Intrinsic and Extrinsic Factors Associated with Hair Graying (Canities) and Therapeutic Potential of Plant Extracts and Phytochemicals
Abstract
:1. Introduction
- What can be the targets for treating hair graying?
- What are the modulatory targets of plant extracts and phytochemicals?
- What should be the next research topics to advance treatments for human hair graying?
2. Methods
3. Intrinsic and Extrinsic Factors Associated with Hair Graying
3.1. Reduced Capacity of Melanin Synthesis and Transfer
3.2. Exhaustion of MSCs and Melanocytes
3.3. Genetics and Epigenetics
3.4. Race, Gender, and Family History
3.5. Aging
3.6. Oxidative Stress
3.7. Stress Hormones
3.8. Systematic Disorders
3.9. Nutrition
3.10. Smoking, Alcohol Consumption, Lifestyle, Medications, and Environmental Factors
4. Therapeutic Potential of Plant Extracts and Phytochemicals
4.1. Extracts and Bioactive Components of Polygonum multiflorum
4.2. Extracts and Bioactive Components of Eriodictyon angustifolium
4.3. Other Plant Extracts and Phytochemicals
5. Discussion
5.1. What Can Be the Targets for Treating Hair Graying?
5.2. What Are the Modulatory Targets of Plant Extracts and Phytochemicals?
5.3. What Should Be the Next Research Topics to Advance Treatments for Human Hair Graying?
6. Conclusions
Funding
Conflicts of Interest
References
- Morgan, B.A. The Dermal Papilla: An Instructive Niche for Epithelial Stem and Progenitor Cells in Development and Regeneration of the Hair Follicle. CSH Perspect. Med. 2014, 4, a015180. [Google Scholar] [CrossRef]
- Houschyar, K.S.; Borrelli, M.R.; Tapking, C.; Popp, D.; Puladi, B.; Ooms, M.; Chelliah, M.P.; Rein, S.; Pförringer, D.; Thor, D.; et al. Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. Dermatology 2020, 236, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.Y.; Zhu, L.; He, J. Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Front. Cell Dev. Biol. 2022, 10, 899095. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The Hair Follicle as a Dynamic Miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat. Rev. Mol. Cell Biol. 2024, 25, 87–100. [Google Scholar] [CrossRef]
- Morita, R.; Sanzen, N.; Sasaki, H.; Hayashi, T.; Umeda, M.; Yoshimura, M.; Yamamoto, T.; Shibata, T.; Abe, T.; Kiyonari, H.; et al. Tracing the origin of hair follicle stem cells. Nature 2021, 594, 547. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, S. Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Exp. Mol. Med. 2024, 56, 110–117. [Google Scholar] [CrossRef]
- Natarelli, N.; Gahoonia, N.; Sivamani, R.K. Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. J. Clin. Med. 2023, 12, 893. [Google Scholar] [CrossRef]
- Mort, R.L.; Jackson, I.J.; Patton, E.E. The melanocyte lineage in development and disease. Development 2015, 142, 620–632. [Google Scholar] [CrossRef]
- Huang, L.L.; Zuo, Y.Z.; Li, S.L.; Li, C.Y. Melanocyte stem cells in the skin: Origin, biological characteristics, homeostatic maintenance and therapeutic potential. Clin. Transl. Med. 2024, 14, e1720. [Google Scholar] [CrossRef]
- Sun, Q.; Lee, W.; Hu, H.; Ogawa, T.; De Leon, S.; Katehis, I.; Lim, C.H.; Takeo, M.; Cammer, M.; Taketo, M.M.; et al. Dedifferentiation maintains melanocyte stem cells in a dynamic niche. Nature 2023, 616, 774. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Yu, Y.; Liu, C.Y.; Zhang, X.; Zhu, P.Y.; Peng, Y.; Yan, X.Y.; Li, Y.; Hua, P.; Li, Q.F.; et al. Single-cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying. Cell Discov. 2022, 8, 49. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, Y.X.; Hu, C.; Jin, X.X.; Chen, X.P.; Xiao, Y.; Wang, C.C. Hair Graying Regulators Beyond Hair Follicle. Front. Physiol. 2022, 13, 839859. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fan, Z.X.; Zhu, D.C.; Guo, Y.L.; Ye, K.; Dai, D.; Guo, Z.; Hu, Z.Q.; Miao, Y.; Qu, Q. Emerging Role of Dermal White Adipose Tissue in Modulating Hair Follicle Development During Aging. Front. Cell Dev. Biol. 2021, 9, 728188. [Google Scholar] [CrossRef]
- Singal, A.; Daulatabad, D.; Grover, C. Graying severity score: A useful tool for evaluation of premature canities. Indian Dermatol. Online J. 2016, 7, 164–167. [Google Scholar] [CrossRef]
- Mirmirani, P. Age-related hair changes in men: Mechanisms and management of alopecia and graying. Maturitas 2015, 80, 58–62. [Google Scholar] [CrossRef]
- O’Sullivan, J.D.B.; Nicu, C.; Picard, M.; Cheret, J.; Bedogni, B.; Tobin, D.J.; Paus, R. The biology of human hair greying. Biol. Rev. Camb. Philos. Soc. 2021, 96, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.B.; Shamim, H.; Nagaraju, U. Premature Graying of Hair: Review with Updates. Int. J. Trichology 2018, 10, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Panhard, S.; Lozano, I.; Loussouarn, G. Greying of the human hair: A worldwide survey, revisiting the ‘50’ rule of thumb. Br. J. Dermatol. 2012, 167, 865–873. [Google Scholar] [CrossRef]
- Acer, E.; Arslantas, D.; Emiral, G.Ö.; Ünsal, A.; Atalay, B.I.; Göktas, S. Clinical and epidemiological characteristics and associated factors of hair graying: A population-based, cross-sectional study in Turkey. An. Bras. Dermatol. 2020, 95, 439–446. [Google Scholar] [CrossRef]
- Tobin, D.J.; Paus, R. Graying: Gerontobiology of the hair follicle pigmentary unit. Exp. Gerontol. 2001, 36, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Kaur, R.; Bala, I. Therapeutics of premature hair graying: A long journey ahead. J. Cosmet. Dermatol. 2019, 18, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Babar, N.F.; Majeed, R.; Rehman, A.U.; Khan, O.A.; Chatha, D.E.; Aamir, U.; Nadeem, A.; Abbas, S. Impact of Premature Greying of Hair on Socio-cultural Adjustment and Self-esteem among Medical Undergraduates in Foundation University, Islamabad. Cureus 2019, 11, e5083. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.M.; Rausser, S.; Ren, J.; Mosharov, E.V.; Sturm, G.; Ogden, R.T.; Patel, P.; Kumar Soni, R.; Lacefield, C.; Tobin, D.J.; et al. Quantitative mapping of human hair greying and reversal in relation to life stress. Elife 2021, 10, e67437. [Google Scholar] [CrossRef]
- Pandhi, D.; Khanna, D. Premature graying of hair. Indian J. Dermatol. Venereol. Leprol. 2013, 79, 641–653. [Google Scholar] [CrossRef]
- Chow, E.Y.; Salopek, T.G. Acitretin-Induced Repigmentation of Gray Hair: A Case Report. Cureus 2024, 16, e58261. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, Q.; Wang, Y.; Yang, D. Two case studies of persistent white hair regrowth after alopecia areata turning pigmented following treatment. J. Cosmet. Dermatol. 2024, 23, 2490–2495. [Google Scholar] [CrossRef]
- Dasanu, C.A.; Mitsis, D.; Alexandrescu, D.T. Hair repigmentation associated with the use of lenalidomide: Graying may not be an irreversible process! J. Oncol. Pharm. Pract. 2013, 19, 165–169. [Google Scholar] [CrossRef]
- Yale, K.; Juhasz, M.; Atanaskova Mesinkovska, N. Medication-Induced Repigmentation of Gray Hair: A Systematic Review. Skin. Appendage Disord. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Sakhiya, J.J.; Sakhiya, D.J.; Patel, M.R.; Daruwala, F.R. Case report on premature hair graying treated with Melitane 5% and oral hair supplements. Indian J. Pharmacol. 2019, 51, 346–349. [Google Scholar] [CrossRef]
- Chavan, D. Reversal of Premature Hair Graying Treated with a Topical Formulation Containing α-Melanocyte-Stimulating Hormone Agonist (Greyverse Solution 2%). Int. J. Trichology 2022, 14, 207–209. [Google Scholar] [CrossRef]
- Feng, Z.R.; Qin, Y.; Jiang, G. Reversing Gray Hair: Inspiring the Development of New Therapies Through Research on Hair Pigmentation and Repigmentation Progress. Int. J. Biol. Sci. 2023, 19, 4588–4607. [Google Scholar] [CrossRef] [PubMed]
- Paus, R.; Sevilla, A.; Grichnik, J.M. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J. Investig. Dermatol. 2024, 144, 474–491. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How do plants defend themselves against pathogens—Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef]
- Nasim, N.; Sandeep, I.S.; Mohanty, S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022, 65, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants 2020, 9, 637. [Google Scholar] [CrossRef]
- Boo, Y.C. Can Plant Phenolic Compounds Protect the Skin from Airborne Particulate Matter? Antioxidants 2019, 8, 379. [Google Scholar] [CrossRef]
- Sitarek, P.; Kowalczyk, T.; Wieezfinska, J.; Merecz-Sadowska, A.; Górski, K.; Sliwinski, T.; Skala, E. Plant Extracts as a Natural Source of Bioactive Compounds and Potential Remedy for the Treatment of Certain Skin Diseases. Curr. Pharm. Des. 2020, 26, 2859–2875. [Google Scholar] [CrossRef]
- Boo, Y.C. Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 1235. [Google Scholar] [CrossRef]
- Choi, J.Y.; Boo, M.Y.; Boo, Y.C. Can Plant Extracts Help Prevent Hair Loss or Promote Hair Growth? A Review Comparing Their Therapeutic Efficacies, Phytochemical Components, and Modulatory Targets. Molecules 2024, 29, 29102288. [Google Scholar] [CrossRef]
- Peters, E.M.; Liezmann, C.; Spatz, K.; Ungethum, U.; Kuban, R.J.; Daniltchenko, M.; Kruse, J.; Imfeld, D.; Klapp, B.F.; Campiche, R. Profiling mRNA of the graying human hair follicle constitutes a promising state-of-the-art tool to assess its aging: An exemplary report. J. Investig. Dermatol. 2013, 133, 1150–1160. [Google Scholar] [CrossRef]
- Bian, Y.M.; Wei, G.; Song, X.; Yuan, L.; Chen, H.Y.; Ni, T.; Lu, D.R. Global downregulation of pigmentation-associated genes in human premature hair graying. Exp. Ther. Med. 2019, 18, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Singh, S.K.; Mallick, S.; Bera, R.; Datta, P.K.; Mandal, M.; Roy, S.; Bhadra, R. Sphingolipid-mediated restoration of Mitf expression and repigmentation in vivo in a mouse model of hair graying. Pigment. Cell Melanoma Res. 2009, 22, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Commo, S.; Gaillard, O.; Bernard, B.A. Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath. Br. J. Dermatol. 2004, 150, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.M.; Imfeld, D.; Graub, R. Graying of the human hair follicle. J. Cosmet. Sci. 2011, 62, 121–125. [Google Scholar]
- Pss, R.; Madhunapantula, S.V.; Betkerur, J.B.; Bovilla, V.R.; Shastry, V. Melanogenesis Markers Expression in Premature Graying of Hair: A Cross-Sectional Study. Skin Pharmacol. Physiol. 2022, 35, 180–186. [Google Scholar] [CrossRef]
- Nishimura, E.K.; Granter, S.R.; Fisher, D.E. Mechanisms of hair graying: Incomplete melanocyte stem cell maintenance in the niche. Science 2005, 307, 720–724. [Google Scholar] [CrossRef]
- Ji, J.; Ho, B.S.; Qian, G.; Xie, X.M.; Bigliardi, P.L.; Bigliardi-Qi, M. Aging in hair follicle stem cells and niche microenvironment. J. Dermatol. 2017, 44, 1097–1104. [Google Scholar] [CrossRef]
- Choi, Y.J.; Yoon, T.J.; Lee, Y.H. Changing expression of the genes related to human hair graying. Eur. J. Dermatol. 2008, 18, 397–399. [Google Scholar] [CrossRef]
- Shi, Y.; Luo, L.F.; Liu, X.M.; Zhou, Q.; Xu, S.Z.; Lei, T.C. Premature Graying as a Consequence of Compromised Antioxidant Activity in Hair Bulb Melanocytes and Their Precursors. PLoS ONE 2014, 9, e93589. [Google Scholar] [CrossRef]
- Choi, H.I.; Choi, G.I.; Kim, E.K.; Choi, Y.J.; Sohn, K.C.; Lee, Y.; Kim, C.D.; Yoon, T.J.; Sohn, H.J.; Han, S.H.; et al. Hair greying is associated with active hair growth. Br. J. Dermatol. 2011, 165, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Steingrímsson, E.; Copeland, N.G.; Jenkins, N.A. Melanocyte stem cell maintenance and hair graying. Cell 2005, 121, 9–12. [Google Scholar] [CrossRef]
- Jo, S.K.; Lee, J.Y.; Lee, Y.; Kim, C.D.; Lee, J.H.; Lee, Y.H. Three Streams for the Mechanism of Hair Graying. Ann. Dermatol. 2018, 30, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Liu, Y.H.; He, J.; Wang, J.R.; Chen, X.D.; Yang, R.H. Regulation of signaling pathways in hair follicle stem cells. Burns Trauma 2022, 10, tkac022. [Google Scholar] [CrossRef] [PubMed]
- Schouwey, K.; Delmas, V.; Larue, L.; Zimber-Strobl, U.; Strobl, L.J.; Radtke, F.; Beermann, F. Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner. Dev. Dyn. 2007, 236, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Schouwey, K.; Beermann, F. The Notch pathway: Hair graying and pigment cell homeostasis. Histol. Histopathol. 2008, 23, 609–619. [Google Scholar] [CrossRef]
- Lee, Y.R.; Pandolfi, P.P. PTEN Mouse Models of Cancer Initiation and Progression. Cold Spring Harb. Perspect. Med. 2020, 10, a037283. [Google Scholar] [CrossRef]
- Inoue-Narita, T.; Hamada, K.; Sasaki, T.; Hatakeyama, S.; Fujita, S.; Kawahara, K.; Sasaki, M.; Kishimoto, H.; Eguchi, S.; Kojima, I.; et al. Pten deficiency in melanocytes results in resistance to hair graying and susceptibility to carcinogen-induced melanomagenesis. Cancer Res. 2008, 68, 5760–5768. [Google Scholar] [CrossRef]
- Endou, M.; Aoki, H.; Kobayashi, T.; Kunisada, T. Prevention of hair graying by factors that promote the growth and differentiation of melanocytes. J. Dermatol. 2014, 41, 716–723. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, M.; Xin, H.; Hu, C.; Yang, T.; Xing, Y.; Li, Y.; Guo, H.; Lian, X.; Deng, F. Wnt/β-catenin signaling promotes aging-associated hair graying in mice. Oncotarget 2017, 8, 69316–69327. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Zhang, J.; Zhao, H. Melanocyte stem cells and hair graying. J. Cosmet. Dermatol. 2023, 22, 1720–1723. [Google Scholar] [CrossRef]
- Phan, B.; Ali, A.M.; Black, T.A.; Kashyap, A.; Niazi, M.; Rashid, R.M. Fractal Pattern in the Premature Graying of Hair: A Case Report. Cureus 2024, 16, e59994. [Google Scholar] [CrossRef] [PubMed]
- Rangu, S.A.; Oza, V.S. Poliosis, hair pigment dilution, and premature graying of the hair: A diagnostic approach in pediatric patients and review of the literature. Pediatr. Dermatol. 2024, 41, 197–203. [Google Scholar] [CrossRef]
- Fatemi Naieni, F.; Ebrahimi, B.; Vakilian, H.R.; Shahmoradi, Z. Serum iron, zinc, and copper concentration in premature graying of hair. Biol. Trace Elem. Res. 2012, 146, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.; Gupta, V.; Kumari, R. A Community Based Study to Estimate Prevalence and Determine Correlates of Premature Graying of Hair among Young Adults in Srinagar, Uttarakhand, India. Int. J. Trichology 2020, 12, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Ryu, H.H.; Yoon, J.; Jo, S.; Jang, S.; Choi, M.; Kwon, O.; Jo, S.J. Association of premature hair graying with family history, smoking, and obesity: A cross-sectional study. J. Am. Acad. Dermatol. 2015, 72, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Anggraini, D.R.; Feriyawati, L.; Hidayat, H.; Wahyuni, A.S. Risk Factors Associated with Premature Hair Greying of Young Adult. Open Access Maced. J. Med. Sci. 2019, 7, 3762–3764. [Google Scholar] [CrossRef]
- Thompson, K.G.; Marchitto, M.C.; Ly, B.C.K.; Chien, A.L. Evaluation of Physiological, Psychological, and Lifestyle Factors Associated with Premature Hair Graying. Int. J. Trichology 2019, 11, 153–158. [Google Scholar] [CrossRef]
- Steingrímsson, E.; Arnheiter, H.; Hallsson, J.H.; Lamoreux, M.L.; Copeland, N.G.; Jenkins, N.A. Interallelic complementation at the mouse Mitf locus. Genetics 2003, 163, 267–276. [Google Scholar] [CrossRef]
- Harris, M.L.; Fufa, T.D.; Palmer, J.W.; Joshi, S.S.; Larson, D.M.; Incao, A.; Gildea, D.E.; Trivedi, N.S.; Lee, A.N.; Day, C.P.; et al. A direct link between MITF, innate immunity, and hair graying. PLoS Biol. 2018, 16, e2003648. [Google Scholar] [CrossRef]
- Adhikari, K.; Fontanil, T.; Cal, S.; Mendoza-Revilla, J.; Fuentes-Guajardo, M.; Chacón-Duque, J.C.; Al-Saadi, F.; Johansson, J.A.; Quinto-Sanchez, M.; Acuña-Alonzo, V.; et al. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat. Commun. 2016, 7, 10815. [Google Scholar] [CrossRef] [PubMed]
- Praetorius, C.; Grill, C.; Stacey, S.N.; Metcalf, A.M.; Gorkin, D.U.; Robinson, K.C.; Van Otterloo, E.; Kim, R.S.Q.; Bergsteinsdottir, K.; Ogmundsdottir, M.H.; et al. A Polymorphism in IRF4 Affects Human Pigmentation through a Tyrosinase-Dependent MITF/TFAP2A Pathway. Cell 2013, 155, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Pospiech, E.; Kukla-Bartoszek, M.; Karlowska-Pik, J.; Zielinski, P.; Wozniak, A.; Boron, M.; Dabrowski, M.; Zubanska, M.; Jarosz, A.; Grzybowski, T.; et al. Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genom. 2020, 21, 538. [Google Scholar] [CrossRef] [PubMed]
- Lambert, K.A.; Clements, C.M.; Mukherjee, N.; Pacheco, T.R.; Shellman, S.X.; Henen, M.A.; Vogeli, B.; Goldstein, N.B.; Birlea, S.; Hintzsche, J.; et al. SASH1 S519N Variant Links Skin Hyperpigmentation and Premature Hair Graying to Dysfunction of Melanocyte Lineage. J. Investig. Dermatol. 2024, S0022-0202X(0024)00393-00392. [Google Scholar] [CrossRef]
- Lambert, K.A.; Clements, C.M.; Mukherjee, N.; Pacheco, T.R.; Shellman, S.X.; Henen, M.A.; Vogeli, B.; Goldstein, N.B.; Birlea, S.; Hintzsche, J.; et al. SASH1 interacts with TNKS2 and promotes human melanocyte stem cell maintenance. bioRxiv 2023. [Google Scholar] [CrossRef]
- Yao, Q.; Chen, Y.; Zhou, X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019, 51, 11–17. [Google Scholar] [CrossRef]
- Bertrand, J.U.; Petit, V.; Aktary, Z.; de la Grange, P.; Elkoshi, N.; Sohier, P.; Delmas, V.; Levy, C.; Larue, L. Loss of Dicer in Newborn Melanocytes Leads to Premature Hair Graying and Changes in Integrin Expression. J. Investig. Dermatol. 2024, 144, 601–611. [Google Scholar] [CrossRef]
- Jo, S.J.; Paik, S.H.; Choi, J.W.; Lee, J.H.; Cho, S.; Kim, K.H.; Eun, H.C.; Kwon, O.S. Hair Graying Pattern Depends on Gender, Onset Age and Smoking Habits. Acta Derm.-Venereol. 2012, 92, 160–161. [Google Scholar] [CrossRef]
- Jo, S.J.; Shin, H.; Paik, S.H.; Choi, J.W.; Lee, J.H.; Cho, S.; Kwon, O. The Pattern of Hair Dyeing in Koreans with Gray Hair. Ann. Dermatol. 2013, 25, 401–404. [Google Scholar] [CrossRef]
- Wang, S.; Kang, Y.; Qi, F.; Jin, H. Genetics of hair graying with age. Ageing Res. Rev. 2023, 89, 101977. [Google Scholar] [CrossRef]
- Iida, M.; Tazaki, A.; Yajima, I.; Ohgami, N.; Taguchi, N.; Goto, Y.; Kumasaka, M.Y.; Prevost-Blondel, A.; Kono, M.; Akiyama, M.; et al. Hair graying with aging in mice carrying oncogenic RET. Aging Cell 2020, 19, e13273. [Google Scholar] [CrossRef] [PubMed]
- Giesen, M.; Gruedl, S.; Holtkoetter, O.; Fuhrmann, G.; Koerner, A.; Petersohn, D. Ageing processes influence keratin and KAP expression in human hair follicles. Exp. Dermatol. 2011, 20, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, C. Exploration of potential lipid biomarkers for age-induced hair graying by lipidomic analyses of hair shaft roots with follicular tissue attached. J. Cosmet. Dermatol. 2022, 21, 6118–6123. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef]
- Seiberg, M. Age-induced hair greying—The multiple effects of oxidative stress. Int. J. Cosmet. Sci. 2013, 35, 532–538. [Google Scholar] [CrossRef]
- Trueb, R.M. Oxidative stress in ageing of hair. Int. J. Trichology 2009, 1, 6–14. [Google Scholar] [CrossRef]
- Arck, P.C.; Overall, R.; Spatz, K.; Liezman, C.; Handjiski, B.; Klapp, B.F.; Birch-Machin, M.A.; Peters, E.M.J. Towards a “free radical theory of graying”: Melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J. 2006, 20, 1567–1569. [Google Scholar] [CrossRef]
- Acer, E.; Kaya Erdogan, H.; Kocaturk, E.; Saracoglu, Z.N.; Alatas, O.; Bilgin, M. Evaluation of oxidative stress and psychoemotional status in premature hair graying. J. Cosmet. Dermatol. 2020, 19, 3403–3407. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Gautam, R.K.; Gupta, A.; Chitkara, A. Evaluation of Systemic Oxidative Stress in Patients with Premature Canities and Correlation of Severity of Hair Graying with the Degree of Redox Imbalance. Int. J. Trichology 2020, 12, 16–23. [Google Scholar] [CrossRef]
- Chen, J.J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef]
- Kaminski, K.; Kazimierczak, U.; Kolenda, T. Oxidative stress in melanogenesis and melanoma development. Wspolczesna Onkol./Contemp. Oncol. 2022, 26, 112447. [Google Scholar] [CrossRef]
- Geueke, A.; Mantellato, G.; Kuester, F.; Schettina, P.; Nelles, M.; Seeger, J.M.; Kashkar, H.; Niemann, C. The anti-apoptotic Bcl-2 protein regulates hair follicle stem cell function. EMBO Rep. 2021, 22, e52301. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.M.; Decker, H.; Hartmann, H.; Chavan, B.; Rokos, H.; Spencer, J.D.; Hasse, S.; Thornton, M.J.; Shalbaf, M.; Paus, R.; et al. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 2009, 23, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Kauser, S.; Westgate, G.E.; Green, M.R.; Tobin, D.J. Human Hair Follicle and Epidermal Melanocytes Exhibit Striking Differences in Their Aging Profile which Involves Catalase. J. Investig. Dermatol. 2011, 131, 979–982. [Google Scholar] [CrossRef]
- Sikkink, S.K.; Mine, S.; Freis, O.; Danoux, L.; Tobin, D.J. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci. Rep. 2020, 10, 18711. [Google Scholar] [CrossRef]
- Emerit, I.; Filipe, P.; Freitas, J.; Vassy, J. Protective effect of superoxide dismutase against hair graying in a mouse model. Photochem. Photobiol. 2004, 80, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, A.; Kiss, T.; Gulej, R.; Tarantini, S.; Csik, B.; Yabluchanskiy, A.; Mukli, P.; Csiszar, A.; Harris, M.L.; Ungvari, Z. Irradiation-induced hair graying in mice: An experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. Geroscience 2024, 46, 3105–3122. [Google Scholar] [CrossRef]
- Dai, D.M.; He, Y.; Guan, Q.; Fan, Z.X.; Zhu, Y.M.; Wang, J.; Wu, S.L.; Chen, J.; Le, D.J.; Hu, Z.Q.; et al. Modeling human gray hair by irradiation as a valuable tool to study aspects of tissue aging. Geroscience 2023, 45, 1215–1230. [Google Scholar] [CrossRef]
- Anderson, Z.T.; Palmer, J.W.; Idris, M.I.; Villavicencio, K.M.; Le, G.; Cowart, J.; Weinstein, D.E.; Harris, M.L. Topical RT1640 treatment effectively reverses gray hair and stem cell loss in a mouse model of radiation-induced canities. Pigment Cell Melanoma Res. 2021, 34, 89–100. [Google Scholar] [CrossRef]
- Aoki, H.; Hara, A.; Motohashi, T.; Kunisada, T. Keratinocyte stem cells but not melanocyte stem cells are the primary target for radiation-induced hair graying. J. Investig. Dermatol. 2013, 133, 2143–2151. [Google Scholar] [CrossRef]
- Qiu, R.; Qiu, X.; Su, M.; Sun, M.; Wang, Y.; Wu, J.; Wang, H.; Tang, D.; Tao, S. Dietary Restriction Delays But Cannot Heal Irradiation-Induced Hair Graying by Preserving Hair Follicle Stem Cells in Quiescence. Rejuvenation Res. 2023, 26, 242–252. [Google Scholar] [CrossRef]
- Mueller, B.; Figueroa, A.; Robinson-Papp, J. Structural and functional connections between the autonomic nervous system, hypothalamic-pituitary-adrenal axis, and the immune system: A context and time dependent stress response network. Neurol. Sci. 2022, 43, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ma, S.; Rachmin, I.; He, M.; Baral, P.; Choi, S.; Goncalves, W.A.; Shwartz, Y.; Fast, E.M.; Su, Y.; et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 2020, 577, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, M.G.; Rachmin, I.; Yu, X.L.; Kim, S.; Fisher, D.E.; Hsu, Y.C. Melanocortin 1 receptor is dispensable for acute stress induced hair graying in mice. Exp. Dermatol. 2021, 30, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, A.R.; Larrick, J.W. The Danger of Being Too Sympathetic: Norepinephrine in Alzheimer’s Disease and Graying of Hair. Rejuvenation Res. 2020, 23, 68–72. [Google Scholar] [CrossRef]
- Kocaman, S.A.; Cetin, M.; Durakoglugil, M.E.; Erdogan, T.; Canga, A.; Cicek, Y.; Dogan, S.; Sahin, I.; Satiroglu, O.; Bostan, M. The degree of premature hair graying as an independent risk marker for coronary artery disease: A predictor of biological age rather than chronological age. Anadolu Kardiyol. Derg. 2012, 12, 457–463. [Google Scholar] [CrossRef]
- Sharma, K.; Humane, D.; Shah, K.; Patil, S.; Charaniya, R.; Meniya, J. Androgenic alopecia, premature graying, and hair thinning as independent predictors of coronary artery disease in young Asian males. Cardiovasc. Endocrinol. 2017, 6, 152–158. [Google Scholar] [CrossRef]
- ElFaramawy, A.A.A.; Hanna, I.S.; Darweesh, R.M.; Ismail, A.S.; Kandil, H.I. The degree of hair graying as an independent risk marker for coronary artery disease, a CT coronary angiography study. Egypt. Heart J. 2018, 70, 15–19. [Google Scholar] [CrossRef]
- Paik, S.H.; Jang, S.; Joh, H.K.; Lim, C.S.; Cho, B.; Kwon, O.; Jo, S.J. Association Between Premature Hair Greying and Metabolic Risk Factors: A Cross-sectional Study. Acta Derm.-Venereol. 2018, 98, 748–752. [Google Scholar] [CrossRef]
- Ozbay, I.; Kahraman, C.; Kucur, C.; Namdar, N.D.; Oghan, F. Is there a relationship between premature hair greying and hearing impairment? J. Laryngol. Otol. 2015, 129, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Choudhary, A.; Kumar, A.; Zaidi, A.; Mohanty, S.; Yadav, S. A Study of Association of Premature Graying of Hair and Osteopenia in North Indian Population. Int. J. Trichology 2020, 12, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Acer, E.; Erdogan, H.K.; Igrek, A.; Parlak, H.; Saraçoglu, Z.N.; Bilgin, M. Relationship between diet, atopy, family history, and premature hair graying. J. Cosmet. Dermatol. 2019, 18, 665–670. [Google Scholar] [CrossRef]
- Aggarwal, A.; Srivastava, S.; Agarwal, M.P.; Dwivedi, S. Premature Graying of Hair: An Independent Risk Marker for Coronary Artery Disease in Smokers—A Retrospective Case Control Study. Ethiop. J. Health Sci. 2015, 25, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Mahendiratta, S.; Sarma, P.; Kaur, H.; Kaur, S.; Kaur, H.; Bansal, S.; Prasad, D.; Prajapat, M.; Upadhay, S.; Kumar, S.; et al. Premature graying of hair: Risk factors, co-morbid conditions, pharmacotherapy and reversal—A systematic review and meta-analysis. Dermatol. Ther. 2020, 33, e13990. [Google Scholar] [CrossRef]
- El-Sheikh, A.M.; Elfar, N.N.; Mourad, H.A.; Hewedy, E.S. Relationship between Trace Elements and Premature Hair Graying. Int. J. Trichology 2018, 10, 278–283. [Google Scholar] [CrossRef]
- Choi, J.W.; Lew, B.L.; Sim, W.Y. A Case of Premature Hair Graying Treated with Ferrous Sulfate. Ann. Dermatol. 2016, 28, 775–776. [Google Scholar] [CrossRef]
- Bhat, R.M.; Sharma, R.; Pinto, A.C.; Dandekeri, S.; Martis, J. Epidemiological and investigative study of premature graying of hair in higher secondary and pre-university school children. Int. J. Trichology 2013, 5, 17–21. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Krishnappa, P.G.; Gowda, D.G.; Hiremath, J. Factors Associated with Premature Hair Graying in a Young Indian Population. Int. J. Trichology 2016, 8, 11–14. [Google Scholar] [CrossRef]
- El-Husseiny, R.; Alrgig, N.T.; Abdel Fattah, N.S.A. Epidemiological and biochemical factors (serum ferritin and vitamin D) associated with premature hair graying in Egyptian population. J. Cosmet. Dermatol. 2021, 20, 1860–1866. [Google Scholar] [CrossRef]
- Kiafar, B.; Taheri, A.; Isaac Hashemy, S.; Saki, A.; Mahdeianfar, B.; Taghavi, F.; Vahabi-Amlashi, S. Serum levels of lead and selenium in patients with premature graying of the hair. J. Cosmet. Dermatol. 2020, 19, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Skolnik, P.; Eaglstein, W.H.; Ziboh, V.A. Human essential fatty acid deficiency: Treatment by topical application of linoleic acid. Arch. Dermatol. 1977, 113, 939–941. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Dogra, D. Association of Epidemiological and Biochemical Factors with Premature Graying of Hair: A Case-Control Study. Int. J. Trichology 2018, 10, 211–217. [Google Scholar] [CrossRef]
- Sonthalia, S.; Priya, A.; Tobin, D.J. Demographic Characteristics and Association of Serum Vitamin B12, Ferritin and Thyroid Function with Premature Canities in Indian Patients from an Urban Skin Clinic of North India: A Retrospective Analysis of 71 Cases. Indian J. Dermatol. 2017, 62, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.A.; Shahait, A.D.; Ayoub, M.N.; Yousef, A.M. Smokers’ hair: Does smoking cause premature hair graying? Indian Dermatol. Online J. 2013, 4, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, R.; Gupta, A.; Moon, N.; Mahendra, A.; Sargaiyan, V.; Gupta, A.; Subudhi, S.K.; Gupta, S. Association between use of tobacco and age on graying of hair. Niger. J. Surg. 2014, 20, 83–86. [Google Scholar] [CrossRef]
- Akin Belli, A.; Etgu, F.; Ozbas Gok, S.; Kara, B.; Dogan, G. Risk Factors for Premature Hair Graying in Young Turkish Adults. Pediatr. Dermatol. 2016, 33, 438–442. [Google Scholar] [CrossRef]
- Osman, M.; McCauley, M.D. Psychiatric shades of grey: Mirtazapine-induced hair discoloration and hair loss. Ir. J. Psychol. Med. 2016, 33, 175–178. [Google Scholar] [CrossRef]
- Richena, M.; Silveira, M.; Rezende, C.A.; Joekes, I. Yellowing and bleaching of grey hair caused by photo and thermal degradation. J. Photochem. Photobiol. B-Biol. 2014, 138, 172–181. [Google Scholar] [CrossRef]
- Zhai, X.; Gong, M.H.; Peng, Y.X.; Yang, D.P. Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clin. Cosmet. Investig. Dermatol. 2021, 14, 527–539. [Google Scholar] [CrossRef]
- Naudin, G.; Bastien, P.; Mezzache, S.; Trehu, E.; Bourokba, N.; Appenzeller, B.M.R.; Soeur, J.; Bornschlögl, T. Human pollution exposure correlates with accelerated ultrastructural degradation of hair fibers. Proc. Natl. Acad. Sci. USA 2019, 116, 18410–18415. [Google Scholar] [CrossRef]
- Bounda, G.A.; Feng, Y.U. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds. Pharmacogn. Res. 2015, 7, 225–236. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Lin, P.; He, Y.; Yu, J.; Zhao, R. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum. Evid.-Based Complement. Altern. Med. 2015, 2015, 517901. [Google Scholar] [CrossRef] [PubMed]
- Han, M.N.; Lu, J.M.; Zhang, G.Y.; Yu, J.; Zhao, R.H. Mechanistic Studies on the Use of Polygonum multiflorum for the Treatment of Hair Graying. Biomed. Res. Int. 2015, 2015, 651048. [Google Scholar] [CrossRef]
- Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X.; Qu, C.; Ni, J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J. Ethnopharmacol. 2015, 159, 158–183. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.T.; Murthy, H.N.; Dalawai, D.; Bhat, M.A.; Paek, K.Y.; Park, S.Y. Attributes of Polygonum multiflorum to transfigure red biotechnology. Appl. Microbiol. Biotechnol. 2019, 103, 3317–3326. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, X.; Li, W.; Cai, B. Simultaneous Quantitation of Five Bioactive Ingredients in Raw and Processed Fallopia multiflora by Employing UHPLC-Q-TOF-MS. J. Chromatogr. Sci. 2019, 57, 618–624. [Google Scholar] [CrossRef]
- Xia, X.H.; Yuan, Y.Y.; Liu, M. The assessment of the chronic hepatotoxicity induced by Polygoni Multiflori Radix in rats: A pilot study by using untargeted metabolomics method. J. Ethnopharmacol. 2017, 203, 182–190. [Google Scholar] [CrossRef]
- Ling, S.; Xu, J.W. Biological Activities of 2,3,5,4′-Tetrahydroxystilbene-2-O-beta-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments. Oxid. Med. Cell Longev. 2016, 2016, 4973239. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ahn, S.M.; Wang, Z.; Choi, Y.W.; Shin, H.K.; Choi, B.T. Neuroprotective effects of 2,3,5,4′-tetrahydoxystilbene-2-O-beta-D-glucoside from Polygonum multiflorum against glutamate-induced oxidative toxicity in HT22 cells. J. Ethnopharmacol. 2017, 195, 64–70. [Google Scholar] [CrossRef]
- Sextius, P.; Betts, R.; Benkhalifa, I.; Commo, S.; Eilstein, J.; Massironi, M.; Wang, P.; Michelet, J.F.; Qiu, J.; Tan, X.; et al. Polygonum multiflorum Radix extract protects human foreskin melanocytes from oxidative stress in vitro and potentiates hair follicle pigmentation ex vivo. Int. J. Cosmet. Sci. 2017, 39, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.D.; Diep, P.N.; Lien, P.T.H.; Lien, L.T. Polygonum multiflorum root extract as a potential candidate for treatment of early graying hair. J. Adv. Pharm. Technol. Res. 2017, 8, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, H.J.; Jun, H.S. Polygonum multiflorum Thunb. Extract Stimulates Melanogenesis by Induction of COX2 Expression through the Activation of p38 MAPK in B16F10 Mouse Melanoma Cells. Evid.-Based Complement. Altern. Med. 2020, 2020, 7642019. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, J.; Long, M.; Tu, Z.; Yang, G.; He, G. 2,3,5,4′-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG) induces melanogenesis in B16 cells by MAP kinase activation and tyrosinase upregulation. Life Sci. 2009, 85, 345–350. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.M. The effect of emodin on melanogenesis through the modulation of ERK and MITF signaling pathway. Nat. Product. Res. 2022, 36, 1084–1088. [Google Scholar] [CrossRef]
- Jo, S.J.; Shin, H.; Paik, S.H.; Na, S.J.; Jin, Y.; Park, W.S.; Kim, S.N.; Kwon, O.S. Efficacy and Safety of Pueraria lobata Extract in Gray Hair Prevention: A Randomized, Double-Blind, Placebo-Controlled Study. Ann. Dermatol. 2013, 25, 218–222. [Google Scholar] [CrossRef]
- Reichelt, K.V.; Hartmann, B.; Weber, B.; Ley, J.P.; Krammer, G.E.; Engel, K.H. Identification of bisprenylated benzoic acid derivatives from yerba santa (Eriodictyon ssp.) using sensory-guided fractionation. J. Agric. Food Chem. 2010, 58, 1850–1859. [Google Scholar] [CrossRef]
- Yang, J.; Liang, Q.; Wang, M.; Jeffries, C.; Smithson, D.; Tu, Y.; Boulos, N.; Jacob, M.R.; Shelat, A.A.; Wu, Y.S.; et al. UPLC-MS-ELSD-PDA as a Powerful Dereplication Tool to Facilitate Compound Identification from Small-Molecule Natural Product Libraries. J. Nat. Prod. 2014, 77, 902–909. [Google Scholar] [CrossRef]
- Walker, J.; Reichelt, K.V.; Obst, K.; Widder, S.; Hans, J.; Krammer, G.E.; Ley, J.P.; Somoza, V. Identification of an anti-inflammatory potential of Eriodictyon angustifolium compounds in human gingival fibroblasts. Food Funct. 2016, 7, 3046–3055. [Google Scholar] [CrossRef]
- Taguchi, N.; Homma, T.; Aoki, H.; Kunisada, T. Dietary Eriodictyon angustifolium Tea Supports Prevention of Hair Graying by Reducing DNA Damage in CD34+ Hair Follicular Keratinocyte Stem Cells. Biol. Pharm. Bull. 2020, 43, 1451–1454. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, N.; Hata, T.; Kamiya, E.; Kobayashi, A.; Aoki, H.; Kunisada, T. Reduction in human hair graying by sterubin, an active flavonoid of Eriodictyon angustifolium. J. Dermatol. Sci. 2018, 92, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, N.; Hata, T.; Kamiya, E.; Homma, T.; Kobayashi, A.; Aoki, H.; Kunisada, T. Eriodictyon angustifolium extract, but not Eriodictyon californicum extract, reduces human hair greying. Int. J. Cosmet. Sci. 2020, 42, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, N.; Kitai, R.; Ando, T.; Nishimura, T.; Aoki, H.; Kunisada, T. Protective Effect of Hydroxygenkwanin against Hair Graying Induced by X-Ray Irradiation and Repetitive Plucking. JID Innov. 2022, 2, 100121. [Google Scholar] [CrossRef]
- Aoki, H.; Yamada, Y.; Hara, A.; Kunisada, T. Two distinct types of mouse melanocyte: Differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes. Development 2009, 136, 2511–2521. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Furuichi, Y. Hot-water extracts from adzuki beans (Vigna angularis) stimulate not only melanogenesis in cultured mouse B16 melanoma cells but also pigmentation of hair color in C3H mice. Biosci. Biotechnol. Biochem. 2005, 69, 873–882. [Google Scholar] [CrossRef]
- Zhao, P.J.; Park, N.H.; Alam, M.B.; Lee, S.H. Fuzhuan Brick Tea Boosts Melanogenesis and Prevents Hair Graying through Reduction of Oxidative Stress via NRF2-HO-1 Signaling. Antioxidants 2022, 11, 599. [Google Scholar] [CrossRef]
- Liu, X.; Lv, X.; Ji, T.; Hu, H.; Chang, L. Gynostemma pentaphyllum Makino extract induces hair growth and exhibits an anti-graying effect via multiple mechanisms. J. Cosmet. Dermatol. 2024, 23, 648–657. [Google Scholar] [CrossRef] [PubMed]
- de la Vega, M.R.; Zhang, D.D.; Wondrak, G.T. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front. Pharmacol. 2018, 9, 287. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Shi, R.L.; Yan, L.C.; Chu, W.W.; Sun, R.S.; Zheng, B.K.; Wang, S.; Tan, H.; Wang, X.S.; Gao, Y. Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression. Nat. Prod. Bioprospecting 2023, 13, 54. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, X.; Shen, H.; Zhao, R.; Li, Z.; Shen, X.; Wang, F.; Chen, K.; Zhou, Y.; Li, B.; et al. Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview. Molecules 2022, 27, 6079. [Google Scholar] [CrossRef]
- Chen, G.; Peng, Y.; Xie, M.; Xu, W.; Chen, C.; Zeng, X.; Liu, Z. A critical review of Fuzhuan brick tea: Processing, chemical constituents, health benefits and potential risk. Crit. Rev. Food Sci. Nutr. 2023, 63, 5447–5464. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Park, S.L.; Rojo de la Vega, M.; Zhang, D.D.; Wondrak, G.T. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2. Free Radic. Biol. Med. 2015, 89, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Lu, X.; Liu, Y.; Qiao, Y.; Qu, W.; Feng, F.; Sun, H. Recent research progress of Uncaria spp. based on alkaloids: Phytochemistry, pharmacology and structural chemistry. Eur. J. Med. Chem. 2021, 210, 112960. [Google Scholar] [CrossRef] [PubMed]
- Tobin, D.J. Aging of the hair follicle pigmentation system. Int. J. Trichology 2009, 1, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Gelmi, M.C.; Houtzagers, L.E.; Strub, T.; Krossa, I.; Jager, M.J. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int. J. Mol. Sci. 2022, 23, 6001. [Google Scholar] [CrossRef]
- Heilmann-Heimbach, S.; Hochfeld, L.M.; Henne, S.K.; Nothen, M.M. Hormonal regulation in male androgenetic alopecia-Sex hormones and beyond: Evidence from recent genetic studies. Exp. Dermatol. 2020, 29, 814–827. [Google Scholar] [CrossRef]
- Wellbrock, C.; Arozarena, I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 2015, 28, 390–406. [Google Scholar] [CrossRef]
- Lee, A.R.; Lim, J.; Lim, J.S. Emerging roles of MITF as a crucial regulator of immunity. Exp. Mol. Med. 2024, 56, 311–318. [Google Scholar] [CrossRef]
- Kim, J.H.; Seok, J.K.; Kim, Y.M.; Boo, Y.C. Identification of small peptides and glycinamide that inhibit melanin synthesis using a positional scanning synthetic peptide combinatorial library. Br. J. Dermatol. 2019, 181, 128–137. [Google Scholar] [CrossRef]
- Mansky, K.C.; Sankar, U.; Han, J.H.; Ostrowski, M.C. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-κB ligand signaling. J. Biol. Chem. 2002, 277, 11077–11083. [Google Scholar] [CrossRef]
- Zhou, J.; Song, J.; Ping, F.F.; Shang, J. Enhancement of the p38 MAPK and PKA signaling pathways is associated with the pro-melanogenic activity of Interleukin 33 in primary melanocytes. J. Dermatol. Sci. 2014, 73, 110–116. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, A.R.; Kim, Y.H.; Yoo, H.; Kang, S.W.; Chang, S.E.; Song, Y. JNK suppresses melanogenesis by interfering with CREB-regulated transcription coactivator 3-dependent MITF expression. Theranostics 2020, 10, 4017–4029. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal 2018, 29, 1727–1745. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Natural Nrf2 Modulators for Skin Protection. Antioxidants 2020, 9, 812. [Google Scholar] [CrossRef]
- Kwack, M.H.; Sung, Y.K.; Chung, E.J.; Im, S.U.; Ahn, J.S.; Kim, M.K.; Kim, J.C. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Investig. Dermatol. 2008, 128, 262–269. [Google Scholar] [CrossRef]
- Papukashvili, D.; Rcheulishvili, N.; Liu, C.; Xie, F.F.; Tyagi, D.; He, Y.J.; Wang, P.G. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021, 10, 2957. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.N.; Liu, Y.S.; Pan, L.L.; Cheng, B.A.; Liu, H.W. Norepinephrine Regulates Keratinocyte Proliferation to Promote the Growth of Hair Follicles. Cells Tissues Organs 2015, 201, 423–435. [Google Scholar] [CrossRef]
- De Tollenaere, M.; Chapuis, E.; Auriol, P.; Auriol, D.; Scandolera, A.; Reynaud, R. Global Repigmentation Strategy of Grey Hair Follicles by Targeting Oxidative Stress and Stem Cells Protection. Appl. Sci. 2021, 11, 1533. [Google Scholar] [CrossRef]
- Park, H.J.; Zhang, N.; Park, D.K. Topical application of Polygonum multiflorum extract induces hair growth of resting hair follicles through upregulating Shh and β-catenin expression in C57BL/6 mice. J. Ethnopharmacol. 2011, 135, 369–375. [Google Scholar] [CrossRef]
- Yu, H.S.; Wang, L.L.; He, Y.; Han, L.F.; Ding, H.; Song, X.B.; Gao, X.M.; Yun, N.R.; Li, Z. Advances in the Study of the Potential Hepatotoxic Components and Mechanism of Polygonum multiflorum. Evid.-Based Complement. Altern. Med. 2020, 2020, 6489648. [Google Scholar] [CrossRef]
- Teka, T.; Wang, L.M.; Gao, J.; Mou, J.J.; Pan, G.X.; Yu, H.Y.; Gao, X.M.; Han, L.F. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. J. Ethnopharmacol. 2021, 271, 113864. [Google Scholar] [CrossRef] [PubMed]
Models | Plant Extracts or Phytochemicals | Treatments | Efficacy | Molecular Targets | Reference |
---|---|---|---|---|---|
Six-week-old C57BL/6J male mice (10 animals per group); back furs bleached with 0.0375% H2O2 solution | PMR extract, PMRP extract, and TSG | TSG (oral 0.034 g kg−1 and topical 0.068 g kg−1), PMR extract (oral 0.576 g kg−1 and topical 1.152 g kg−1), or PMRP extract (oral 0.576 g kg−1 and topical 1.152 g kg−1) for 6 weeks. | PMR extract, PMRP, and TSG reversed the total melanin content of hairs bleached by H2O2. | PMR extract, PMRP extract, and TSG reversed the expression levels of α-MSH, MC1R, and TYR downregulated by H2O2. | [134] |
Primary human foreskin melanocytes cultured in vitro; human hair follicles cultured ex vivo. | Water extracts of PMRP and PMR. | Cells were treated with PMRP extract at 0.05, 0.1, 0.2, or 0.5 μg mL−1 in combination with 250 µM H2O2. Cells were treated with PMR extract at 0.01 mg mL−1 in combination with 350–1750 μM H2O2. Human hair follicles were treated with PMR extract at 0.1 mg mL−1 for 4 days. | PMR extract prevented cell death induced by H2O2. PMR extract enhanced pigmentation in human hair follicles ex vivo. | The water extract of PMRP reduced the intracellular ROS levels while preserving the GSH level in cells exposed to H2O2. | [141] |
Human melanoma SKMEL-28 cell line; Zebrafish embryos and larvae | The methanolic extract of PM roots | SKMEL-28 cells were treated with the extract at 312, 625, and 2500 μg mL−1. Zebrafish embryos were treated with the extract at 135 or 225 μg mL−1 for 4 days. | The extract increased the melanin contents in SKMEL-28 cells and zebrafish embryos and larvae. | The extract increased the mRNA levels of MC1R, MITF, and TYR in SKMEL-28 cells and zebrafish embryos and larvae. | [142] |
Murine melanoma B16F10 cell line | The 70% ethanolic extract of PM roots | B16F10 cells were treated with the extract at 1, 2.5, 5, 10, 20, or 40 μM. | The extract increased the activity of TYR and the cellular melanin content without affecting cell viability. | The extract induced the expression of COX2, MITF, TYR, TYRP1, and TYRP2, and the phosphorylation of p38 MAPK in cells. Inhibition of p38 MAPK using SB203580 abolished the stimulatory effects of the extract on the expression of COX2, MITF, and TYR and melanin synthesis in cells. | [143] |
Murine melanoma B16 cell line | TSG | B16 cells were treated with the extract at 1, 2, 5, or 10 μg mL−1 for 48 h. | TSG increased the activity of TYR and the cellular melanin content without affecting cell viability. | TSG induced the expression of TYR and MITF and the phosphorylation of CREB and p38 MAPK. Inhibition of p38 MAPK using SB203580 abolished the stimulatory effects of TSG on the expression of MITF and TYR and melanin synthesis in cells. | [144] |
Murine melanoma B16F1 cell line exposed to H2O2 | Emodin | B16F1 cells were treated with emodin at 0.125 0.25, 0.5, 1, or 2 µM in combination with 250 µM H2O2. | Emodin increased the activity of TYR and the melanin content in cells exposed to H2O2. | Emodin reduced the intracellular ROS levels and increased the protein levels of TYR, TYRP1, TYRP2, MITF, SIRT1, and FOXO1 while reducing those of ERK and phospho-ERK in cells treated with H2O2. | [145] |
A randomized, double-blind clinical trial on 44 female subjects | APHG-1001: Pueraria lobate, Pleuropterus multiflorus (Polygonum multiflorum), and Ginkgo biloba leaves | Topical treatments with a tonic spray APHG-1001 twice daily for 24 weeks. | The tonic reduced the average number of newly developed gray hairs per unit area (cm2) compared to the placebo group (6.3 versus 11.4) although without significant changes in the gross hair grayness. | [146] |
Models | Plant Extracts or Phytochemicals | Treatments | Efficacy | Molecular Targets | Reference |
---|---|---|---|---|---|
Human melanoma HMVII cell line exposed to X-ray irradiation: NHEKs from a human subject with gray beard hair | Sterubin (a flavonoid compound found in EA) | Cells were treated with sterubin up to 100 μg mL−1. Sterubin solution (0.1%) was topically applied to the beard area of a human subject for 4 weeks. | Sterubin increased melanin contents in HMVII cells and attenuated radiation-induced oxidative DNA damage (γH2AX foci) and death of NHEKs. Its topical application restored pigmentation in the gray beard hair of a human subject. | Sterubin increased the nuclear translocation of β-catenin, nuclear MITF, and TYR in HMVII cells. It also attenuated radiation-induced ROS production and mitochondrial membrane disintegration in NHEKs irradiated with X-ray. | [151] |
Human melanoma HMVII cell line ) exposed to X-ray irradiation: NHEKs from human subjects with gray beard hair (7 subjects per group) and human subjects with gray head hair (40–56 years old, 1 man and 9 women | Ethanol extracts of EA and EC | Cells were treated with EA or EC extract at 1–10 μg mL−1 (HMVII cell line) or 100 μg mL−1 (NHEKs). In clinical studies, the extracts (1 mL) were topically applied twice daily for one year (beard hair) or daily for 24 weeks (head hair). | The EA extract, but not the EC extract increased melanin contents in HMVII cells. The topical application of the EA extract reduced the occurrence of gray beard hair and head hair in human subjects. | EA extract, but not EC extract, increased the nuclear translocation of β-catenin, nuclear MITF, and TYR in melanocytes. Both EA and EC extracts attenuated radiation-induced DNA damage (γH2AX foci) and death of NHEKs. | [152] |
C57BL/6 mice whose dorsal hairs were plucked and irradiated with X-ray | Hot water extract (tea) of EA leaves and stems | Three-week-old mice were given water or the extract freely for one month before hair plucking and X-ray irradiation. | The EA extract reduced the occurrence of gray hair one month later. | EA extract attenuated X-ray-induced oxidative DNA damage (γH2AX foci) of CD34+ HFKSCs in the skin. | [150] |
NHEKs exposed to X-ray radiation: C57BL/6 mice subjected to X-ray irradiation or repeated hair plucking | Hydroxygenkwanin, sterubin, and luteolin (flavonoid compounds found in EA) | NHEKs were treated with each compound up to 100 μM. Mice were topically treated with each compound solution (0.1%) daily before or after X-ray irradiation or repeated hair plucking. | Hydroxygenkwanin pretreatment before X-ray irradiation or repeated hair plucking prevented hair graying in mice. | Hydroxygenkwanin, sterubin, and luteolin attenuated radiation-induced oxidative DNA damage (γH2AX foci) and death of NHEKs. Hydroxygenkwanin attenuated the radiation-induced ROS production and mitochondrial membrane disintegration. | [153] |
Models | Plant Extracts or Phytochemicals | Treatments | Efficacy | Molecular Targets | Reference |
---|---|---|---|---|---|
Murine melanoma B16–BL6 cell line: Five to six-week-old C3H/HeJ Jel mice | A partially purified fraction from the hot water extract of adzuki beans (Vigna angularis) eluted through the Diaion HP-20 column | B16–BL6 cells were treated with the extract at 1, 2, or 3 mg mL−1 for 72 h. Mice were given water containing 1.0% extract for 12 weeks. | The extract increased melanin content and TYR activity in B16–BL6 cells without affecting cell proliferation. Its oral administration increased the melanin contents of back and abdomen hair in mice. | The extract increased cyclic AMP content and PKA activity in B16–BL6 cells. It increased the expression levels of TYR and TYRP2 but not TYRP1. | [155] |
Melan-A cell line; Seven-week-old male C57BL/6 mice treated with hydroquinone | n-Hexane fraction of the ethanolic extract of Fuzhuan brick tea | Melan-A cells were treated with the fraction at 3, 10, or 30 μg mL−1. The fraction was topically administered to mice at 50 or 100 mg kg−1 in combination with 100 mg kg−1 hydroquinone. | The fraction increased melanin content and TYR activity in Melan-A cells. Its topical application attenuated hair graying in mice. | The fraction increased the expression levels of NRF2 and its target genes, such as HO1, SOD1, CAT, and GPX1 as well as MITF, TYR, TYRP1, and TYRP2 in Melan-A cells and C57BL/6 mice. It also stimulated the phosphorylation of p38 MAPK, JNK, and ERK in Melan-A cells. | [156] |
Murine melanoma B16 cell line stimulated with norepinephrine | Extract of GP leaves | B16 cells were treated with the extract at 0.1–6.4 mg mL−1 in combination with 1 µM norepinephrine for 48 h. | The extract increased melanin content and TYR activity in B16 cells stimulated with norepinephrine. | The extract upregulated MITF, TYR, TYRP1, and TYRP2 mRNA levels in cells. | [157] |
C57BL/6J Nrf2+/+ and Nrf2−/− mice; depilation and PUVA phototherapy | Bixin (an apocarotenoid compound found in the seeds of Bixa orellana) | Mice were topically applied with 1% bixin in polyethylene glycol 400 before PUVA phototherapy. | PUVA phototherapy caused hair graying in both Nrf2+/+ and Nrf2−/− mice. Topical bixin pre-treatment attenuated hair graying in Nrf2+/+ mice but paradoxically enhanced it in Nrf2−/− mice. | Topical bixin induced a twofold increase in NRF2 and its target genes, such as TRXR1, p62 (SQSTM1), NQO1, HO1, GCLM, and OGG1 in Nrf2+/+ mice. PUVA phototherapy caused NRF2 activation, which was attenuated by bixin pretreatment. | [158] |
Human A2058 cell line and murine melanoma B16F10 cell line stimulated with norepinephrine; seven-week-old male C57BL/6 mice; depilation and exposure to resiniferatoxin-induced stress | Rhynchophylline (an alkaloid compound found in certain Uncaria species) | Cells were treated with rhynchophylline at 50 or 100 μM in combination with 100 µM norepinephrine. In animal experiments, 1 mg mL−1 rhynchophylline (200 µL) was topically applied to the skin of mice twice a day for 30 days. | Rhynchophylline restored the melanogenic pathway and intracellular calcium balance and attenuated apoptosis of A2058 and B16F10 cells influenced by norepinephrine. Its topical application reduced the hair graying in the stressed mice. | Rhynchophylline exhibited strong and stable binding within the active site of β2AR and inhibited the norepinephrine–β2AR–PKA signaling pathway. | [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boo, Y.C. Intrinsic and Extrinsic Factors Associated with Hair Graying (Canities) and Therapeutic Potential of Plant Extracts and Phytochemicals. Appl. Sci. 2024, 14, 7450. https://doi.org/10.3390/app14177450
Boo YC. Intrinsic and Extrinsic Factors Associated with Hair Graying (Canities) and Therapeutic Potential of Plant Extracts and Phytochemicals. Applied Sciences. 2024; 14(17):7450. https://doi.org/10.3390/app14177450
Chicago/Turabian StyleBoo, Yong Chool. 2024. "Intrinsic and Extrinsic Factors Associated with Hair Graying (Canities) and Therapeutic Potential of Plant Extracts and Phytochemicals" Applied Sciences 14, no. 17: 7450. https://doi.org/10.3390/app14177450
APA StyleBoo, Y. C. (2024). Intrinsic and Extrinsic Factors Associated with Hair Graying (Canities) and Therapeutic Potential of Plant Extracts and Phytochemicals. Applied Sciences, 14(17), 7450. https://doi.org/10.3390/app14177450