Microbiomes of Primary Soils and Mining Heaps of Polymetallic Ore Quarries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Soil Agrochemical Characteristics
3.2. The Trace Elements (Heavy Metals) and Arsenic Content
3.3. Soil Microbiomes
4. Discussion
4.1. Soil Agrochemical Characteristics
4.2. The Trace Elements (Heavy Metals) and Arsenic Content
4.3. Soil Microbiomes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mossa, J.; James, L.A. Impacts of Mining on Geomorphic Systems. In Book Treatise on Geomorphology; Shroder, J., James, L.A., Harden, C.P., Clague, J.J., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 74–95. [Google Scholar] [CrossRef]
- Dong-donga, Z.; Yu-shana, S.; Le, L. Study on sustainable landscape design of abandoned quarries. An example: Zhushan ecological park in Xuzhou. Procedia Earth Planet. Sci. 2009, 1, 1107–1113. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Asmaryan, S.; Saghatelyan, A. Continuous impact of mining activities on soil heavy metals levels and human health. Sci. Total Environ. 2018, 639, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Dan-Badjoa, A.T.; Ibrahim, O.Z.; Guéro, Y.; Morel, J.L.; Feidt, C.; Echevarria, G. Impacts of artisanal gold mining on soil, water and plant contamination by trace elements at Komabangou, Western Niger. J. Geochem. Explor. 2019, 205, 106328. [Google Scholar] [CrossRef]
- Sampaio, A.D.; Pereira, P.F.; Nunes, A.; Clemente, A.; Salgueiro, V.; Silva, C.; Mira, A.; Branquinho, C.; Salgueiro, P.A. Bottom-up cascading effects of quarry revegetation deplete bird-mediated seed dispersal services. J. Environ. Manag. 2021, 298, 113472. [Google Scholar] [CrossRef] [PubMed]
- Belan, L. About ecological danger of Sulfur fields. Vestn. Orenbg. State Univ. 2006, 4, 115–120. (In Russian) [Google Scholar]
- Fernández-Navarro, P.; García-Pérez, J.; Ramis, R.; Boldo, E.; López-Abente, G. Proximity to mining industry and cancer mortality. Sci. Total Environ. 2012, 435–436, 66–73. [Google Scholar] [CrossRef]
- Luna, L.; Pastorelli, R.; Bastida, F.; Hernández, T.; García, C.; Miralles, I.; Solé-Benet, A. The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Appl. Soil Ecol. 2016, 107, 33–47. [Google Scholar] [CrossRef]
- Patova, E.N.; Kulyugina, E.E.; Deneva, S.V. Processes of natural soil and vegetation recovery on a worked-out open pit coal mine. Russ. J. Ecol. 2016, 47, 228–233. [Google Scholar] [CrossRef]
- Chenot, J.; Jaunatre, R.; Buisson, E.; Bureau, F.; Dutoit, T. Impact of quarry exploitation and disuse on pedogenesis. Catena 2018, 160, 354–365. [Google Scholar] [CrossRef]
- Gilardellia, F.; Sgorbatia, S.; Armiragliob, S.; Citterioa, S.; Gentilia, R. Assigning plant communities to a successional phase: Time trends in abandoned limestone quarries. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. Off. J. Soc. Bot. Ital. 2015, 150, 799–808. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Gagarina, E.I. Humus status of soils of overgrown quarries in Leningrad oblast. Eurasian Soil Sci. 2008, 41, 255–264. [Google Scholar] [CrossRef]
- Samuel, K.; David, A.; Francis, A. Dynamics of land cover changes and condition of soil and surface water quality in a Mining–Altered landscape, Ghana. Heliyon 2023, 9, e17859. [Google Scholar] [CrossRef]
- Tang, F.; Ma, T.; Tang, J.; Yang, Q.; Xue, J.; Zhu, C.; Wang, C. Space-time dynamics and potential drivers of soil moisture and soil nutrients variation in a coal mining area of semi-arid, China. Ecol. Indic. 2023, 157, 111242. [Google Scholar] [CrossRef]
- Wu, C.; Bi, Y.; Zhu, W.; Xue, C. Optimizing water use strategies in arid coal mining areas: The synergistic effects of layered soil profiles and arbuscular mycorrhizal fungi on plant growth and water use efficiency. Environ. Exp. Bot. 2024, 221, 105722. [Google Scholar] [CrossRef]
- Suleymanov, R.; Dorogaya, E.; Gareev, A.; Minnegaliev, A.; Gaynanshin, M.; Zaikin, S.; Belan, L.; Tuktarova, I.; Suleymanov, A. Assessment of Chemical Properties, Heavy Metals, and Metalloid Contamination in Floodplain Soils under the Influence of Copper Mining: A Case Study of Sibay, Southern Urals. Ecologies 2022, 3, 530–538. [Google Scholar] [CrossRef]
- Zhu, Y.; An, Y.; Li, X.; Cheng, L.; Lv, S. Geochemical characteristics and health risks of heavy metals in agricultural soils and crops from a coal mining area in Anhui province, China. Environ. Res. 2024, 241, 117670. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, Z.; Yu, T.; Jiang, Z.; Huang, Q.; Yang, Y.; Liu, X.; Ma, X.; Li, B.; Lin, K.; et al. Cadmium accumulation in paddy soils affected by geological weathering and mining: Spatial distribution patterns, bioaccumulation prediction, and safe land usage. J. Hazard. Mater. 2023, 460, 132483. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Liu, M.; Qu, M.; Guang, X.; Chen, J.; Zhao, Y.; Huang, B. Identifying the potential soil pollution areas derived from the metal mining industry in China using MaxEnt with mine reserve scales (MaxEnt_MRS). Environ. Pollut. 2023, 329, 121687. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.; Domene, M.A.; Soriano, M.; Sánchez-Marañón, M.; Asensio, C.; Miralles, I. Improving the fertility of degraded soils from a limestone quarry with organic and inorganic amendments to support vegetation restoration with semiarid Mediterranean plants. Soil Tillage Res. 2020, 204, 104718. [Google Scholar] [CrossRef]
- Sazanova, K.V.; Abakumov, E.V.; Vlasov, D.Y. Metabolomic profiling of soils of chronoseries of Podzols of a sand quarry. Zhivye I Biokosnye Sist. 2018, 25. Available online: http://www.jbks.ru/archive/issue-25/article-5 (accessed on 1 March 2024). (In Russian).
- Polyanskaya, L.M.; Zvyagintsev, D.G. The content and composition of microbial biomass as an index of the ecological status of soil. Eurasian Soil Sci. 2005, 38, 625–633. [Google Scholar]
- Polyanskaya, L.M.; Sukhanova, N.I.; Chakmazyan, K.V.; Zvyagintsev, D.G. Changes in the structure of soil microbial biomass under fallow. Eurasian Soil Sci. 2012, 45, 710–716. [Google Scholar] [CrossRef]
- Yang, A.; Song, B.; Zhang, W.; Zhang, T.; Li, X.; Wang, H.; Zhu, D.; Zhao, J.; Fu, S. Chronic enhanced nitrogen deposition and elevated precipitation jointly benefit soil microbial community in a temperate forest. Soil Biol. Biochem. 2024, 193, 109397. [Google Scholar] [CrossRef]
- Teixeira, C.d.S.; Holland-Moritz, H.; Bayer, C.; Granada, C.E.; Sausen, T.L.; Tonial, F.; Petry, C.; Frey, S.D. Land management of formerly subtropical Atlantic Forest reduces soil carbon stocks and alters microbial community structure and function. Appl. Soil Ecol. 2024, 195, 105252. [Google Scholar] [CrossRef]
- Szekeres, E.; Baricz, A.; Cristea, A.; Levei, E.A.; Stupar, Z.; Brad, T.; Kenesz, M.; Moldovan, O.T.; Banciu, H.L. Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. Sci. Total Environ. 2023, 895, 165133. [Google Scholar] [CrossRef] [PubMed]
- Faskhutdinova, E.R.; Osintseva, M.A.; Neverova, O.A. Prospects of using soil microbiome of mine tips for remediation of anthropogenically disturbed ecosystems. Food Process. Tech. Technol. 2021, 51, 883–904. [Google Scholar] [CrossRef]
- Lord, S.; Veum, K.S.; Sullivan, L.L.; Anderson, S.H.; Acosta-Martinez, V.; Clark, K. Ancient prairies as a reference for soil organic carbon content and microbial community structure. Appl. Soil Ecol. 2024, 198, 105355. [Google Scholar] [CrossRef]
- Abakumov, E.; Zverev, A.; Suleymanov, A.; Suleymanov, R. Microbiome of post-technogenic soils of quarries in the Republic of Bashkortostan (Russia). Open Agric. 2020, 5, 529–538. [Google Scholar] [CrossRef]
- Kimeklis, A.K.; Dmitrakova, Y.A.; Pershina, E.A.; Ivanova, E.A.; Zverev, A.O.; Gladkov, G.V.; Kichko, A.A.; Andronov, E.E.; Abakumov, E.V. Analysis of microbiome of recultivated soils of the Kingisepp area of phosphorite mining. Agric. Biol. 2020, 55, 137–152. [Google Scholar] [CrossRef]
- Yasybaeva, R.S. Natural resource base—The main economic indicator for forming the resettlement of Bashkortostan Republic’s Zaural region. Vestn. Orenb. Gos. Univ. 2015, 8, 177–181. (In Russian) [Google Scholar]
- Shakirov, A.V.; Khusainova, L.R.; Habirova, L.M. Natural and resource potential of the Ural region. Probl. Reg. Ecol. 2014, 4, 153–158. (In Russian) [Google Scholar]
- Safarova, V.I.; Safarov, A.M.; Shaydullina, G.F.; Smirnova, T.P. Environmental problems of oil and mining enterprises of the republic of bashkortostan assessment of the small rivers of the bashkir trans-ural. Bashkir Ecol. Bull. 2013, 2, 42–48. (In Russian) [Google Scholar]
- Kucherevsky, P.G.; Golubev, Y.K.; Golubeva, Y.Y.; Minkin, K.M.; Konkina, O.M.; Vitkovskaya, L.I. The current state and prospects of development of the mineral and raw materials base of precious metals and diamonds of the Volga Federal District. Mineral resources of Russia. Econ. Manag. 2018, 3, 48–54. (In Russian) [Google Scholar]
- Litovskiy, V.V.; Levkovskiy, V.V. Graviogeography of mining towns in the Urals of copper ore specialization. Community 3. South Urals (Republic of Bashkortostan, Orenburg region). Eco-Potential 2016, 4, 50–64. (In Russian) [Google Scholar]
- Volchkov, A.G.; Nikeshin, Y.V.; Konkina, O.M.; Khodina, M.A.; Chebotareva, O.S. The current state and prospects for the development of the mineral and raw materials base of non-ferrous, ferrous and rare metals in the Volga Federal District. Mineral resources of Russia. Econ. Manag. 2018, 3, 36–47. (In Russian) [Google Scholar]
- Angelov, V.A.; Angelova, E.I.; Aver’yanov, K.A. Study of the features of the material composition of the tailings of the enrichment of copper-pyrite ores of the Uchalinsk concentrating plant. Min. Informational Anal. Bull. (Sci. Tech. J.) 2012, 5, 362–368. (In Russian) [Google Scholar]
- Khasanova, R.F.; Biktimerova, G.Y.; Zulkarnaev, A.B. The impact of mining waste deposits in the ecological-geochemical condition of soils. Successes Mod. Sci. Educ. 2017, 8, 200–203. (In Russian) [Google Scholar]
- Ivanova, O.; Korotkova, L.; Khalikov, R.; Khakimova, G. Recultivation approaches to the elaboration of gypsum raw deposits as a part of innovative technologies for the production of building materials. Sci. Herit. 2022, 82-1, 65–67. [Google Scholar] [CrossRef]
- Vysotsky, S.I.; Kovalev, S.G. Tuba-Kain deposit: Geology, petrogeochemistry, chemical composition and morphology of the gold. Geol. Collect. 2014, 11, 189–201. (In Russian) [Google Scholar]
- Gilmutdinova, R.A.; Michurin, S.V.; Kovtunenko, S.V.; Elizareva, E.N. On the question of using and recycling of waste of South Ural mining and processing plants. Adv. Curr. Nat. Sci. 2017, 2, 68–73. (In Russian) [Google Scholar]
- Abdrakhmanov, R.F. Atlas Republic of Bashkortostan; Kitap: Ufa, Russia, 2005; 419p. (In Russian) [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Cornfield, A.H. Ammonia released on treating soil with N-NaOH as a possible means of predicting the nitrogen supplying power of soils. Nature 1960, 187, 260–261. [Google Scholar] [CrossRef]
- Sokolov, A.V. Agrochemical Methods of Soil Research; Nauka Publishing: Moscow, Russia, 1975; 656p. (In Russian) [Google Scholar]
- Achterberg, E.P.; van den Berg, C.M.G. In-line ultraviolet-digestion of naturalwater samples for trace-metal determination using an automated voltametric system. Anal. Chim. Acta 1994, 291, 213–232. [Google Scholar] [CrossRef]
- Adeloju, S.B. Electrochemical stripping analysis of trace and ultra-trace concentrations of toxic metals and metalloids in foods and beverages. In Book Food Toxicants Analysis; Elsevier BV: Amsterdam, The Netherlands, 2007; pp. 667–696. [Google Scholar] [CrossRef]
- SANPIN 1.2.3685-21; Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans. CentrMag: Moscow, Russia, 2023.
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Kiriushin, V.I. Ecological Foundations of Agriculture; Kolos Publishing: Moscow, Russia, 1996; 366p. (In Russian) [Google Scholar]
- Rafikova, Y.S.; Semenova, I.N.; Seregina, Y.Y.; Khakimzyanov, O.M. Health-environmental characteristics of the Mining Regions of the Ural Regions the Republic of Bashkortostan. Fundam. Res. 2012, 11, 43–45. (In Russian) [Google Scholar]
- Nikonov, V.N.; Shamsutdinova, L.R.; Zvereva, T.I.; Belan, L.N. Natural and antropogenic geochemical anomalies of heavy metals in Bashkir Ural Region as an aspect of system analysis Geopathic Zones. Ural. Ehkologicheskii Vestn. 2015, 2, 3–7. (In Russian) [Google Scholar]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldívard, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Wei, L.; Ge, T.; Zhu, Z.; Ye, R.; Peñuelas, J.; Li, Y.; Mar Lynn, T.; Jones, D.L.; Wu, J.; Kuzyakov, Y. Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers. Agric. Ecosyst. Environ. 2022, 326, 107798. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Scale, N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Dmitrakova, Y.A.; Abakumov, E.V. Restoration of Soils and Vegetation on Reclamation Sites of the Kingisepp Phosphorite Field. Eurasian Soil Sci. 2018, 51, 588–597. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.; Liu, T.; Yin, H.; Liu, H.; Liu, X.; Mathivanan, K.; et al. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Qiao, L.; Liu, X.; Zhang, S.; Zhang, L.; Qiu, Z.; Yu, C. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways. Environ. Res. 2022, 214, 113822. [Google Scholar] [CrossRef]
- Bacmaga, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J.; Paprocki, Ł. Role of forest site type in determining bacterial and biochemical properties of soil. Ecol. Indic. 2022, 135, 108557. [Google Scholar] [CrossRef]
- Wu, B.; Luo, H.; Wang, X.; Liu, H.; Peng, H.; Sheng, M.; Xu, F.; Xu, H. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. Sci. Total Environ. 2022, 802, 149899. [Google Scholar] [CrossRef]
- Bergmann, G.T.; Bates, S.T.; Eilers, K.G.; Lauber, C.L.; Caporaso, J.G.; Walters, W.A.; Knight, R.; Fierer, N. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 2011, 43, 1450–1455. [Google Scholar] [CrossRef]
- Leininger, S.; Urich, T.; Schloter, M.; Schwark, L. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442, 806–809. [Google Scholar] [CrossRef]
- Zvyagintsev, D.G.; Zenova, G.M. Ekologiya Aktinomitsetov; GEOC Publishing: Moscow, Russia, 2001; 256p. (In Russian) [Google Scholar]
- Larsbrink, J.; McKee, L.S. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. Adv. Appl. Microbiol. 2020, 110, 63–98. [Google Scholar] [CrossRef]
- Thiel, V.; Fukushima, S.-I.; Kanno, N.; Hanada, S. Chloroflexi. In Book Encyclopedia of Microbiology; Schmidt, T., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 651–662. [Google Scholar]
- Dedysh, S.N.; Sinninghe Damsté, J.S. Acidobacteria. In Book eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 1–10. [Google Scholar]
- Han, H.; Yao, H.; Wei, C.; Ma, J. Responses of soil biochemical and microbial properties to vegetation combinations of quarry restoration strategies in mountainous areas in China. Ecol. Eng. 2023, 195, 107061. [Google Scholar] [CrossRef]
Factor | Value |
---|---|
Humus horizon deepness | 10–50 cm |
Bulk humus content | 4–6% |
Sunshine period | 1950–2000 h year−1 |
Average air temperature | 1.5–2 °C |
Average July air temperature | 17.5–18 °C |
Average precipitation | 350–400 mm (mm) |
Amount of precipitation during the warm period | 250–300 mm |
Humidity coefficient | <0.4 |
Evaporation | 583 mm year−1 |
Average number of days with atmospheric drought | 40–45 days year−1 |
Average wind speed | 3.5–4 m s−1 (m c−1) |
Sample No. | Plot | Soil Cover | Vegetation Cover | Soil Age, Years | Sample Description |
---|---|---|---|---|---|
1-2021 | Tuba-Kain (heap) | Missing | Missing | 5–7 | Dry; mottled light gray, almost white, with inclusions of white, red, and dark gray; coarse-grained sandy dense, without plant remains |
2-2021 | Tuba-Kain (background) | Continuous Leptosols, up to 11 cm | Continuous steppe vegetation | Dry; dark gray, relatively nonhomogenous in color, with a yellowish tint; sandy clumpy; lots of plant roots | |
3-2021 | Semenovsky (heap) | Missing | Locally vegetated by grass spots | 1–2 | Dry; mottled light gray, with inclusions of white and yellow (gravel and rubble); crumbly; a small number of inclusions of vegetation roots and plant debris |
4-2021 | Semenovsky (background) | Continuous Leptosols, up to 17 cm | Continuous steppe vegetation | Dry; uniformly dark gray, almost black, with a yellowish-reddish hue; sandy crumbly fine and medium crumbly; large amounts of plant roots and plant debris | |
5-2021 | Kulyurtau (quarry) | Localized newly formed soil spots | Young birch forest stands | >30 | Dry; mottled dark gray (soil part) with inclusions of white and yellow (wood and rubble parts); soil fraction powdery sandy; a large number of inclusions of roots and plant residues |
6-2021 | Kulyurtau (background) | Continuous Leptosols, up to 10 cm | Continuous steppe vegetation | Dry; dark gray, almost black, with a yellowish tint; coarse- to medium-compound sandy crumbly; many inclusions of roots and plant debris | |
7-2021 | Tubinsky (quarry) | Localized newly formed soil spots | Partially degraded steppe vegetation cover | >60 | Dry; mottled light gray, with a reddish tint and with inclusions of white and red; sandy, and the structure is not expressed (the sample is a mixture of sandy and sandy material); a small number of inclusions of plants remain |
8-2021 | Tubinsky (background) | Continuous Leptosols, up to 8 cm | Continuous steppe vegetation | Dry; uniformly dark gray, almost black; powdery sandy; many inclusions of coarse gravel and rubble, and roots and plant debris |
Sample No. | Plot | pH H2O | TOM, % | Alkaline Hydrolizable Nitrogen, Milligram Kilogram−1 (mg kg−1) |
---|---|---|---|---|
1-2021 | Tuba-Kain (heap) | 7.35 | 0.3 | 0 |
2-2021 | Tuba-Kain (background) | 6.68 | 2.8 | 126 |
3-2021 | Semenovsky (heap) | 7.27 | 2.1 | 98 |
4-2021 | Semenovsky (background) | 6.57 | 3.8 | 182 |
5-2021 | Kulyurtau (quarry) | 6.16 | 6.1 | 336 |
6-2021 | Kulyurtau (background) | 6.63 | 4.5 | 224 |
7-2021 | Tubinsky (quarry) | 7.62 | 1.4 | 84 |
8-2021 | Tubinsky (background) | 5.77 | 9.6 | 448 |
Samp. No. | Bulk Content, mg kg−1 | Available Form, mg kg−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Hg | As | Zn | Cu | Ni | Zn | Cu | Ni | |
1-2021 | 18 | 0.16 | <0.1 a | 1.3 | 37 | 26 | 34 | 3.8 | 0.78 | 1.5 |
2-2021 | 25 | 0.23 | <0.1 a | 1.6 | 56 | 33 | 41 | 6.1 | 1.1 | 1.9 |
3-2021 | 16 | 0.26 | <0.1 a | 1.5 | 32 | 21 | 30 | 4.1 | 0.69 | 0.94 |
4-2021 | 24 | 0.31 | <0.1 a | 1.3 | 48 | 27 | 38 | 5.1 | 0.74 | 1.3 |
5-2021 | 19 | 0.22 | <0.1 a | 1.4 | 35 | 25 | 31 | 4.6 | 0.83 | 1.1 |
6-2021 | 16 | 0.34 | <0.1 a | 1.2 | 34 | 28 | 26 | 3.6 | 0.92 | 0.83 |
7-2021 | 21 | 0.31 | <0.1 a | 1.1 | 63 | 37 | 35 | 7.8 | 1.4 | 1.3 |
8-2021 | 214 | 3.5 | <0.1 a | 2.4 | 98 | 166 | 21 | 32 | 2.9 | 0.53 |
MPC | 130 | 2 | 2.1 | 10 | 220 | 132 | 80 | 23 | 3 | 4 |
APC | APC | APC | MPC | APC | APC | APC | APC | MPC | MPC | MPC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorogaya, E.; Abakumov, E.; Zverev, A.; Novikova, E.; Garshin, M.; Minnegaliev, A.; Suleymanov, R. Microbiomes of Primary Soils and Mining Heaps of Polymetallic Ore Quarries. Appl. Sci. 2024, 14, 3328. https://doi.org/10.3390/app14083328
Dorogaya E, Abakumov E, Zverev A, Novikova E, Garshin M, Minnegaliev A, Suleymanov R. Microbiomes of Primary Soils and Mining Heaps of Polymetallic Ore Quarries. Applied Sciences. 2024; 14(8):3328. https://doi.org/10.3390/app14083328
Chicago/Turabian StyleDorogaya, Ekaterina, Evgeny Abakumov, Aleksei Zverev, Evgenia Novikova, Mikhail Garshin, Aleksandr Minnegaliev, and Ruslan Suleymanov. 2024. "Microbiomes of Primary Soils and Mining Heaps of Polymetallic Ore Quarries" Applied Sciences 14, no. 8: 3328. https://doi.org/10.3390/app14083328
APA StyleDorogaya, E., Abakumov, E., Zverev, A., Novikova, E., Garshin, M., Minnegaliev, A., & Suleymanov, R. (2024). Microbiomes of Primary Soils and Mining Heaps of Polymetallic Ore Quarries. Applied Sciences, 14(8), 3328. https://doi.org/10.3390/app14083328