Sex-Related and Performance Differences in Contractile Properties, ROM, Strength, and Dynamometry Performance of World-Class Flatwater Canoeists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.3.1. Muscle-Tendon Contractile Properties
2.3.2. Range of Motion
2.3.3. Strength Tests
2.3.4. Canoe-Specific FEMD Performance
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Álvarez-Yates, T.; García-García, O. Determinants of flatwater canoeing and kayaking performance: A systematic review. Med. Dello Sport 2021, 74, 355–383. [Google Scholar] [CrossRef]
- Capranica, L.; Piacentini, M.F.; Halson, S.; Myburgh, K.H.; Ogasawara, E.; Millard-Stafford, M. The gender gap in sport performance: Equity influences equality. Int. J. Sports Physiol. Perform. 2013, 8, 99–103. [Google Scholar] [CrossRef]
- Sandbakk, O.; Solli, G.S.; Holmberg, H.C. Sex differences in world-record performance: The influence of sport discipline and competition duration. Int. J. Sports Physiol. Perform. 2018, 13, 2–8. [Google Scholar] [CrossRef]
- Limonta, E.; Squadrone, R.; Rodano, R.; Marzegan, A.; Veicteinas, A.; Merati, G.; Sacchi, M. Tridimensional kinematic analysis on a kayaking simulator: Key factors to successful performance. Sport Sci. Health 2010, 6, 27–34. [Google Scholar] [CrossRef]
- Kendal, S.J.; Sanders, R.H. The technique of elite flatwater kayak paddlers using the wing paddle. Int. J. Sport Biomech. 1992, 8, 233–250. [Google Scholar] [CrossRef]
- Brown, M.B.; Lauder, M.; Dyson, R. Notational analysis of sprint kayaking: Differentiating between ability levels. Int. J. Perform. Anal. Sport 2011, 11, 171–183. [Google Scholar] [CrossRef]
- Nilsson, J.E.; Rosdahl, H.G. Contribution of leg-muscle forces to paddle force and kayak speed during maximal-effort flat-water paddling. Int. J. Sports Physiol. Perform. 2016, 11, 22–27. [Google Scholar] [CrossRef]
- Steeves, D.; Thornley, L.J.; Goreham, J.A.; Jordan, M.J.; Landry, S.C.; Fowles, J.R. Reliability and validity of a novel trunk-strength assessment for high-performance sprint flat-water kayakers. Int. J. Sports Physiol. Perform. 2019, 14, 486–492. [Google Scholar] [CrossRef]
- García-García, O.; Cuba-Dorado, A.; Alvarez-Yates, T.; Carballo-López, J.; Iglesias-Caamaño, M. Clinical utility of tensiomyography for muscle function analysis in athletes. Open Access J. Sports Med. 2019, 10, 49–69. [Google Scholar] [CrossRef]
- del-Cuerpo, I.; Jerez-Mayorga, D.; Chirosa-Ríos, L.J.; Morenas-Aguilar, M.D.; Mariscal-Arcas, M.; López-Moro, A.; Delgado-Floody, P. Males have a higher energy expenditure than females during squat training. Nutrients 2023, 15, 3455. [Google Scholar] [CrossRef]
- Rodriguez-Perea, A.; Jerez-Mayorga, D.; García-Ramos, A.; Martínez-García, D.; Ríos, L.J.C. Reliability and concurrent validity of a functional electromechanical dynamometer device for the assessment of movement velocity. Proc. Inst. Mech. Eng. Part P-J. Sports Eng. Technol. 2021, 235, 176–181. [Google Scholar] [CrossRef]
- Campos Jara, C.A.; González, I.J.B.; Chirosa Ríos, L.J.; Martin Tamayo, I.; Lopez Fuenzalida, A.E.; Chirosa Ríos, I.J. Validación y fiabilidad del dispositivo Haefni Health System 1.0 en la medición de la velocidad en el rango isocinético. Cuad. Psicol. Deporte 2014, 14, 91–98. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, A.J.; Chirosa-Ríos, L.J.; Chirosa-Ríos, I.J.; García-Vega, A.J.; Jerez-Mayorga, D. Test-retest reliability of a functional electromechanical dynamometer on swing eccentric hamstring exercise measures in soccer players. Peerj 2021, 9, e11743. [Google Scholar] [CrossRef]
- Ualí, I.; Herrero, A.J.; Garatachea, N.; Marín, P.J.; Alvear-Ordenes, I.; García-López, D. Maximal strength on different resistance training rowing exercises predicts start phase performance in elite kayakers. J. Strength Cond. Res. 2012, 26, 941–946. [Google Scholar] [CrossRef]
- Tornberg, A.B.; Håkansson, P.; Svensson, I.; Wollmer, P. Forces applied at the footrest during ergometer kayaking among female athletes at different competing levels—A pilot study. BMC Sports Sci. Med. Rehabil. 2019, 11, 1–6. [Google Scholar] [CrossRef]
- McDonnell, L.K.; Hume, P.A.; Nolte, V. An observational model for biomechanical assessment of sprint kayaking technique. Sports Biomech. 2012, 11, 507–523. [Google Scholar] [CrossRef]
- Álvarez-Yates, T.; Iglesias-Caamaño, M.; Cuba-Dorado, A.; Serrano-Gomez, V.; Ferreira-Lima, V.; Nakamura, F.Y.; García-García, O. Explanatory model for elite canoeists’ performance using a functional electromechanical dynamometer based on detected lateral asymmetry. Symmetry 2024, 16, 347. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- García-García, O.; Cancela-Carral, J.M.; Huelin-Trillo, F. Neuromuscular profile of top-level women kayakers assessed through tensiomyography. J. Strength Cond. Res. 2015, 29, 844–853. [Google Scholar] [CrossRef]
- García-García, O.; Cuba-Dorado, A.; Fernández-Redondo, D.; López-Chicharro, J. Neuromuscular Parameters Predict the Performance in an Incremental Cycling Test. Int. J. Sports Med. 2018, 39, 909–915. [Google Scholar] [CrossRef]
- Perotto, A.O.; Delagi, E.F.; Lazzeti, J.; Morrison, D. Anatomic Guide for the Electromyographer: The Limbs, 4th ed.; Charles C Thomas Pub Ltd.: Springfield, IL, USA, 2005. [Google Scholar]
- Gajdosik, R.; Lusin, G. Hamstring muscle tightness—Reliability of an active-knee-extension test. Physical. Ther. 1983, 63, 1085–1088. [Google Scholar] [CrossRef]
- Wilk, K.E.; Reinold, M.M.; Macrina, L.C.; Portefield, R.; Devine, K.M.; Suarez, K.; Andrews, J.R. Glenohumeral Internal Rotation Measurements Differ Depending on Stabilization Techniques. Sports Health 2009, 1, 131–136. [Google Scholar] [CrossRef]
- Mullaney, M.J.; McHugh, M.P.; Johnson, C.P.; Tyler, T.F. Reliability of shoulder range of motion comparing a goniometer to a digital level. Physiother. Theory Pract. 2010, 26, 327–333. [Google Scholar] [CrossRef]
- Williamson, J.D.; Lawson, B.L.; Sigley, D.; Nasypany, A.; Baker, R.T. Intra- and inter-rate reliability for limb length measurement and trial error assessment of the upper quarter Y-balance test in healthy adults. Int. J. Sports Phys. Ther. 2019, 14, 131–136. [Google Scholar] [CrossRef]
- Gorman, P.P.; Butler, R.J.; Plisky, P.J.; Kiesel, K.B. Upper quarter y balance test: Reliability and performance comparison between genders in active adults. J. Strength Cond. Res. 2012, 26, 3043–3048. [Google Scholar] [CrossRef]
- Vivancos, A.L.; Zambudio, A.C.; Ramırez, F.C.; Del Águila, A.; Castrillón, F.J.O.; Pardo, P.J.M. Reliability and validity of a linear position transducer for strength assessment. Br. J. Sports Med. 2014, 48, A5. [Google Scholar] [CrossRef]
- Rodriguez-Perea, A.; Ríos, L.J.C.; Martinez-Garcia, D.; Ulloa-Díaz, D.; Rojas, F.G.; Jerez-Mayorga, D.; Rios, I.J.C. Reliability of isometric and isokinetic trunk flexor strength using a functional electromechanical dynamometer. Peerj 2019, 7, e7883. [Google Scholar] [CrossRef]
- Nolan, G.N.; Bates, B.T. A Biomechanical analysis of the effects of 2 paddle types on performance in north-american canoe racing. Res. Q. Exerc. Sport 1982, 53, 50–57. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Staron, R.S.; Karapondo, D.L.; Kraemer, W.J.; Fry, A.C.; Gordon, S.E.; Falkel, J.E.; Hagerman, F.C.; Hikida, R.S. Skeletal-muscle adaptations during early phase of heavy-resistance training in men and women. J. Appl. Physiol. 1994, 76, 1247–1255. [Google Scholar] [CrossRef]
- Pereira, L.A.; Ramirez-Campillo, R.; Martín-Rodríguez, S.; Kobal, R.; Abad, C.C.C.; Arruda, A.F.S.; Guerriero, A.; Loturco, I. Is tensiomyography-derived velocity of contraction a sensitive marker to detect acute performance changes in elite team-sport athletes? Int. J. Sports Physiol. Perform. 2020, 15, 31–37. [Google Scholar] [CrossRef]
- McKean, M.R.; Burkett, B. The relationship between joint range of motion, muscular strength, and race time for sub-elite flat water kayakers. J. Sci. Med. Sport 2010, 13, 537–542. [Google Scholar] [CrossRef]
- Rynkiewicz, M.; Rynkiewicz, T.; Zurek, P. Evaluation of factors affecting sports performance among junior athletes in kayaking. Med. Sport 2014, 67, 555–568. [Google Scholar]
- Diafas, V.; Kaloupsis, S.; Bachev, V.; Dimakopoulou, E.; Diamanti, V. Weather conditions during athens olympic rowing and flatwater canoe-kayak regatta at the olympic rowing center in schinias. Kinesiology 2006, 38, 72–77. [Google Scholar]
- May, J.J.; Lovell, G.; Hopkins, W.G. Effectiveness of 1% diclofenac gel in the treatment of wrist extensor tenosynovitis in long distance kayakers. J. Sci. Med. Sport 2007, 10, 59–65. [Google Scholar] [CrossRef]
- Shephard, R.J. Science and medicine of canoeing and kayaking. Sports Med. 1987, 4, 19–33. [Google Scholar] [CrossRef]
- Willscheidn, G.; Englhardt, M.; Grim, C. Injuries and overuse injuries in high performance canoe athletes. Sport Orthop. Traumatol. 2014, 30, 37–40. [Google Scholar] [CrossRef]
- Isorna-Folgar, M.; Leiros-Rodriguez, R.; Paz-Dobarro, R.; Garcia-Soidan, J.L. Injuries Associated with the Practice of Calm Water Kayaking in the Canoeing Modality. J. Clin. Med. 2021, 10, 902. [Google Scholar] [CrossRef]
- Miller, A.E.J.; Macdougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle-fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Narrative review of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries, and neuromuscular adaptations. J. Strength Cond. Res. 2023, 37, 494–536. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar] [CrossRef]
- Nieto-Acevedo, R.; Romero-Moraleda, B.; Montalvo-Pérez, A.; García-Sánchez, C.; Marquina-Nieto, M.; Mon-López, D. Sex Differences in the load-velocity profiles of three different row exercises. Sports 2023, 11, 220. [Google Scholar] [CrossRef]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef]
- Roberts, B.M.; Nuckols, G.; Krieger, J.W. Sex differences in resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2020, 34, 1448–1460. [Google Scholar] [CrossRef]
- Paquette, M.; Bieuzen, F.; Billaut, F. Muscle oxygenation rather than VO2 max as a strong predictor of performance in sprint canoe-kayak. Int. J. Sports Physiol. Perform. 2018, 13, 1299–1307. [Google Scholar] [CrossRef]
- Baker, J. The evaluation of biomechanic performance related factors and on-water tests. In Proceedings of the International Seminar on Kayak-Canoe Coaching and Science, Gent, Belgium, 6–8 November 1998; pp. 50–60. [Google Scholar]
Men | Women | |||||
---|---|---|---|---|---|---|
Tier 5 (n = 9) | Tier 4 (n = 3) | Total (n = 12) | Tier 5 (n = 4) | Tier 4 (n = 5) | Total (n = 9) | |
Age | 23.11 ± 5.08 | 17.33 ± 1.55 | 21.45 ± 5.28 | 19.00 ± 1.41 | 16.80 ± 1.92 | 17.78 ± 1.99 |
(19–36) | (16–18) | (16–36) | (18–21) | (15–20) | (15–21) | |
Height | 178.93 ± 7.28 | 175.73 ± 8.22 | 178.06 ± 6.69 | 159.62 ± 4.21 | 163.60 ± 9.38 | 161.83 ± 7.42 |
(170.0–190.0) | (172.0–181.7) | (170.0–190.0) | (154.5–164.5) | (153.0–176.5) | (153.0–176.5) | |
Weight | 79.18 ± 6.90 | 70.30 ± 8.23 | 76.96 ± 7.81 | 60.87 ± 6.34 | 63.00 ± 8.21 | 62.06 ± 7.07 |
(70.10–87.30) | (65.40–79.80) | (65.40–87.30) | (55.10–67.80) | (55.80–74.90) | (55.10–74.90) | |
Body Fat | 12.58 ± 2.53 | 10.67 ± 0.55 | 12.10 ± 2.33 | 21.25 ± 1.49 | 19.89 ± 2.88 | 20.49 ± 2.35 |
(7.30–14.70) | (10.30–11.30) | (7.30–14.70) | (19.40–22.70) | (16.00–23.60) | (16.00–23.60) | |
Muscle mass | 65.83 ± 5.22 | 59.67 ± 7.23 | 64.29 ± 6.09 | 45.37 ± 4.15 | 47.60 ± 6.44 | 46.61 ± 5.35 |
(57.80–71.50) | (55.10–68.00) | (55.10–71.50) | (41.10–50.10) | (41.60–57.90) | (41.10–57.90) | |
Bone mass | 3.43 ± 0.27 | 3.13 ± 0.32 | 3.36 ± 0.29 | 2.45 ± 0.21 | 2.54 ± 0.34 | 2.50 ± 0.28 |
(3.00–3.70) | (2.90–3.50) | (2.90–3.70) | (2.20–2.70) | (2.20–3.10) | (2.20–3.10) | |
BMI | 24.61 ± 1.13 | 22.63 ± 1.29 | 24.12 ± 1.42 | 23.77 ± 1.83 | 23.46 ± 1.68 | 23.60 ± 1.64 |
(22.4–26.4) | (21.7–24.1) | (21.7–26.4) | (21.8–26.8) | (20.9–25.4) | (20.9–26.2) | |
Water | 63.39 ± 2.38 | 64.37 ± 1.03 | 63.63 ± 2.12 | 60.25 ± 1.72 | 61.46 ± 2.13 | 60.92 ± 1.95 |
(60.70–68.20) | (63.50–65.50) | (60.70–68.20) | (58.20–62.40) | (59.90–65.20) | (58.20–65.20) |
Side | Men | Women | Diff (%) | Tier 5 | Tier 4 | Diff (%) | ||
---|---|---|---|---|---|---|---|---|
BF | Tc | Stroke | 37.29 ± 4.51 | 39.48 ± 4.54 | 5.87 | 32.12 ± 4.06 | 44.64 ± 4.94 | 38.97 |
Non-Stroke | 44.16 ± 3.81 | 37.99 ± 3.83 | 13.97 | 39.91 ± 3.43 | 42.24 ± 4.17 | 5.83 | ||
Dm | Stroke | 7.75 ± 0.77 | 9.72 ± 0.77 | 25.41 | 8.60 ± 0.69 | 8.88 ± 0.84 | 3.25 | |
Non-Stroke | 9.69 ± 0.84 | 9.03 ± 0.84 | 6.81 | 9.76 ± 0.75 | 8.95 ± 0.92 | 8.29 | ||
Vrd | Stroke | 171.56 ± 18.62 | 214.83 ± 18.74 | 25.22 * | 221.11 ± 16.78 | 165.27 ± 20.40 | 25.25 * | |
Non-Stroke | 183.37 ± 19.36 | 194.40 ± 19.48 | 6.01 | 210.39 ± 17.45 | 167.38 ± 21.21 | 20.44 | ||
DE | Tc | Stroke | 15.40 ± 0.96 | 15.59 ± 0.97 | 1.23 | 15.23 ± 0.87 | 15.76 ± 1.05 | 3.47 |
Non-Stroke | 15.95 ± 3.93 | 20.77 ± 3.95 | 30.21 | 15.61 ± 3.54 | 21.11 ± 4.30 | 35.23 | ||
Dm | Stroke | 3.73 ± 0.39 | 3.12 ± 0.39 | 16.35 | 3.36 ± 0.35 | 3.49 ± 0.43 | 3.86 | |
Non-Stroke | 4.06 ± 0.41 | 3.59 ± 0.41 | 11.57 | 3.62 ± 0.37 | 4.03 ± 0.45 | 11.32 | ||
Vrd | Stroke | 197.02 ± 22.85 | 164.92 ± 22.99 | 16.29 | 177.97 ± 20.60 | 183.98 ± 25.03 | 3.37 | |
Non-Stroke | 202.94 ± 22.35 | 167.63 ± 22.49 | 17.39 | 185.51 ± 20.15 | 185.06 ± 24.48 | 0.24 | ||
ES | Tc | Stroke | 17.24 ± 1.28 | 15.32 ± 1.29 | 11.13 | 15.73 ± 1.15 | 16.82 ± 1.40 | 6.92 |
Non-Stroke | 16.77 ± 0.92 | 15.00 ± 0.92 | 10.55 | 15.00 ± 0.83 | 16.77 ± 1.01 | 11.8 | ||
Dm | Stroke | 5.83 ± 0.65 | 4.42 ± 0.66 | 24.18 | 5.34 ± 0.59 | 4.90 ± 0.72 | 8.23 | |
Non-Stroke | 6.07 ± 0.63 | 5.58 ± 0.64 | 8.07 | 6.33 ± 0.57 | 5.32 ± 0.69 | 15.95 | ||
Vrd | Stroke | 277.73 ± 32.94 | 232.88 ± 33.15 | 16.14 | 277.99 ± 29.70 | 232.63 ± 36.09 | 16.31 | |
Non-Stroke | 295.34 ± 28.60 | 299.78 ± 28.78 | 1.50 | 340.22 ± 25.78 | 254.90 ± 31.33 | 25.07 * | ||
LD | Tc | Stroke | 36.10 ± 2.77 | 23.60 ± 2.79 | 34.62 * | 28.69 ± 2.50 | 31.00 ± 3.04 | 8.05 |
Non-Stroke | 28.52 ± 2.66 | 21.65 ± 2.68 | 24.08 | 28.49 ± 2.40 | 21.68 ± 2.91 | 23.90 | ||
Dm | Stroke | 10.31 ± 0.75 | 7.49 ± 0.75 | 27.35 * | 8.58 ± 0.67 | 9.23 ± 0.82 | 7.57 | |
Non-Stroke | 8.61 ± 1.16 | 8.25 ± 1.17 | 4.18 | 9.71 ± 1.05 | 7.16 ± 1.27 | 26.26 | ||
Vrd | Stroke | 247.55 ± 31.12 | 263.70 ± 31.31 | 6.52 | 261.24 ± 28.05 | 250.01 ± 34.09 | 4.29 | |
Non-Stroke | 251.28 ± 49.05 | 324.72 ± 49.36 | 29.22 | 304.87 ± 44.21 | 271.141 ± 53.73 | 11.06 | ||
PM | Tc | Stroke | 21.44 ± 0.88 | 20.25 ± 0.88 | 5.55 | 20.48 ± 0.79 | 21.21 ± 0.96 | 3.56 |
Non-Stroke | 21.58 ± 1.11 | 21.22 ± 1.12 | 1.66 | 21.16 ± 1.00 | 21.64 ± 1.22 | 2.26 | ||
Dm | Stroke | 8.56 ± 1.02 | 9.20 ± 1.03 | 7.47 | 9.78 ± 0.92 | 7.98 ± 1.12 | 18.40 | |
Non-Stroke | 7.29 ± 0.98 | 7.85 ± 0.99 | 7.68 | 7.50 ± 0.88 | 7.64 ± 1.07 | 1.86 | ||
Vrd | Stroke | 317.60 ± 34.74 | 361.74 ± 34.96 | 13.89 | 381.75 ± 31.31 | 297.59 ± 38.06 | 22.04 | |
Non-Stroke | 272.47 ± 34.72 | 293.93 ± 34.93 | 7.87 | 286.77 ± 31.29 | 279.64 ± 38.03 | 2.48 | ||
RF | Tc | Stroke | 26.80 ± 1.95 | 26.24 ± 1.96 | 2.08 | 25.72 ± 1.76 | 27.32 ± 2.14 | 6.22 |
Non-Stroke | 25.38 ± 1.17 | 24.99 ± 1.18 | 1.53 | 26.01 ± 1.06 | 24.36 ± 1.28 | 6.34 | ||
Dm | Stroke | 8.09 ± 0.85 | 7.66 ± 0.85 | 5.31 | 8.30 ± 0.77 | 7.45 ± 0.93 | 10.24 | |
Non-Stroke | 7.64 ± 0.60 | 7.44 ± 0.61 | 2.61 | 7.75 ± 0.54 | 7.34 ± 0.66 | 5.29 | ||
Vrd | Stroke | 250.56 ± 27.33 | 239.53 ± 27.50 | 4.40 | 262.43 ± 24.64 | 227.66 ± 29.94 | 13.24 | |
Non-Stroke | 243.97 ± 24.68 | 245.54 ± 24.83 | 0.64 | 243.53 ± 22.25 | 245.98 ± 27.04 | 1.00 | ||
ST | Tc | Stroke | 41.82 ± 2.04 | 32.98 ± 2.05 | 21.13 * | 34.90 ± 1.83 | 39.90 ± 2.23 | 14.32 |
Non-Stroke | 43.37 ± 2.25 | 40.01 ± 2.26 | 7.74 | 43.48 ± 2.02 | 39.91 ± 2.46 | 8.21 | ||
Dm | Stroke | 10.25 ± 0.76 | 9.18 ± 0.76 | 10.43 | 9.14 ± 0.68 | 10.29 ± 0.83 | 12.58 | |
Non-Stroke | 9.74 ± 1.03 | 9.75 ± 1.04 | 0.10 | 10.20 ± 0.92 | 9.28 ± 1.12 | 9.01 | ||
Vrd | Stroke | 201.43 ± 18.55 | 221.04 ± 18.66 | 9.73 | 212.53 ± 16.72 | 209.95 ± 20.32 | 1.21 | |
Non-Stroke | 180.95 ± 18.08 | 194.65 ± 18.19 | 7.57 | 188.87 ± 16.30 | 186.73 ± 19.81 | 1.13 | ||
TA | Tc | Stroke | 40.34 ± 5.52 | 27.80 ± 5.56 | 31.08 * | 28.03 ± 4.98 | 40.11 ± 6.05 | 43.09 |
Non-Stroke | 36.00 ± 5.80 | 38.61 ± 5.83 | 7.25 | 33.63 ± 5.23 | 40.98 ± 6.35 | 21.85 | ||
Dm | Stroke | 4.51 ± 0.55 | 4.08 ± 0.55 | 9.53 | 3.90 ± 0.50 | 4.69 ± 0.60 | 20.25 | |
Non-Stroke | 4.23 ± 0.48 | 4.23 ± 0.49 | 0 | 3.55 ± 0.43 | 4.92 ± 0.53 | 38.59 | ||
Vrd | Stroke | 102.45 ± 11.80 | 126.13 ± 11.87 | 23.11 | 128.25 ± 10.64 | 100.33 ± 12.93 | 21.76 | |
Non-Stroke | 108.18 ± 11.24 | 99.59 ± 11.31 | 7.94 | 97.61 ± 10.13 | 110.16 ± 12.31 | 12.85 | ||
TZ | Tc | Stroke | 32.24 ± 5.85 | 30.02 ± 5.79 | 6.88 | 28.22 ± 5.29 | 34.05 ± 6.31 | 20.65 |
Non-Stroke | 40.16 ± 6.87 | 27.96 ± 6.91 | 30.37 | 28.92 ± 6.19 | 39.20 ± 7.53 | 35.54 | ||
Dm | Stroke | 7.53 ± 0.93 | 6.77 ± 0.92 | 10.09 | 7.06 ± 0.84 | 7.23 ± 1.00 | 2.40 | |
Non-Stroke | 7.74 ± 0.97 | 7.07 ± 0.97 | 8.65 | 8.01 ± 0.87 | 6.80 ± 1.06 | 15.10 | ||
Vrd | Stroke | 204.50 ± 20.32 | 200.87 ± 20.13 | 0.01 | 217.38 ± 18.38 | 187.99 ± 21.92 | 13.52 | |
Non-Stroke | 179.94 ± 24.05 | 219.37 ± 24.20 | 21.91 | 239.23 ± 21.68 | 160.08 ± 26.35 | 33.08 * |
Side | Men | Women | Diff (%) | Tier 5 | Tier 4 | Diff (%) | |
---|---|---|---|---|---|---|---|
ER | Stroke | 80.28 ± 3.91 | 81.29 ± 3.94 | 1.25 | 80.32 ± 3.53 | 81.25 ± 4.29 | 1.15 |
Non-Stroke | 73.55 ± 3.90 | 82.80 ± 3.92 | 12.57 | 79.01 ± 3.51 | 77.33 ± 4.27 | 2.12 | |
IR | Stroke | 64.36 ± 4.35 | 71.26 ± 4.38 | 10.72 | 66.69 ± 3.92 | 68.93 ± 4.77 | 3.35 |
Non-Stroke | 64.26 ± 4.50 | 69.09 ± 4.53 | 7.51 | 63.66 ± 4.05 | 69.69 ± 4.93 | 9.47 | |
FLEX | Stroke | 166.00 ± 2.88 | 165.01 ± 2.90 | 0.59 | 162.30 ± 2.60 | 168.71 ± 3.16 | 3.94 |
Non-Stroke | 169.37 ± 3.08 | 163.35 ± 3.10 | 3.55 | 161.95 ± 2.78 | 170.77 ± 3.38 | 5.44 | |
YBT-UQmed | Stroke | 101.44 ± 1.61 | 95.71 ± 1.60 | 5.64 * | 98.36 ± 1.46 | 98.79 ± 1.74 | 0.43 |
Non-Stroke | 98.51 ± 2.22 | 96.18 ± 2.20 | 2.36 | 96.99 ± 2.00 | 97.70 ± 2.39 | 0.73 | |
YBT-UQsup | Stroke | 68.57 ± 3.22 | 72.95 ± 3.19 | 6.38 | 67.20 ± 2.91 | 74.33 ± 3.47 | 10.61 |
Non-Stroke | 67.82 ± 3.31 | 70.42 ± 3.28 | 3.83 | 64.19 ± 2.99 | 74.05 ± 3.57 | 15.36 * | |
YBT-UQinf | Stroke | 92.99 ± 3,12 | 92.30 ± 3.09 | 0.74 | 92.48 ± 2.82 | 92.81 ± 3.36 | 0.35 |
Non-Stroke | 92.69 ± 3.06 | 91.11 ± 3.03 | 1.70 | 90.48 ± 2.77 | 93.31 ± 3.30 | 3.12 | |
AKE | Stroke | 148.93 ± 4.03 | 156.17 ± 4.06 | 4.86 | 148.17 ± 3.63 | 156.92 ± 4.42 | 5.90 |
Non-Stroke | 155.55 ± 3.41 | 162.03 ± 3.43 | 4.16 | 155.52 ± 3.07 | 162.05 ± 3.74 | 4.19 |
Men | Women | Diff (%) | Tier 5 | Tier 4 | Diff (%) | |||
---|---|---|---|---|---|---|---|---|
Leg Press Stroke Side | Vm | 0.62 ± 0.10 | 0.74 ± 0.09 | 19.35 | 0.76 ± 0.09 | 0.60 ± 0.10 | 21.05 | |
Vmax | 1.18 ± 0.19 | 1.42 ± 0.18 | 20.33 | 1.39 ± 0.17 | 1.21 ± 0.20 | 12.94 | ||
Tvmax | 518.85 ± 40.25 | 467.50 ± 39.89 | 0.09 | 403.68 ± 36.41 | 582.66 ± 43.42 | 44.33 * | ||
Pm | 256.84 ± 46.08 | 257.70 ± 45.66 | 0.33 | 291.96 ± 41.68 | 222.58 ± 49.71 | 23.76 | ||
Pmax | 583.24 ± 116.41 | 615.53 ± 115.35 | 5.53 | 661.24 ± 105.30 | 537.54 ± 125.58 | 18.70 | ||
Tpmax | 460.47 ± 40.72 | 420.05 ± 40.35 | 8.77 | 350.56 ± 36.83 | 529.96 ± 43.93 | 51.17 | ||
Fm | 402.05 ± 23.26 | 345.74 ± 23.04 | 14.00 | 391.04 ± 21.04 | 356.75 ± 25.09 | 8.76 | ||
Fmax | 659.70 ± 47.63 | 488.29 ± 47.20 | 25.98 * | 654.45 ± 43.09 | 493.54 ± 51.38 | 24.58 * | ||
Leg Press Non-Stroke Side | Vm | 0.66 ± 0.10 | 0.77 ± 0.10 | 16.66 | 0.79 ± 0.09 | 0.64 ± 0.11 | 18.98 | |
Vmax | 1.20 ± 0.18 | 1.42 ± 0.18 | 18.33 | 1.40 ± 0.16 | 1.23 ± 0.19 | 12.14 | ||
Tvmax | 416.00 ± 21.64 | 424.50 ± 21.44 | 2.04 | 378.00 ± 19.57 | 462.50 ± 23.34 | 22.35 * | ||
Pm | 271.31 ± 45.84 | 256.97 ± 45.42 | 5.28 | 295.72 ± 41.46 | 232.55 ± 49.45 | 21.36 | ||
Pmax | 615.60 ± 116.63 | 614.08 ± 115.56 | 0.24 | 668.18 ± 105.49 | 561.50 ± 125.81 | 15.96 | ||
Tpmax | 359.18 ± 24.03 | 366.72 ± 23.81 | 2.09 | 322.31 ± 21.74 | 403.60 ± 25.92 | 25.22 * | ||
Fm | 402.64 ± 22.36 | 336.18 ± 22.16 | 16.37 * | 384.52 ± 20.22 | 354.30 ± 24.12 | 7.85 | ||
Fmax | 692.87 ± 45.94 | 492.72 ± 45.52 | 28.88 * | 674.71 ± 41.55 | 510.88 ± 49.55 | 24.28 * | ||
Canoe position cable row | Pm | 389.67 ± 35.32 | 202.86 ± 35.00 | 47.94 * | 242.45 ± 31.95 | 350.08 ± 38.10 | 86.82 * | |
Pmax | 627.10 ± 45.57 | 338.92 ± 45.15 | 45.95 ** | 433.63 ± 41.22 | 532.38 ± 49.16 | 22.77 | ||
1RM | Bench Press | 112.37 ± 6.39 | 70.55 ± 6.33 | 37.21 * | 100.37 ± 5.78 | 82.55 ± 6.89 | 17.75 | |
Bench Pull | 107.83 ± 5.07 | 74.05 ± 5.02 | 17.75 * | 97.25 ± 4.58 | 84.63 ± 5.47 | 12.97 |
Men | Women | Diff (%) | Tier 5 | Tier 4 | Diff (%) | ||
---|---|---|---|---|---|---|---|
Isometric Test | Fm | 52.86 ± 2.96 | 37.27 ± 2.97 | 29.49 * | 48.58 ± 2.66 | 41.55 ± 3.24 | 14.47 |
Fpeak | 60.83 ± 3.51 | 41.66 ± 3.53 | 31.51 ** | 55.92 ± 3.16 | 46.57 ± 3.85 | 16.72 | |
Maximal Incremental Test | Nstrokes | 12.77 ± 0.43 | 7.90 ± 0.43 | 38.13 ** | 11.27 ± 0.39 | 9.40 ± 0.47 | 16.59 * |
Pm | 182.96 ± 17.17 | 108.94 ± 17.27 | 40.45 * | 160.53 ± 15.47 | 131.37 ± 18.80 | 18.16 | |
Pmax | 977.10 ± 65.10 | 608.80 ± 65.51 | 37.69 ** | 886.25 ± 58.68 | 699.65 ± 71.31 | 21.05 * | |
Fm | 17.27 ± 1.30 | 12.00 ± 1.31 | 30.51 * | 15.42 ± 1.17 | 13.86 ± 1.43 | 10.11 | |
Fpeak | 51.33 ± 2.41 | 32.38 ± 2.42 | 36.91 ** | 46.46 ± 2.17 | 37.24 ± 2.64 | 19.84 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Yates, T.; Cuba-Dorado, A.; Iglesias-Caamaño, M.; Serrano-Gómez, V.; Nakamura, F.Y.; García-García, O. Sex-Related and Performance Differences in Contractile Properties, ROM, Strength, and Dynamometry Performance of World-Class Flatwater Canoeists. Appl. Sci. 2024, 14, 3167. https://doi.org/10.3390/app14083167
Álvarez-Yates T, Cuba-Dorado A, Iglesias-Caamaño M, Serrano-Gómez V, Nakamura FY, García-García O. Sex-Related and Performance Differences in Contractile Properties, ROM, Strength, and Dynamometry Performance of World-Class Flatwater Canoeists. Applied Sciences. 2024; 14(8):3167. https://doi.org/10.3390/app14083167
Chicago/Turabian StyleÁlvarez-Yates, Tania, Alba Cuba-Dorado, Mario Iglesias-Caamaño, Virginia Serrano-Gómez, Fábio Yuzo Nakamura, and Oscar García-García. 2024. "Sex-Related and Performance Differences in Contractile Properties, ROM, Strength, and Dynamometry Performance of World-Class Flatwater Canoeists" Applied Sciences 14, no. 8: 3167. https://doi.org/10.3390/app14083167
APA StyleÁlvarez-Yates, T., Cuba-Dorado, A., Iglesias-Caamaño, M., Serrano-Gómez, V., Nakamura, F. Y., & García-García, O. (2024). Sex-Related and Performance Differences in Contractile Properties, ROM, Strength, and Dynamometry Performance of World-Class Flatwater Canoeists. Applied Sciences, 14(8), 3167. https://doi.org/10.3390/app14083167