Gear Fault Detection Method Based on Convex Hull Clustering of Autoencoder’s Latent Space
Abstract
:1. Introduction
- Construct a dataset as a result of extensive fatigue tests of gears with real gear pitting failure of different severity rates;
- Propose a robust semi- or unsupervised model for failure detection;
- Ensure the high-performance metrics of the model;
- Construct a model that gives a general perspective on gear pitting wear prediction.
- The proposed methods based on autoencoders were efficient and could detect even the initial state of pitting formation, which may be difficult with the aid of signal analysis in the time and frequency domain;
- The best model (AE+CH) showed a very high effectiveness (100%) in failure detection (true positive) and 98.9% in normal state prediction (true negative), which resulted in a very high F1-measure (0.99);
- The latent space analysis revealed a generalized perspective on the gear wear—the measurements drifted in a specific direction in the latent space with the progress of gearbox damage;
- The autoencoder outperformed the generative adversarial network in terms of generalization on wear prediction.
2. Materials and Methods
2.1. Experiment Setup
2.2. Data Preparation
2.3. Principal Component Analysis
3. Calculation
3.1. Autoencoder as a Simple Anomaly Detector
3.2. Autoencoder and Convex Hull-Based Clustering in Latent Layer
3.3. Generative Adversarial Network and Convex Hull-Based Clustering of Discriminator Output
4. Results and Discussion
5. Conclusions
- The proposed methods based on autoencoders were efficient and could detect even the initial state of pitting formation, which may be difficult with the aid of signal analysis in the time and frequency domain;
- The best model (AE+CH) showed very high effectiveness (100%) in failure detection (true positive) and 98.9% in normal state prediction (true negative), which resulted in a very high F1-measure (0.99);
- Vibration excitation due to pitting was observed in a higher order of harmonics;
- The latent space analysis revealed a generalized perspective on the gear wear—the measurements drifted in a specific direction in the latent space with the progress of the gearbox damage;
- Autoencoder outperformed the generative adversarial network in terms of generalization on wear prediction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yan, W.; Shabaz, M.; Rakhra, M. Research on Nonlinear Distorted Image Recognition Based on Artificial Neural Network Algorithm. J. Interconnect. Netw. 2022, 22, 2148002. [Google Scholar] [CrossRef]
- Rykała, Ł. Application of Hybrid Neural Network System in Image Processing. SLW 2019, 51, 141–153. [Google Scholar] [CrossRef]
- Burghardt, A.; Gierlak, P. Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Teh. Vjesn. 2022, 29, 15–22. [Google Scholar] [CrossRef]
- Styła, M.; Kiczek, B.; Adamkiewicz, P. Image Reconstruction Using Radio Tomography and Artificial Intelligence in Tracking and Navigation Systems for Indoor Applications. In Proceedings of the 2023 International Interdisciplinary PhD Workshop (IIPhDW), Wismar, Germany, 3–5 May 2023; IEEE: Wismar, Germany, 2023; pp. 1–4. [Google Scholar]
- Styła, M.; Kiczek, B.; Kłosowski, G.; Rymarczyk, T.; Adamkiewicz, P.; Wójcik, D.; Cieplak, T. Machine Learning-Enhanced Radio Tomographic Device for Energy Optimization in Smart Buildings. Energies 2022, 16, 275. [Google Scholar] [CrossRef]
- Chen, H.; Hu, N.; Cheng, Z.; Zhang, L.; Zhang, Y. A Deep Convolutional Neural Network Based Fusion Method of Two-Direction Vibration Signal Data for Health State Identification of Planetary Gearboxes. Measurement 2019, 146, 268–278. [Google Scholar] [CrossRef]
- Rykała, M.; Rykała, Ł. Economic Analysis of a Transport Company in the Aspect of Car Vehicle Operation. Sustainability 2021, 13, 427. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Yadav, K.; Alsharif, H.; Aboalela, R.A. GAN-Based Unsupervised Learning Approach to Generate and Detect Fake News. In International Conference on Cyber Security, Privacy and Networking (ICSPN 2022); Nedjah, N., Martínez Pérez, G., Gupta, B.B., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2023; Volume 599, pp. 384–396. ISBN 978-3-031-22017-3. [Google Scholar]
- Gierlak, P.; Szybicki, D.; Kurc, K.; Burghardt, A.; Wydrzyński, D.; Sitek, R.; Goczał, M. Design and Dynamic Testing of a Roller Coaster Running Wheel with a Passive Vibration Damping System. J. Vibroeng. 2018, 20, 1129–1143. [Google Scholar] [CrossRef]
- Kuczaj, M.; Wieczorek, A.N.; Konieczny, Ł.; Burdzik, R.; Wojnar, G.; Filipowicz, K.; Głuszek, G. Research on Vibroactivity of Toothed Gears with Highly Flexible Metal Clutch under Variable Load Conditions. Sensors 2022, 23, 287. [Google Scholar] [CrossRef] [PubMed]
- Leoni, J.; Tanelli, M.; Palman, A. A New Comprehensive Monitoring and Diagnostic Approach for Early Detection of Mechanical Degradation in Helicopter Transmission Systems. Expert Syst. Appl. 2022, 210, 118412. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Wang, J.; Zhou, X.; Tang, B. A Reinforcement Learning Unit Matching Recurrent Neural Network for the State Trend Prediction of Rolling Bearings. Measurement 2019, 145, 191–203. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ahmed, I.; Ahmad, M.; Chehri, A.; Jeon, G. A Smart-Anomaly-Detection System for Industrial Machines Based on Feature Autoencoder and Deep Learning. Micromachines 2023, 14, 154. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ji, A.; Cheng, G. A Novel Deep Feature Learning Method Based on the Fused-Stacked AEs for Planetary Gear Fault Diagnosis. Energies 2019, 12, 4522. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Gu, Y.; Xu, X. Method of Extracting Gear Fault Feature Based on Stacked Autoencoder. J. Eng. 2019, 2019, 8765–8769. [Google Scholar] [CrossRef]
- He, G.; Li, J.; Ding, K.; Zhang, Z. Feature Extraction of Gear and Bearing Compound Faults Based on Vibration Signal Sparse Decomposition. Appl. Acoust. 2022, 189, 108604. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Prosvirin, A.E.; Kim, C.H.; Kim, J.-M. Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network. Sensors 2020, 21, 18. [Google Scholar] [CrossRef]
- Han, C.; Hayashi, H.; Rundo, L.; Araki, R.; Shimoda, W.; Muramatsu, S.; Furukawa, Y.; Mauri, G.; Nakayama, H. GAN-Based Synthetic Brain MR Image Generation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: Washington, DC, USA, 2018; pp. 734–738. [Google Scholar]
- Lee, C.-K.; Cheon, Y.-J.; Hwang, W.-Y. Studies on the GAN-Based Anomaly Detection Methods for the Time Series Data. IEEE Access 2021, 9, 73201–73215. [Google Scholar] [CrossRef]
- Zenati, H.; Romain, M.; Foo, C.-S.; Lecouat, B.; Chandrasekhar, V. Adversarially Learned Anomaly Detection. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; IEEE: Singapore, 2018; pp. 727–736. [Google Scholar]
- Su, Y.; Meng, L.; Kong, X.; Xu, T.; Lan, X.; Li, Y. Generative Adversarial Networks for Gearbox of Wind Turbine With Unbalanced Data Sets in Fault Diagnosis. IEEE Sens. J. 2022, 22, 13285–13298. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wang, Q.; Xing, Z.; Zeng, F. Rotating Machinery Anomaly Detection Using Data Reconstruction Generative Adversarial Networks with Vibration Energy Analysis. AIP Adv. 2022, 12, 035221. [Google Scholar] [CrossRef]
- Niemann, G.; Winter, H.; Bergsträsser, M.; Dietrich, G.; Thomas, W.; Richter, W.; Rettig, H.; Cameron, A.; Blok, H.; Brugger, H.; et al. Zahnräder Zahnradgetriebe: Vorträge und Diskussionsbeiträge Fachtagung “Antriebselemente”, Essen 1954; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1955; ISBN 978-3-663-06703-0. [Google Scholar]
- Lin, J.; Li, H.; Wang, P.; Li, N.; Shi, Z.; Olofsson, U. Compensation of Mounting Error in In-Situ Wear Measurement during Gear Pitting Test. Measurement 2022, 191, 110808. [Google Scholar] [CrossRef]
- Kattelus, J.; Miettinen, J.; Lehtovaara, A. Detection of Gear Pitting Failure Progression with On-Line Particle Monitoring. Tribol. Int. 2018, 118, 458–464. [Google Scholar] [CrossRef]
- Žák, P.; Dynybyl, V. Innovative Analysis and Documentation of Gear Test Results. Gear Technol. 2008, 9, 64–70. [Google Scholar]
- Wang, Z.; Qin, Y.; Chen, W. Vision Measurement of Gear Pitting Based on DCGAN and U-Net. J. Mech. Sci. Technol. 2021, 35, 2771–2779. [Google Scholar] [CrossRef]
- Batsch, M.; Markowski, T. Comparative Fatigue Testing of Gears with Involute and Convexo-Concave Teeth Profiles. Adv. Manuf. Sci. Technol. 2016, 40, 5–25. [Google Scholar]
- Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
Parameter | Pinion | Gear |
---|---|---|
Geometry | ||
Normal module, mm | mn = 3 | |
Number of teeth | z1 = 30 | z2 = 47 |
Face width, mm | b = 30 | |
Helix angle, º | β = 22.482 | |
Normal pressure angle, º | αn = 20 | |
Profile shift | x = 0 | |
Axes distance, mm | a = 125 | |
Pitch diameter, mm | d1 = 97.40 | d2 = 152.59 |
Tip diameter, mm | da1 = 103.40 | da2 = 158.59 |
Root diameter, mm | df1 = 89.90 | df2 = 145.09 |
Accuracy | ||
Total profile deviation Fα, μm | 13.5 | 15.1 |
Profile form deviation ffα, μm | 11.6 | 8.4 |
Profile slope deviation fHα, μm | 5.3 | −12.3 |
Total helix deviation Fβ, μm | 12.3 | 14.1 |
Helix form deviation ffβ, μm | 7.0 | 12.7 |
Helix slope deviation fHβ, μm | 9.5 | 17.9 |
Gear Pair I (Quenched and Tempered + Gas-Nitrided) | ||||
---|---|---|---|---|
Load Stage | Pinion Torque, Nm | Pinion Revolutions, rev/min | Number of Pinion Load Cycles | Load Stage Duration Time |
0 | 42 | 2500 | 1.5·105 | 1 h |
1 | 455 | 2500 | 1.5·106 | 10 h |
2 | 455 | 2500 | 1.5·106 | 10 h |
3 | 455 | 2500 | 1.5·106 | 10 h |
4 | 455 | 2500 | 1.5·106 | 10 h |
5 | 455 | 2500 | 1.5·106 | 10 h |
6 | 455 | 2500 | 1.5·106 | 10 h |
7 | 455 | 2500 | 1.5·106 | 10 h |
8 | 455 | 2500 | 1.5·106 | 10 h |
Gear Pair II (Quenched and Tempered Only) | ||||
Load Stage | Pinion Torque, Nm | Pinion Revolutions, rev/min | Number of Pinion Load Cycles | Load Stage Duration Time |
0 | 42 | 2500 | 1.5·105 | 1 h |
1 | 138 | 2500 | 2.5·106 | 16 h 40 min |
2 | 244 | 2500 | 2.5·106 | 16 h 40 min |
3 | 342 | 2500 | 2.5·106 | 16 h 40 min |
4 | 455 | 2500 | 2.5·106 | 16 h 40 min |
5 | 455 | 2500 | 2.5·106 | 16 h 40 min |
Model | Precision | Recall | F1-Score |
---|---|---|---|
Autoencoder | 0.90 | 1.00 | 0.95 |
Autoencoder + convex hull classification | 0.98 | 1.00 | 0.99 |
Autoencoder + linear SVM | 1.00 | 0.99 | 0.99 |
Autoencoder + nonlinear SVM | 1.00 | 1.00 | 1.00 |
GAN + convex hull classification | 0.98 | 0.93 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batsch, M.; Kiczek, B. Gear Fault Detection Method Based on Convex Hull Clustering of Autoencoder’s Latent Space. Appl. Sci. 2024, 14, 5282. https://doi.org/10.3390/app14125282
Batsch M, Kiczek B. Gear Fault Detection Method Based on Convex Hull Clustering of Autoencoder’s Latent Space. Applied Sciences. 2024; 14(12):5282. https://doi.org/10.3390/app14125282
Chicago/Turabian StyleBatsch, Michał, and Bartłomiej Kiczek. 2024. "Gear Fault Detection Method Based on Convex Hull Clustering of Autoencoder’s Latent Space" Applied Sciences 14, no. 12: 5282. https://doi.org/10.3390/app14125282
APA StyleBatsch, M., & Kiczek, B. (2024). Gear Fault Detection Method Based on Convex Hull Clustering of Autoencoder’s Latent Space. Applied Sciences, 14(12), 5282. https://doi.org/10.3390/app14125282