The Effects of Flywheel Training with a Portable Device on Physical Performance in Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. The 20 m Linear Sprint
2.2.2. The 20 m Curve Sprint
2.2.3. V-Cut Change of Direction Test
2.3. Training Program
2.4. Statistical Analyses
3. Results
4. Discussion
5. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Single-Leg Power Output and Between-Limbs Imbalances in Team-Sport Players: Unilateral Versus Bilateral Combined Resistance Training. Int. J. Sports Physiol. Perform. 2017, 12, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Born, D.-P.; Zinner, C.; Düking, P.; Sperlich, B. Multi-Directional Sprint Training Improves Change-Of-Direction Speed and Reactive Agility in Young Highly Trained Soccer Players. J. Sports Sci. Med. 2016, 15, 314–319. [Google Scholar] [PubMed]
- Taylor, J.B.; Wright, A.A.; Dischiavi, S.L.; Townsend, M.A.; Marmon, A.R. Activity Demands During Multi-Directional Team Sports: A Systematic Review. Sports Med. 2017, 47, 2533–2551. [Google Scholar] [CrossRef] [PubMed]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding Change of Direction Ability in Sport: A Review of Resistance Training Studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef]
- Little, T.; Williams, A.G. Specificity of Acceleration, Maximum Speed, and Agility in Professional Soccer Players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar] [CrossRef]
- Raya-González, J.; Castillo, D.; De Keijzer, K.L.; Beato, M. The Effect of a Weekly Flywheel Resistance Training Session on Elite U-16 Soccer Players’ Physical Performance during the Competitive Season. A Randomized Controlled Trial. Res. Sports Med. 2021, 29, 571–585. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, W.B. Agility Literature Review: Classifications, Training and Testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef]
- Young, W.B.; James, R.; Montgomery, I. Is Muscle Power Related to Running Speed with Changes of Direction? J. Sports Med. Phys. Fitness 2002, 43, 282–288. [Google Scholar]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of Direction Speed: Toward a Strength Training Approach with Accentuated Eccentric Muscle Actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef]
- Caldbeck, P. Contextual Sprinting in Football; Liverpool John Moores University: Liverpool, UK, 2020. [Google Scholar]
- Fílter, A.; Olivares, J.; Santalla, A.; Nakamura, F.Y.; Loturco, I.; Requena, B. New Curve Sprint Test for Soccer Players: Reliability and Relationship with Linear Sprint. J. Sports Sci. 2020, 38, 1320–1325. [Google Scholar] [CrossRef]
- Filter, A.; Olivares-Jabalera, J.; Santalla, A.; Morente-Sánchez, J.; Robles-Rodríguez, J.; Requena, B.; Loturco, I. Curve Sprinting in Soccer: Kinematic and Neuromuscular Analysis. Int. J. Sports Med. 2020, 41, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Filter, A. Curve Sprint and Heading Test: A Specific Aprroach to Asses Soccer Players’ Performance; Universidad Pablo de Olavide: Sevilla, Spain, 2020. [Google Scholar]
- De Hoyo, M.; De La Torre, A.; Pradas, F.; Sañudo, B.; Carrasco, L.; Mateo-Cortes, J.; Domínguez-Cobo, S.; Fernandes, O.; Gonzalo-Skok, O. Effects of Eccentric Overload Bout on Change of Direction and Performance in Soccer Players. Int. J. Sports Med. 2014, 36, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of Strength Characteristics to Change of Direction and Agility Performance in Female Basketball Athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Norrbrand, L.; Fluckey, J.D.; Pozzo, M.; Tesch, P.A. Resistance Training Using Eccentric Overload Induces Early Adaptations in Skeletal Muscle Size. Eur. J. Appl. Physiol. 2007, 102, 271–281. [Google Scholar] [CrossRef]
- Nuñez Sanchez, F.J.; Sáez De Villarreal, E. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis. J. Strength. Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef]
- Nuñez, F.J. Resistance Training Using Flywheel Resistance Training Devices. In Resistance Training Methods; Springer: Berlin/Heidelberg, Germany, 2022; pp. 125–136. [Google Scholar]
- Núñez, F.J.; Suarez-Arrones, L.J.; Cater, P.; Mendez-Villanueva, A. The High-Pull Exercise: A Comparison Between a VersaPulley Flywheel Device and the Free Weight. Int. J. Sports Physiol. Perform. 2017, 12, 527–532. [Google Scholar] [CrossRef]
- Jaffri, A.; Koldenhoven, R.; Saliba, S.; Hertel, J. Evidence of Intrinsic Foot Muscle Training in Improving Foot Function: A Systematic Review and Meta-Analysis. J. Athl. Train. 2022, 58, 941–951. [Google Scholar] [CrossRef]
- Fiorilli, G.; Mariano, I.; Iuliano, E.; Giombini, A.; Ciccarelli, A.; Buonsenso, A.; Calcagno, G.; di Cagno, A. Isoinertial Eccentric-Overload Training in Young Soccer Players: Effects on Strength, Sprint, Change of Direction, Agility and Soccer Shooting Precision. J. Sports Sci. Med. 2020, 19, 213–223. [Google Scholar]
- Madruga-Parera, M.; Bishop, C.; Fort-Vanmeerhaeghe, A.; Beato, M.; Gonzalo-Skok, O.; Romero-Rodríguez, D. Effects of 8 Weeks of Isoinertial vs. Cable-Resistance Training on Motor Skills Performance and Interlimb Asymmetries. J. Strength Cond. Res. 2022, 36, 1200–1208. [Google Scholar] [CrossRef]
- De Keijzer, K.L.; Raya-González, J.; López Samanés, Á.; Moreno Perez, V.; Beato, M. Perception and Use of Flywheel Resistance Training amongst Therapists in Sport. Front. Sports Act. Living 2023, 5, 1141431. [Google Scholar] [CrossRef]
- Illera-Domínguez, V.; Font-Aragonés, X.; Toro-Román, V.; Díaz-Alejandre, S.; Pérez-Chirinos, C.; Albesa-Albiol, L.; González-Millán, S.; Fernández-Valdés, B. Validity of Force and Power Measures from an Integrated Rotary Encoder in a HandyGym Portable Flywheel Exercise Device. Appl. Sci. 2024, 14, 9832. [Google Scholar] [CrossRef]
- HandyGym: Manual de Instrucciones. Available online: https://handygymfit.com/wp-content/uploads/2020/10/Manual-de-Usuario-HG-es-V08-.pdf (accessed on 10 November 2024).
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.; Casajús, J.; Mendez-Villanueva, A. Validity of the V-Cut Test for Young Basketball Players. Int. J. Sports Med. 2015, 36, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar] [PubMed]
- Núñez, F.J.; Santalla, A.; Carrasquila, I.; Asian, J.A.; Reina, J.I.; Suarez-Arrones, L.J. The Effects of Unilateral and Bilateral Eccentric Overload Training on Hypertrophy, Muscle Power and COD Performance, and Its Determinants, in Team Sport Players. PLoS ONE 2018, 13, e0193841. [Google Scholar] [CrossRef]
- Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Tesch, P. Enhancing Change-of-Direction Speed in Soccer Players by Functional Inertial Eccentric Overload and Vibration Training. Int. J. Sports Physiol. Perform. 2016, 11, 66–73. [Google Scholar] [CrossRef]
- Clemente, F.M.; González-Fernández, F.T.; García-Delgado, G.; Silva, R.; Silva, A.F.; Nobari, H.; Falces-Prieto, M. Leg Dominance and Performance in Change of Directions Tests in Young Soccer Players. Sci. Rep. 2022, 12, 12900. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-López, D.; De Paz, J.A. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef]
- Galiano, C.; Floria, P.; Muñoz-López, A.; Nuñez, F.J. Lack of Experience in the Use the Rotational Inertia Device Is a Limitation to Mechanical Squat Performance (La Falta de Experiencia Es Una Limitación Para El Rendimiento Mecánico En Sentadillas Cuando Se Usan Dispositivos de Inercia Rotacional). Retos 2021, 42, 12–17. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Huang, K.; Huang, H.; Li, F.; Yuan, X. Comparing the Effect of Isoinertial Flywheel Training and Traditional Resistance Training on Maximal Strength and Muscle Power in Healthy People: A Systematic Review and Meta-Analysis. Life 2024, 14, 908. [Google Scholar] [CrossRef]
- Galiano, C.; Floria, P.; Muñoz-López, A.; Sáez De Villarreal, E.; Nuñez, F.J. Stable vs. Variable Eccentric Load. Do They Induce Different Training and Physical Performance Outcomes? Eur. J. Sport Sci. 2023, 23, 1932–1939. [Google Scholar] [CrossRef]
- Buonsenso, A.; Centorbi, M.; Iuliano, E.; Di Martino, G.; Della Valle, C.; Fiorilli, G.; Calcagno, G.; Di Cagno, A. A Systematic Review of Flywheel Training Effectiveness and Application on Sport Specific Performances. Sports 2023, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Ade, J.; Fitzpatrick, J.; Bradley, P.S. High-Intensity Efforts in Elite Soccer Matches and Associated Movement Patterns, Technical Skills and Tactical Actions. Information for Position-Specific Training Drills. J. Sports Sci. 2016, 34, 2205–2214. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.; Bachl, N.; Pigozzi, F. Performance Characteristics According to Playing Position in Elite Soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, F.J.; De Hoyo, M.; López, A.M.; Sañudo, B.; Otero-Esquina, C.; Sanchez, H.; Gonzalo-Skok, O. Eccentric-Concentric Ratio: A Key Factor for Defining Strength Training in Soccer. Int. J. Sports Med. 2019, 40, 796–802. [Google Scholar] [CrossRef]
- De Hoyo, M.; Sañudo, B.; Carrasco, L.; Domínguez-Cobo, S.; Mateo-Cortes, J.; Cadenas-Sánchez, M.M.; Nimphius, S. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks. J. Hum. Kinet. 2015, 47, 155–167. [Google Scholar] [CrossRef]
EG (n = 17) | CG (n = 16) | |
---|---|---|
Age (years) | 21.94 ± 2.66 | 21.56 ± 1.7 |
Body mass (kg) | 73.54 ± 7.12 | 72.77 ± 8.29 |
Height (m) | 1.79 ± 0.06 | 1.78 ± 0.07 |
Years of training (soccer) | 14.88 ± 3.39 | 14.13 ± 2.06 |
Variables | ICC (95% CI) | CV |
---|---|---|
V-Cut | 0.902 (0.772–0.958) | 6.75% |
T10 | 0.966 (0.921–0.985) | 7.64% |
T20 | 0.930 (0.838–0.970) | 7.96% |
CS10l | 0.927 (0.830–0.969) | 5.98% |
CS10r | 0.913 (0.799–0.963) | 8.28% |
CS20l | 0.890 (0.744–0.953) | 7.17% |
CS20r | 0.937 (0.853–0.973) | 6.70% |
Variable | EG | CG | ||||
---|---|---|---|---|---|---|
Pre-Test | Post-Test | ES | Pre-Test | Post-Test | ES | |
V-Cut (s) | 6.52 ± 0.13 | 6.25 ± 0.11 *§ | 2.16 | 6.49 ± 0.26 | 6.59 ± 0.29 *§ | 0.35 |
T10 (s) | 1.58 ± 0.09 # | 1.69 ± 0.05 | 1.51 | 1.70 ± 0.06 # | 1.74 ± 0.09 | 0.51 |
T20 (s) | 2.85 ± 0.11 # | 2.95 ± 0.08 | 1.01 | 2.98 ± 0.11 # | 3.03 ± 0.11 | 0.44 |
CS10l (s) | 1.73 ± 0.04 | 1.71 ± 0.05 | 0.43 | 1.75 ± 0.08 | 1.75 ± 0.05 | 0.00 |
CS10r (s) | 1.77 ± 0.06 | 1.69 ± 0.05 *§ | 1.40 | 1.79 ± 0.08 | 1.77 ± 0.06 * | 0.28 |
CS20l (s) | 3.08 ± 0.08 | 3.04 ± 0.08 * | 0.48 | 3.11 ± 0.11 | 3.14 ± 0.08 * | 0.30 |
CS20r (s) | 3.11 ± 0.09 | 3.03 ± 0.08 *§ | 0.91 | 3.17 ± 0.10 | 3.15 ± 0.09 * | 0.20 |
CS10l–CS10r (%) | 2.10 ± 2.42 | −1.05 ± 1.83 | 1.43 | 2.37 ± 3.26 | 1.38 ± 3.10 | 0.30 |
CS20l–CS20r (%) | 0.97 ± 0.89 | −0.42 ± 1.40 | 1.17 | 1.95 ± 1.85 | 0.30 ± 1.86 | 0.86 |
Variables | EG | CG | ||||||
---|---|---|---|---|---|---|---|---|
CS10r Pre | CS10r Post | CS20r Pre | CS20r Post | CS10r Pre | CS10r Post | CS20r Pre | CS20r Post | |
CS10l pre | 0.039 | 0.023 | ||||||
CS10l post | 0.104 | 0.088 | ||||||
CS20l pre | 0.010 | 0.004 | ||||||
CS20l post | 0.349 | 0.653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez Romero, J.; Núñez-González, J.L.; Valenzuela Barrero, C.; Hernández Abad, F.; Núñez, F.J. The Effects of Flywheel Training with a Portable Device on Physical Performance in Soccer Players. Appl. Sci. 2024, 14, 11857. https://doi.org/10.3390/app142411857
Vázquez Romero J, Núñez-González JL, Valenzuela Barrero C, Hernández Abad F, Núñez FJ. The Effects of Flywheel Training with a Portable Device on Physical Performance in Soccer Players. Applied Sciences. 2024; 14(24):11857. https://doi.org/10.3390/app142411857
Chicago/Turabian StyleVázquez Romero, Javier, Juan L. Núñez-González, Carlos Valenzuela Barrero, Fernando Hernández Abad, and Francisco J. Núñez. 2024. "The Effects of Flywheel Training with a Portable Device on Physical Performance in Soccer Players" Applied Sciences 14, no. 24: 11857. https://doi.org/10.3390/app142411857
APA StyleVázquez Romero, J., Núñez-González, J. L., Valenzuela Barrero, C., Hernández Abad, F., & Núñez, F. J. (2024). The Effects of Flywheel Training with a Portable Device on Physical Performance in Soccer Players. Applied Sciences, 14(24), 11857. https://doi.org/10.3390/app142411857