phenolic compounds | 11.84 ± 0.08 a | 15.11 ± 0.06 b | 18.16 ± 0.64 c |
tR UPLC (min) | [MS-H]- [MS + H]+ (m/z) | MS/MS (m/z) | Tentative Identification | Light Treatments | ||
---|---|---|---|---|---|---|
White | White + Red | White + Blue | ||||
1.48 | 191 | 173/146 | Quinic acid [38] | 0.10 ± 0.00 | 0.18 ± 0.00 | 0.20 ± 0.01 |
3.42 | 289 | 285/267/192/149 | Di-(α-OH-dihydrosinapoyl-glucoside) [40] | 0.11 ± 0.00 | 0.18 ± 00 | 0.26 ± 00 |
3.52 | 353 | Chlorogenic acid | 0.67 ± 0.00 | 1.23 ± 0.01 | 2.09 ± 0.01 | |
3.66 | 547 | 161/133/179/208 | Sinapoylgentiobioside [39] | 0.07 ± 0.00 | - | - |
3.88 | 447 | 198/141/170/139 | Rhamnosyl-ellagic acid [43] | 0.16 ± 0.00 | - | - |
3.90 | 337 | 119/135/179 | p-Coumaroyl-quinic acid [41] | 3.17 ± 0.01 | 3.38 ± 0.01 | 6.81 ± 0.03 |
4.28 | 355 | 121/132/160/193 | Ferulic acid glucoside [38] | 0.67 ± 0.01 | 1.30 ± 0.01 | 1.99 ± 0.01 |
4.34 | 385 | 175/147/190/119 | Sinapic acid glucose [43] | 1.10 ± 0.00 | 1.11 ± 0.02 | 1.30 ± 0.01 |
4.46 | 935 | 285/267/192/149 | Diglucoside-dihydro-p-coumaroyl/Sinapoyl-dihydrosinapic acid [40] | 0.56 ± 0.01 | 0.71 ± 0.02 | 0.90 ± 0.01 |
4.65 | 965 | 285/267/192/149 | Diglucoside-dihydroferuloyl/Sinapoyl-dihydrosinapic acid [40] | 0.19 ± 0.00 | 0.37 ± 0.00 | 0.51 ± 0.02 |
7.14 | 753 | 205/190/164/149 | Disinapoylgentiobioside [43] | 3.46 ± 0.01 | 1.70 ± 0.01 | 2.02 ± 0.01 |
8.31 | 959 | 205/223/190/164 | Trisinapoylgentionbioside [43] | 0.85 ± 0.03 | 0.55 ± 0.01 | 0.60 ± 0.02 |
Total phenolic acids | 11.11 ± 0.04 b | 10.70 ± 0.06 a | 16.68 ± 0.11 c | |||
3.60 | 771 | 383/285/229/357 | Kaempferol-3-diglucoside-7-glucoside [43] | - | 0,27 ± 0.00 | - |
3.70 | 1125 | 609/771/801/285 | Quercetin-3-diglucoside-7-feruloyldiglucoside [43] | - | 0.30 ± 0.01 | - |
3.70 | 1111 | 625/787/949/300 | Quercetin-3-diglucoside-7-triglucoside [38] | - | - | 0.56 ± 0.00 |
3.75 | 949 | 462/625/300/787 | Quercetin-3-triglucoside-7-glucoside [38] | - | - | 0.21 ± 0.00 |
3.80 | 1125 | 609/771/801/285 | Kaempferol-3-hydroxyferuloyldiglucoside-7-glucoside [43] | - | - | 0.49 ± 0.00 |
3.75 | 1095 | 609/771 | Kaempferol-3-triglucoside-7-diglucoside [38] | - | 0.33 ± 0.00 | - |
3.86 | 963 | 609/284/191/446 | Kaempferol-3-hydroxyferuloyldiglucoside-7-glucoside [43] | - | - | 0.62 ± 0.01 |
4.09 | 1109 | 391/728/537/337/285 | Kaempferol-3-feruloyldiglucoside-7-glucoside [43] | 0.06 ± 0.01 | 0.24 ± 0.00 | 0.24 ± 0.00 |
4.13 | 977 | 285/609/446/255 | Kaempferol-3-sinapoyldiglucoside-7-glucoside [38] | - | - | 0.49 ± 0.01 |
4.17 | 477 | (190/175/147) | Isorhamnetin-glucoside [39] | 0.20 ± 0.00 | 0.25 ± 0.03 | 0.35 ± 0.03 |
Total flavonols | 0.26 ± 0.02 a | 1.39 ± 0.03 b | 2.96 ± 0.01 c | |||
3.64 | 773+ | 287 | Cy-3-diglucoside-5-glucoside [40] | 0.36 ± 0.02 | 0.47 ± 0.01 | 0.74 ± 0.04 |
4.01 | 979+ | 287 | Cy-3-sinapoyldiglucoside-5-glucoside [40] | 0.15 ± 0.00 | 0.32 ± 0.00 | 0.36 ± 0.00 |
4.90 | 979+ | 287 | Cy-3-sinapoyldiglucoside-5-glucoside [40] | 0.04 ± 0.00 | 0.12 ± 0.00 | 0.07 ± 0.00 |
5.81 | 979+ | 287 | Cy-3-sinapoyldiglucoside-5-glucoside [40] | - | 1.56 ± 0.02 | 2.15 ± 0.00 |
6.20 | 1347+ | 287 | Cy-3-disinapoyltriglucoside-5-glucoside [40] | - | 0.06 ± 0.00 | 0.07 ± 0.00 |
6.32 | 1081+ | 287 | Cy-3-p-coumaroyldiglucoside-5-glucoside [40] | - | 0.07 ± 0.00 | 0.10 ± 0.00 |
6.38 | 1125+ | 287 | Cy-3-sinapoyl-feruloyldiglucoside-5-glucoside [43] | 0.31 ± 0.00 | 0.64 ± 0.00 | 0.66 ± 0.01 |
6.50 | 1155+ | 287/993 | Cy-3-sinapoyl-feruloyldiglucoside-5-glucoside [38] | 0.24 ± 0.01 | 0.78 ± 0.01 | 0.64 ± 0.01 |
6.57 | 1185+ | 287/449/1023 | Cy-3-disinapoyldiglucoside-5-glucoside [38] | 0.78 ± 0.01 | 1.08 ± 0.01 | 0.72 ± 0.01 |
6.68 | 1125+ | 287 | Cy-3-sinapoyl-feruloyldiglucoside-5-glucoside [43] | - | 0.22 ± 0.00 | 0.25 ± 0.00 |
6.74 | 1155+ | 287 | Cy-3-disinapoyldiglucoside-5-glucoside [43] | - | 0.18 ± 0.00 | 0.15 ± 0.01 |
Total anthocyanins | 1.88 ± 0.02 a | 5.50 ± 0.05 b | 5.91 ± 0.01 c | |||
Sum of phenolic compounds | 13.25 ± 0.07 a | 17.59 ± 0.11 b | 25.55 ± 0.09 c |
Microgreens | Light Treatments | Total Phenolics | Anthocyanins |
---|---|---|---|
White | 3480 ± 62 a | 8.51 ± 0.15 a | |
White cabbage | White + red | 3986 ± 65 b | 19.35 ± 0.14 b |
White + blue | 6944 ± 27 c | 39.09 ± 0.41 c | |
White | 6091 ± 51 a | 326 ± 3 a | |
Red cabbage | White + red | 6723 ± 72 b | 565 ± 16 b |
White + blue | 8771 ± 67 c | 547 ± 10 b |
Microgreens | Antioxidant Potential Assay | Light Treatments | ||
---|---|---|---|---|
White | White + Red | White + Blue | ||
White cabbage | ABTS | 25.47 ± 0.59 a | 27.57 ± 0.55 a | 47.72 ± 1.03 b |
DPPH | 28.64 ± 0.36 a | 27.82 ± 0.47 a | 44.19 ± 0.21 b | |
ORAC | 191.23 ± 4.36 a | 192.69 ± 0.40 a | 293.12 ± 12.52 b | |
FRAP | 33.20 ± 0.58 a | 43.84 ± 0.38 b | 80.67 ± 2.14 c | |
Red cabbage | ABTS | 43.56 ± 1.20 a | 77.10 ± 0.89 b | 100.12 ± 1.38 c |
DPPH | 39.75 ± 0.56 a | 55.87 ± 1.11 b | 67.96 ± 1.55 c | |
ORAC | 280.44 ± 4.73 a | 406.19 ± 3.19 b | 457.28 ± 20.04 c | |
FRAP | 74.45 ± 1.01 a | 100.01 ± 2.91 b | 122.56 ± 2.12 c |
Microgreens | Light Treatments | β-Sitosterol | Campesterol |
---|---|---|---|
White | 343 ± 17 b | 0 | |
White cabbage | White + red | 493 ± 21 c | 298 ± 8 |
White + blue | 123 ± 8 a | 0 | |
White | 169 ± 7 a | 0 | |
Red cabbage | White + red | 448 ± 41 b | 244 ± 12 |
White + blue | 203 ± 12 a | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podsędek, A.; Frąszczak, B.; Sosnowska, D.; Kajszczak, D.; Szymczak, K.; Bonikowski, R. LED Light Quality Affected Bioactive Compounds, Antioxidant Potential, and Nutritional Value of Red and White Cabbage Microgreens. Appl. Sci. 2023, 13, 5435. https://doi.org/10.3390/app13095435
Podsędek A, Frąszczak B, Sosnowska D, Kajszczak D, Szymczak K, Bonikowski R. LED Light Quality Affected Bioactive Compounds, Antioxidant Potential, and Nutritional Value of Red and White Cabbage Microgreens. Applied Sciences. 2023; 13(9):5435. https://doi.org/10.3390/app13095435
Chicago/Turabian StylePodsędek, Anna, Barbara Frąszczak, Dorota Sosnowska, Dominika Kajszczak, Kamil Szymczak, and Radosław Bonikowski. 2023. "LED Light Quality Affected Bioactive Compounds, Antioxidant Potential, and Nutritional Value of Red and White Cabbage Microgreens" Applied Sciences 13, no. 9: 5435. https://doi.org/10.3390/app13095435
APA StylePodsędek, A., Frąszczak, B., Sosnowska, D., Kajszczak, D., Szymczak, K., & Bonikowski, R. (2023). LED Light Quality Affected Bioactive Compounds, Antioxidant Potential, and Nutritional Value of Red and White Cabbage Microgreens. Applied Sciences, 13(9), 5435. https://doi.org/10.3390/app13095435