Mathematical Modeling of SOIC Package Dynamics in Dielectric Fluids during High-Voltage Insulation Testing
Abstract
:1. Introduction
2. Mathematical Preliminaries
2.1. Effects of Dielectric Fluids
2.1.1. Interfacial Tension
2.1.2. Dynamics of the Conservation of Mass and Momentum
2.2. Electronic Components Assembly
2.2.1. Assembly in the Presence of Dielectric Fluids
2.2.2. Physical Characteristics of SOIC Packages
2.2.3. Physical Characteristics of Selected Dielectric Fluids
3. Mathematical Model Development
3.1. Motion Profile Analysis of the Characterization
3.2. Behavioral Analysis of Forces Exerted on DUT
Behavioral Analysis of Suction Force
4. Behavioral Analysis of Surface Tension, Capillarity, Cavitation, and Splash
4.1. Behavioral Analysis of Surface Tension Force
4.2. Cavitation and Capillarity Analysis
4.3. Splash Analysis
5. Results and Analysis
5.1. Statistical Validation of Samples
5.2. Consistency and Repeatability
5.3. Misalignment Velocity Analysis
5.4. Additional Parameters Analyzed during the Tests
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonifield, T. High-Voltage Isolation Quality and Reliability for amc130x; SSZY024; Texas Instruments Incorporated: Dallas, TX, USA, 2016. [Google Scholar]
- Kamath, A.; Soundarapandian, K. High-Voltage Reinforced Isolation: Definitions and Test Methodologies; Texas Instruments White Paper; Texas Instruments Incorporated: Dallas, TX, USA, 2014. [Google Scholar]
- Thawani, V.; Reghunathan, A. Fully Integrated Signal and Power Isolation—Applications and Benefits; SLYY112; Texas Instrument Incorporated: Dallas, TX, USA, 2017. [Google Scholar]
- Bonifield, T. Enabling High Voltage Signal Isolation Quality and Reliability; Application Note SSZY028; Texas Instruments, Inc.: Dallas, TX, USA, 2017. [Google Scholar]
- Geng, J. The development of high-voltage repetitive low-jitter corona stabilized triggered switch. Rev. Sci. Instrum. 2018, 89, 044705. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.; Bhardwaj, N.; Soundarapandian, K. Understanding Failure Modes in Isolators; Texas Instruments Incorporated: Dallas, TX, USA, 2018. [Google Scholar]
- Azmi, K.; Jamil, M.; Ahmad, M. Breakdown voltage characteristics of RBD Palm Olein and Envirotemp FR3 mixture under quasi-uniform electric field. In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, 5–6 December 2011; pp. 421–424. [Google Scholar]
- Haegele, S.; Vahidi, F.; Tenbohlen, S.; Rapp, K.; Sbravati, A. Investigation of interfacial surface creep breakdown at oil-pressboard interfaces in natural ester liquid and mineral oil. In Proceedings of the 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL), Manchester, UK, 25–29 June 2017; pp. 1–5. [Google Scholar]
- Bourbonnais, F.; Bigras, P.; Bonev, I. Minimum-time trajectory planning and control of a pick-and-place five-bar parallel robot. IEEE/ASME Trans. Mechatron. 2015, 20, 740–749. [Google Scholar] [CrossRef]
- Bai, L.; Yang, X.; Gao, H. Corner Point-Based Coarse–Fine Method for Surface-Mount Component Positioning. IEEE Trans. Ind. Inform. 2018, 14, 877–886. [Google Scholar] [CrossRef]
- Gokulnath, A.; Chandrakumar, S.; Sudhakar, T. Open Source Automated SMD Pick-and-Place Machine. Procedia Comput. Sci. 2018, 133, 872–878. [Google Scholar]
- Hesse, C.; Deubel, H. Advance planning in sequential pick–and–place tasks. J. Neurophysiol. 2010, 104, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, X.; Gao, L.; Su, Z.; Wei, X.; Lv, Z.; Liang, J.; Li, H.; Fang, F. Rapid Measurement and Identification Method for the Geometric Errors of CNC Machine Tools. Appl. Sci. 2019, 9, 2701. [Google Scholar] [CrossRef]
- Hagel, O. Electronic Device and Method of Making the Same Using Surface Mount Technology. U.S. Patent Application 20190059160, 21 February 2019. [Google Scholar]
- Masood, M.; Saleem, M.; Khan, U.; Hamza, A. Design, closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications. Microsyst. Technol. 2019, 25, 1171–1184. [Google Scholar] [CrossRef]
- Nally, A.; VanNorden, J.; Urquhart, J. Robotic Placement Machine for Optical Bonding, System and Method of Use Thereof. US20120234459A1, 6 February 2018. [Google Scholar]
- Kalil Coelho, Y. Pore-scale modeling of oil mobilization trapped in a square cavity. IEEE Lat. Am. Trans. 2016, 14, 1800–1807. [Google Scholar] [CrossRef]
- Crowe, C.T. Multiphase Flows with Droplets and Particles; CRC Press: Boca Raton, FL, USA, 2011; pp. 67–93. [Google Scholar]
- Huh, C.; Scriven, L. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 1971, 35, 85–101. [Google Scholar] [CrossRef]
- Vaudor, G. A consistent mass and momentum flux computation method for two phase flows. Application to atomization process. Comput. Fluids 2017, 152, 204–216. [Google Scholar] [CrossRef]
- Özkaya, N.; Leger, D.; Goldsheyder, D.; Nordin, M.; Özkaya, N.; Leger, D.; Goldsheyder, D.; Nordin, M. Impulse and momentum. In Fundamentals Of Biomechanics: Equilibrium, Motion, and Deformation; Springer: New York, NY, USA, 2017; pp. 253–278. [Google Scholar]
- Langtangen, H.; Mardal, K.; Winther, R. Numerical methods for incompressible viscous flow. Adv. Water Resour. 2002, 25, 1125–1146. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R. On some new exact solutions of incompressible steady state Navier–Stokes equations. Meccanica 2014, 49, 335–345. [Google Scholar] [CrossRef]
- Gresho, P.; Sani, R.; Engelman, M. Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow; John Wiley & Sons: Hoboken, NJ, USA, 1998; pp. 707–847. [Google Scholar]
- Welty, J.; Rorrer, G.; Foster, D. Fundamentals of Momentum, Heat, and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 398–488. [Google Scholar]
- Pritschow, G. Ball screw drives with enhanced bandwidth by modification of the axial bearing. Cirp Ann. 2013, 62, 383–386. [Google Scholar] [CrossRef]
- Omron, Industrial Automation. Technical Explanation for Servomotors and Servo Drives. Servo TGE21. Available online: https://www.ia.omron.com/support/guide/14/introduction.html (accessed on 1 December 2023).
- Devauchelle, O. Stability of bedforms in laminar flows with free surface: From bars to ripples. J. Fluid Mech. 2010, 642, 329–348. [Google Scholar] [CrossRef]
- Cargill Inc. Envirotemp FR3 SDS Fluid, Datasheet; Cargill Inc.: Plymount, MN, USA, 2017; Available online: https://vantran.com/wp-content/uploads/2020/12/Envirotemp-FR3-SDS.pdf (accessed on 29 March 2024).
- Gelest Inc. DMS-T23 High Temperature Silicone Heat Transfer Fluid, D. Datasheet; Gelest Inc.: Morrisville, PA, USA, 2014; Available online: https://s3.amazonaws.com/gelest/sds/DMS-T23_GHS+US_English+US.pdf (accessed on 29 March 2024).
- Exxon Mobil Corporation. Mobil DTE Mineral Oil Extra Heavy, IP-346. Datasheet; Exxon Mobil Corporation: Irving, TX, USA, 2016; Available online: https://msds.exxonmobil.com/Download.aspx?ID=1005960&docFormat=PDF (accessed on 29 March 2024).
- Inkbird Tech. Heating Output Temperature Controller C206T User Manual; Inkbird Tech. C.L: Shenzhen, China, 2016; pp. 1–10. Available online: https://data2.manualslib.com/pdf6/141/14053/1405273-inkbird/c206t.pdf?40b598a40d1f1d87461d5e3702627575&take=binary (accessed on 29 March 2024).
- Voss, W. A Comprehensible Guide to Servo Motor Sizing; Copperhill Media: Spring, TX, USA, 2007. [Google Scholar]
- William, M. Quantifying Measurement. In University Physics; Morgan & Claypool Publishers: San Rafael, CA, USA, 2016; Volume 1, pp. 105–150. [Google Scholar]
- EADmotors. Linear Stepper with Threaded Screw LA23ECK-N200U. Datasheet; EADmotors: Dover, NH, USA, 2014; pp. 23–24. Available online: https://www.electrocraft.com/files/legacy/ead_step.pdf (accessed on 29 March 2024).
- Scheck, F. Mechanics: From Newton’s Laws to Deterministic Chaos; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Volodymyr, S. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418762670. [Google Scholar]
- Pluta, Z.; Hryniewicz, T. A developed version of the Hooke’s law. Int. Lett. Chem. Phys. Astron. 2013, 2, 49–59. [Google Scholar] [CrossRef]
- Richardson, E. The impact of a solid on a liquid surface. Proc. Phys. Soc. 1948, 61, 352. [Google Scholar] [CrossRef]
- Yan, H. Cavity Dynamics in Water Entry at Low Froude Numbers; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Bormashenko, E. Wetting of flat gradient surfaces. J. Colloid Interface Sci. 2018, 515, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; Jepsen, R.; Yoon, S. Modeling Large-Scale Drop Impact: Splash Criteria and Droplet Distribution; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2008. [Google Scholar]
- Murphy, D. Splash behavior and oily marine aerosol production by raindrops impacting oil slicks. J. Fluid Mech. 2015, 780, 536. [Google Scholar] [CrossRef]
- JEDEC’s Standard MC-012; Solid State Product Outline MS-012 Standard; Plastic Dual Small Outline Gull Wing, 1.27 mm Pitch Package. JEDEC: Arlington, VA, USA, 2020. Available online: https://www.jedec.org/system/files/docs/MS-012G-02.pdf (accessed on 22 April 2024).
SOIC Package | Length mm | Width mm | Height mm | Equivalent Diameter mm | Area mm2 | Volume mm3 | Mass | Weight N |
---|---|---|---|---|---|---|---|---|
SOP-16 | 10.49 | 10.64 | 2.65 | 10.57 | 111.68 | 296.61 | 1.36 × | 1.33 × |
SOP-20 | 12.60 | 10.64 | 2.65 | 11.54 | 134.13 | 355.60 | 4.99 × | 4.89 × |
SOP-24 | 15.60 | 10.64 | 2.65 | 12.65 | 166.00 | 440.81 | 6.35 × | 6.23 × |
Dielectric Medium | Density | Viscosity at | Surface Tension |
---|---|---|---|
Air | 1.17 | 16.92 | N/A |
FR3 | 922.99 | 40.00 | 23.99 |
DTE-150 | 856.00 | 150.00 | 22.26 |
DPMS | 967.99 | 350.00 | 21.10 |
Stage | Downward Period Distance Covered | Stage | Upward Period Distance Covered |
---|---|---|---|
I | XVI | ||
II | XVII | ||
III | XVIII | ||
IV | XIX | ||
V | XX |
Stage | Accel–Decel | Stage | Accel–Decel | Stage | Accel–Decel |
---|---|---|---|---|---|
I and XX | III and XVIII | V and XVI |
Symbol | Description | Value | Units |
---|---|---|---|
T | Motor torque on the Z-axis | 0.8054 | N·m |
Lead screw pitch | 0.01 | m | |
Friction coefficient on the sliding surface | 0.15 | ||
m | Overall load mass | 1 | Kg |
Machine force on the Z-axis from Equation (17) | 318 | N | |
j | Rotor inertia | 1.172 | Kg·m2 |
Revolutions per second | 0.547 | rev/s | |
Angular acceleration | 43,373.56 | rad/s2 | |
Maximum linear velocity on the Z-axis | 0.288 | m/s | |
Air travel distance | 0.045 | m | |
Oil travel distance | 0.030 | m | |
Final travel distance in the oil | 0.003 | m | |
Total travel distance | 0.078 | m | |
Nozzle contact end diameter | 0.0036 | m | |
Nozzle contact end suction area | m2 | ||
Nozzle contact end cylinder area | 3.02 | m2 | |
Measured maximum suction pressure | 9997.40 | Pa·N/m2 | |
Maximum suction force is equal | 0.102 | N |
SOIC Package | Dielectric Medium | |||
---|---|---|---|---|
Air | FR3 | DTE-150 | DPMS | |
SOP-16 | 211.04 | 70,222.13 | 17,366.60 | 8416.66 |
SOP-20 | 230.48 | 76,689.88 | 18,966.13 | 9191.87 |
SOP-24 | 252.74 | 84,095.12 | 20,797.52 | 10,079.44 |
SOIC Package | Dielectric Medium | |||
---|---|---|---|---|
Air | FR3 | DTE-150 | DPMS | |
SOP-16 | 0.788 | 0.423 | 0.447 | 0.464 |
SOP-20 | 0.760 | 0.422 | 0.445 | 0.461 |
SOP-24 | 0.732 | 0.421 | 0.442 | 0.458 |
Dielectric Medium | SOIC Package | Minimum Suction Force N | Vacuum Pressure N/m2 |
---|---|---|---|
SOP-16 | 0.0138 | 458.78 | |
AIR | SOP-20 | 0.0471 | 1560.70 |
SOP-24 | 0.0613 | 2031.89 | |
SOP-16 | 0.0239 | 791.59 | |
FR3 | SOP-20 | 0.0790 | 2617.87 |
SOP-24 | 0.0999 | 3309.28 | |
SOP-16 | 0.0227 | 753.53 | |
DTE-150 | SOP-20 | 0.0754 | 2496.94 |
SOP-24 | 0.0955 | 3162.83 | |
SOP-16 | 0.0220 | 727.74 | |
DPMS | SOP-20 | 0.0729 | 2414.89 |
SOP-24 | 0.0925 | 3063.13 |
Dielectric Medium | SOIC Package | Downward m/s | Upward m/s |
---|---|---|---|
SOP-16 | 29.735 | 18.132 | |
AIR | SOP-20 | 26.581 | 30.197 |
SOP-24 | 27.820 | 30.757 | |
SOP-16 | 1.073 | 1.257 | |
FR3 | SOP-20 | 1.721 | 1.955 |
SOP-24 | 1.741 | 1.925 | |
SOP-16 | 1.055 | 1.235 | |
DTE-150 | SOP-20 | 1.697 | 1.928 |
SOP-24 | 1.720 | 1.901 | |
SOP-16 | 0.922 | 1.080 | |
DPMS | SOP-20 | 1.472 | 1.673 |
SOP-24 | 1.494 | 1.652 |
SOIC Package | Dielectric Medium | ||
---|---|---|---|
FR3 | DTE-150 | DPMS | |
SOP-16 | 39.929 | 43.957 | 49.561 |
SOP-20 | 37.127 | 40.805 | 46.058 |
SOP-24 | 35.025 | 38.528 | 43.431 |
SOIC Package | Dielectric Medium | ||
---|---|---|---|
FR3 | DTE-150 | DPMS | |
SOP-16 | |||
SOP-20 | |||
SOP-24 |
Dielectric Medium | SOIC Package | Splash Percentage (%) | Splash Threshold |
---|---|---|---|
SOP-16 | 0.169 | 0.063 | |
FR3 | SOP-20 | 0.168 | 0.110 |
SOP-24 | 0.210 | 0.167 | |
SOP-16 | 0.184 | 0.064 | |
DTE-150 | SOP-20 | 0.184 | 0.112 |
SOP-24 | 0.230 | 0.170 | |
SOP-16 | 0.200 | 0.065 | |
DPMS | SOP-20 | 0.202 | 0.114 |
SOP-24 | 0.252 | 0.174 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio, Y.A.; Jimenez, M. Mathematical Modeling of SOIC Package Dynamics in Dielectric Fluids during High-Voltage Insulation Testing. Appl. Sci. 2024, 14, 3693. https://doi.org/10.3390/app14093693
Aparicio YA, Jimenez M. Mathematical Modeling of SOIC Package Dynamics in Dielectric Fluids during High-Voltage Insulation Testing. Applied Sciences. 2024; 14(9):3693. https://doi.org/10.3390/app14093693
Chicago/Turabian StyleAparicio, Yohan A., and Manuel Jimenez. 2024. "Mathematical Modeling of SOIC Package Dynamics in Dielectric Fluids during High-Voltage Insulation Testing" Applied Sciences 14, no. 9: 3693. https://doi.org/10.3390/app14093693
APA StyleAparicio, Y. A., & Jimenez, M. (2024). Mathematical Modeling of SOIC Package Dynamics in Dielectric Fluids during High-Voltage Insulation Testing. Applied Sciences, 14(9), 3693. https://doi.org/10.3390/app14093693