Innovative EMD-Based Technique for Preventing Coffee Grinder Damage from Stones with FPGA Implementation
Abstract
:1. Introduction
- Developed a method based on the Empirical Mode Decomposition (EMD) algorithm to detect the presence of stones mixed into coffee beans during the operation of coffee machines, along with a detection process to prevent collisions between coffee beans and the rotating burrs;
- Designed an efficient real-time FPGA implementation for the aforementioned detection method;
- Optimized the EMD extraction module through reuse, achieving resource consumption optimization by slightly increasing the processing delay per detection while minimally impacting data throughput, thereby facilitating its application on smaller FPGA or CPLD devices.
2. Materials and Methods
2.1. Overview: Overall Project Block Diagram
2.2. Reasons for Using EMD Algorithm
2.3. Advantages of the FPGA Platform
3. Design and Development
3.1. The Specific Method of the Implementation
3.2. The FPGA Implementation Detail
3.3. Innovation and Improvements in Module Reuse
4. Result
4.1. Reliability of Approximate Calculations
4.2. Accuracy of Abnormal Recognition
4.3. Resurce Consumption of FPGA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coffeelab-USA. Detecting Stones in Coffee Beans: Your Essential Guide. Available online: https://coffeelab-usa.com/detecting-stones-in-coffee-beans-your-essential-guide/ (accessed on 13 October 2024).
- Espressooutlet. Stones in Coffee: Impact, Prevention, and What to Do. Available online: https://espressooutlet.com/blogs/news/stones-in-coffee-impact-prevention-and-what-to-do (accessed on 13 October 2024).
- Wogancoffee. Calibrating Your Grinder. Available online: https://wogancoffee.com/blogs/coffee-guides/calibrating-your-grinder (accessed on 27 October 2024).
- Espressoparts. Grinder Burr Maintenance. Available online: https://www.espressoparts.com/blogs/barista-basics-tutorials/grinder-burr-maintenance (accessed on 27 October 2024).
- Thongnop, T.; Perpaman, T.; Kansiri, P.; Nuchda, W.; Peungsungwan, S. Quality Sorting of Green Coffee Beans from Wet Processing by Using The Principle of Machine Learning. ASEAN J. Sci. Eng. 2021, 1, 63–66. [Google Scholar] [CrossRef]
- Nguyen, D. An Efficient Real-Time Algorithm Using Shape and Cielab Color Space for Sorting Coffee Beans. J. Sci. Tech. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Kok, C.L.; Ho, C.K.; Aung, T.H.; Koh, Y.Y.; Teo, T.H. Transfer Learning and Deep Neural Networks for Robust Intersubject Hand Movement Detection from EEG Signals. Appl. Sci. 2024, 14, 8091. [Google Scholar] [CrossRef]
- Oliveri, P.; Malegori, C.; Casale, M.; Tartacca, E.; Salvatori, G. An innovative multivariate strategy for HSI-NIR images to automatically detect defects in green coffee. Talanta 2019, 199, 270–276. [Google Scholar] [CrossRef]
- Lualhati, A.; Mariano, J.; Torres, A.; Fenol, S. Development and Testing of Green Coffee Bean Quality Sorter using Image Processing and Artificial Neural Network. Mindanao J. Sci. Technol. 2022, 20, 1–15. [Google Scholar] [CrossRef]
- Kok, C.L.; Ho, C.K.; Tan, F.K.; Koh, Y.Y. Machine Learning-Based Feature Extraction and Classification of EMG Signals for Intuitive Prosthetic Control. Appl. Sci. 2024, 14, 5784. [Google Scholar] [CrossRef]
- Farago, E.; Chan, A. Evaluation of interpolation methods for EMG arrays. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. A Metric for Distributions with Applications to Image Databases. In Proceedings of the 6th International Conference on Computer Vision, Bombay, India, 4–7 January 1998; IEEE: Piscataway, NJ, USA; pp. 59–66. [Google Scholar]
- Li, H.; Zheng, H. Bearing Fault Detection Using Envelope Spectrum Based on EMD and TKEO. In Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20 October 2008; Volume 3, pp. 142–146. [Google Scholar] [CrossRef]
- Mahmud, M.; Wang, W. An Adaptive EMD Technique for Induction Motor Fault Detection. J. Signal Inf. Process. 2019, 10, 125–138. [Google Scholar] [CrossRef]
- Mahgoun, H.; Bekka, R.; Felkaoui, A. Gearbox fault diagnosis using ensemble empirical mode decomposition (EEMD) and residual signal. Mech. Ind. 2012, 13, 33–44. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, K.; Xu, M. The application of empirical mode decomposition and Hilbert-Huang transform to the detection of rub-impact fault of the rotor system. Mech. Syst. Signal Process. 2011, 25, 3182–3198. [Google Scholar]
- Li, Z.; Li, H. EMD and Envelope Spectrum Based Bearing Fault Detection. Adv. Mater. Res. 2012, 459, 233–237. [Google Scholar] [CrossRef]
- Yu, D.; Cheng, J.; Yang, Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mech. Syst. Signal Process. 2005, 19, 259–270. [Google Scholar] [CrossRef]
- Wang, D.; Tse, P. A new blind fault component separation algorithm for a single-channel mechanical signal mixture. J. Sound Vib. 2012, 331, 4956–4970. [Google Scholar] [CrossRef]
- Göhringer, D.; Becker, J. FPGA-Based Runtime Adaptive Multiprocessor Approach for Embedded High Performance Computing Applications. In Proceedings of the 2010 IEEE Computer Society Annual Symposium on VLSI, Lixouri, Greece, 5–7 July 2010; pp. 477–478. [Google Scholar]
- Azegami, K.; Kashiwakura, S.; Yamashita, K. Flexible FPGA Architecture realized of General Purpose SOG. In Proceedings of the Fourth International ACM Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 11–13 February 1996; pp. 17–22. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.; Bohlooli, A.; Dehghantanha, A.; Choo, K. A high-performance framework for a network programmable packet processor using P4 and FPGA. J. Netw. Comput. Appl. 2020, 156, 102564. [Google Scholar] [CrossRef]
- Sheldon, D.; Kumar, R.; Lysecky, R.; Vahid, F.; Tullsen, D. Application-Specific Customization of Parameterized FPGA Soft-Core Processors. In Proceedings of the 2006 IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, USA, 5–9 November 2006; pp. 261–268. [Google Scholar] [CrossRef]
- Koch, D.; Dao, N.; Healy, B.; Yu, J.; Attwood, A. FABulous: An Embedded FPGA Framework. In Proceedings of the 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Virtual Event, 28 February–2 March 2021. [Google Scholar] [CrossRef]
- Owaida, M.; Alonso, G.; Fogliarini, L.; Hock-koon, A.; Melet, P. Lowering the Latency of Data Processing Pipelines Through FPGA based Hardware Acceleration. Proc. VLDB Endow. 2019, 13, 71–85. [Google Scholar] [CrossRef]
- Hoozemans, J.; Peltenburg, J.; Nonnemacher, F.; Hadnagy, Á.; Al-Ars, Z.; Hofstee, H. FPGA Acceleration for Big Data Analytics: Challenges and Opportunities. IEEE Circuits Syst. Mag. 2021, 21, 30–47. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, J.; Markert, R.; Liang, M. Spectral entropy: A complementary index for rolling element bearing performance degradation assessment. J. Sound Vib. 2009, 329, 1862–1877. [Google Scholar]
- Chong, Y.; Parameswaran, S. Configurable Multimode Embedded Floating-Point Units for FPGAs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 2033–2044. [Google Scholar] [CrossRef]
- Beauchamp, M.; Hauck, S.; Underwood, K.; Hemmert, K. Architectural Modifications to Enhance the Floating-Point Performance of FPGAs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2008, 16, 177–187. [Google Scholar] [CrossRef]
- Das, K.; Nath, D.; Pradhan, S. FPGA and ASIC realisation of EMD algorithm for real-time signal processing. IET Circuits Devices Syst. 2020, 14, 741–749. [Google Scholar] [CrossRef]
- Camarena-Martinez, D.; Valtierra-Rodríguez, M.; Perez-Ramirez, C.; Amezquita-Sanchez, J.; Romero-Troncoso, R.; García-Perez, A. Novel Downsampling Empirical Mode Decomposition Approach for Power Quality Analysis. IEEE Trans. Ind. Electron. 2016, 63, 2369–2378. [Google Scholar] [CrossRef]
- Wang, S.; Inkol, R.; Rajan, S.; Patenaude, F. Detection of Narrow-Band Signals Through the FFT and Polyphase FFT Filter Banks: Noncoherent Versus Coherent Integration. IEEE Trans. Instrum. Meas. 2010, 59, 1424–1438. [Google Scholar] [CrossRef]
- Takai, R.; Uchida, S.; Sato, A.; Inamori, M.; Sanada, Y. Experimental Investigation of Signal Sensing with Overlapped FFT Based Energy Detection. Wirel. Pers. Commun. 2014, 77, 553–569. [Google Scholar] [CrossRef]
- Mopuri, S.; Acharyya, A. Low-Complexity Methodology for Complex Square-Root Computation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 3255–3259. [Google Scholar] [CrossRef]
- Volder, J.E. The CORDIC Trigonometric Computing Technique. IRE Trans. Electron. Comput. 1959, EC-8, 330–334. [Google Scholar]
- Ito, M.; Takagi, N.; Yajima, S. Efficient initial approximation and fast converging methods for division and square root. In Proceedings of the 12th Symposium on Computer Arithmetic, Bath, England, 19–21 July 1995; pp. 2–9. [Google Scholar] [CrossRef]
- Lam, S.; Srikanthan, T. A linear approximation based hybrid approach for binary logarithmic conversion. Microprocess. Microsyst. 2002, 26, 353–361. [Google Scholar] [CrossRef]
- Sprangle, E.; Carmean, D. Increasing processor performance by implementing deeper pipelines. ACM SIGARCH Comput. Arch. News 2002, 30, 25–34. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves: The Hilbert Spectrum. Annu. Rev. Fluid Mech. 1999, 31, 417–457. [Google Scholar] [CrossRef]
- Lakshminarayanan, G.; Venkataramani, B. Optimization techniques for FPGA-based wave-pipelined DSP blocks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2005, 13, 783–793. [Google Scholar] [CrossRef]
- Zhuo, L.; Morris, G.; Prasanna, V. High-Performance Reduction Circuits Using Deeply Pipelined Operators on FPGAs. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 1377–1392. [Google Scholar] [CrossRef]
- Kim, J.; Yang, H.; Ryu, K.; Kim, H. FPGA Low Power Technology Mapping for Reuse Module Design under the Time Constraint. In Proceedings of the 2008 Second International Conference on Future Generation Communication and Networking, Hainan, China, 13–15 December 2008; Volume 2, pp. 57–61. [Google Scholar] [CrossRef]
- Kusse, E.; Rabaey, J. Low-energy embedded FPGA structures. In Proceedings of the 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379), Monterey, CA, USA, 10–12 August 1998; pp. 155–160. [Google Scholar] [CrossRef]
- Eguro, K.; Hauck, S. Enhancing timing-driven FPGA placement for pipelined netlists. In Proceedings of the 2008 45th ACM/IEEE Design Automation Conference, Anaheim, CA, USA, 8–13 June 2008; pp. 34–37. [Google Scholar] [CrossRef]
- Sun, W.; Wirthlin, M.; Neuendorffer, S. FPGA Pipeline Synthesis Design Exploration Using Module Selection and Resource Sharing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007, 26, 254–265. [Google Scholar] [CrossRef]
- Wojko, M. Pipelined Multipliers and FPGA Architectures. Field Program. Log. Appl. 1999, 1673, 347–352. [Google Scholar] [CrossRef]
- Kok, C.L.; Teo, T.H.; Koh, Y.Y.; Dai, Y.; Ang, B.K.; Chai, J.P. Development and Evaluation of an IoT-Driven Auto-Infusion System with Advanced Monitoring and Alarm Functionalities. In Proceedings of the 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Jiang, W.; Song, Z.; Zhan, J.; He, Z.; Wen, X.; Jiang, K. Optimized co-scheduling of mixed-precision neural network accelerator for real-time multitasking applications. J. Syst. Archit. 2020, 110, 101775. [Google Scholar] [CrossRef]
- Precedence Research. Coffee Market Size, Share and Trends 2024 to 2034. Available online: https://www.precedenceresearch.com/coffee-market (accessed on 27 January 2025).
- Elouaham, S.; Dliou, A.; Jenkal, W.; Louzazni, M.; Zougagh, H.; Dlimi, S. Empirical Wavelet Transform Based ECG Signal Filtering Method. J. Electr. Comput. Eng. 2024, 2024, 9050909. [Google Scholar] [CrossRef]
- Samanta, B.; Al-Balushi, K.; Al-Araimi, S. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng. Appl. Artif. Intell. 2003, 16, 657–665. [Google Scholar] [CrossRef]
- Hong, Y.-Y.; Bao, Y.-Q. FPGA implementation for real-time empirical mode decomposition. IEEE Trans. Instrum. Meas. 2012, 61, 3175–3184. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Lai, Y.-C.; Zheng, J.-Y. Hardware design and implementation for empirical mode decomposition. IEEE Trans. Ind. Electron. 2016, 63, 3686–3694. [Google Scholar] [CrossRef]
- Gul, S.; Siddiqui, M.F.; Rehman, N.U. FPGA Based Real-Time Implementation of Online EMD With Fixed Point Architecture. IEEE Access 2019, 7, 176565–176577. [Google Scholar] [CrossRef]
- Elouaham, S.; Dliou, A.; Elkamoun, N.; Latif, R.; Said, S.; Zougagh, H.; Khadiri, K. Denoising electromyogram and electroencephalogram signals using improved complete ensemble empirical mode decomposition with adaptive noise. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 829–836. [Google Scholar] [CrossRef]
Type of Mode | Recognition Accuracy (%) |
---|---|
No Fault | 100% |
Single Intact Stone in Coffee Bean | 100% |
Many Crashed Stone in Coffee Bean | 91% |
Single Crashed Stone in Coffee Bean | 0% |
Logic Resource | Full Process | EMD Only w/o Reuse | EMD Only with Reuse |
---|---|---|---|
LUTs | 4700 | 2094 | 1239 |
Registers | 7267 | 3751 | 2283 |
CARRY8 | 219 | 122 | 22 |
F7 Muxes | 59 | 0 | 1 |
Block RAM Tiles | 18 | 14 | 4 |
DSPs | 33 | 14 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kok, C.L.; Dai, Y.; Koh, Y.Y.; Xiang, M.; Teo, T.H. Innovative EMD-Based Technique for Preventing Coffee Grinder Damage from Stones with FPGA Implementation. Appl. Sci. 2025, 15, 1579. https://doi.org/10.3390/app15031579
Kok CL, Dai Y, Koh YY, Xiang M, Teo TH. Innovative EMD-Based Technique for Preventing Coffee Grinder Damage from Stones with FPGA Implementation. Applied Sciences. 2025; 15(3):1579. https://doi.org/10.3390/app15031579
Chicago/Turabian StyleKok, Chiang Liang, Yuwei Dai, Yit Yan Koh, Maoyang Xiang, and Tee Hui Teo. 2025. "Innovative EMD-Based Technique for Preventing Coffee Grinder Damage from Stones with FPGA Implementation" Applied Sciences 15, no. 3: 1579. https://doi.org/10.3390/app15031579
APA StyleKok, C. L., Dai, Y., Koh, Y. Y., Xiang, M., & Teo, T. H. (2025). Innovative EMD-Based Technique for Preventing Coffee Grinder Damage from Stones with FPGA Implementation. Applied Sciences, 15(3), 1579. https://doi.org/10.3390/app15031579