Machine Learning-Based Model for Emergency Department Disposition at a Public Hospital
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Study Population and Setting
3.2. Dataset Description
3.3. Preprocessing
3.4. Machine Learning Models
3.4.1. K-Nearest Neighbor (KNN)
3.4.2. Adaptive Boosting (AdaBoost)
3.4.3. Random Forest (RF)
3.4.4. Extreme Gradient Boosting (XGBoost)
3.4.5. LightGBM
3.4.6. Categorical Boosting (CatBoost)
3.4.7. Logistic Regression
3.5. Feature Selection
3.6. The Proposed Model
4. Results
5. Discussion
Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Center for Health Statistics (US). Health, United States, 2012: With Special Feature on Emergency Care; Report No.: 2013-1232; National Center for Health Statistics (US): Hyattsville, MD, USA, 2013. [Google Scholar]
- Morley, C.; Unwin, M.; Peterson, G.M.; Stankovich, J.; Kinsman, L. Emergency department crowding: A systematic review of causes, consequences and solutions. PLoS ONE 2018, 13, e0203316. [Google Scholar] [CrossRef]
- Sun, B.C.; Hsia, R.Y.; Weiss, R.E.; Zingmond, D.; Liang, L.J.; Han, W.; McCreath, H.; Asch, S.M. Effect of emergency department crowding on outcomes of admitted patients. Ann. Emerg. Med. 2013, 61, 605–611.e6. [Google Scholar] [CrossRef]
- Greenwald, P.W.; Estevez, R.M.; Clark, S.; Stern, M.E.; Rosen, T.; Flomenbaum, N. The ED as the primary source of hospital admission for older (but not younger) adults. Am. J. Emerg. Med. 2016, 34, 943–947. [Google Scholar] [CrossRef]
- Shafaf, N.; Malek, H. Applications of Machine Learning Approaches in Emergency Medi-cine; a Review Article. Arch. Acad. Emerg. Med. 2019, 7, 34. [Google Scholar] [PubMed]
- Kelly, A.M.; Bryant, M.; Cox, L.; Jolley, D. Improving emergency department efficiency by patient streaming to outcomes-based teams. Aust. Health Rev. 2007, 31, 16–21. [Google Scholar] [CrossRef]
- King, D.L.; Ben-Tovim, D.I.; Bassham, J. Redesigning emergency department patient flows: Application of Lean Thinking to health care. Emerg. Med. Australas. 2006, 18, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Weissman, G.E.; Crane-Droesch, A.; Chivers, C.; Luong, T.; Hanish, A.; Levy, M.Z.; Lubken, J.; Becker, M.; Draugelis, M.E.; Anesi, G.L.; et al. Locally Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic. Ann. Intern. Med. 2020, 173, 21–28. [Google Scholar] [CrossRef]
- Petrella, R.J. The AI Future of Emergency Medicine. Ann. Emerg. Med. 2024, 84, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Shaban-Nejad, A.; Michalowski, M.; Buckeridge, D.L. Health intelligence: How artificial intelligence transforms population and personalized health. npj Digit. Med. 2018, 1, 53. [Google Scholar] [CrossRef]
- Xie, F.; Zhou, J.; Lee, J.W.; Tan, M.; Li, S.; Rajnthern, L.S.O.; Chee, M.L.; Chakraborty, B.; Wong, A.K.I.; Dagan, A.; et al. Benchmarking emergency department prediction models with machine learning and public electronic health records. Sci. Data 2022, 9, 658. [Google Scholar] [CrossRef]
- Feretzakis, G.; Sakagianni, A.; Loupelis, E.; Karlis, G.; Kalles, D.; Tzelves, L.; Chatzikyriakou, R.; Trakas, N.; Petropoulou, S.; Tika, A.; et al. Predicting Hospital Admission for Emergency Department Patients: A Machine Learning Approach. In Informatics and Technology in Clinical Care and Public Health; Studies in Health Technology and Informatics Volume 289; IOS Press: Amsterdam, The Netherlands, 2022; pp. 297–300. [Google Scholar]
- Larburu, N.; Azkue, L.; Kerexeta, J. Predicting Hospital Ward Admission from the Emergency Department: A Systematic Review. J. Pers. Med. 2023, 13, 849. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Karlis, G.; Loupelis, E.; Kalles, D.; Chatzikyriakou, R.; Trakas, N.; Karakou, E.; Sakagianni, A.; Tzelves, L.; Petropoulou, S.; et al. Using Machine Learning Techniques to Predict Hospital Admission at the Emergency Department. J. Crit. Care Med. 2022, 8, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Kishore, K.; Braitberg, G.; Holmes, N.E.; Bellomo, R. Early prediction of hospital admission of emergency department patients. Emerg. Med. Australas. 2023, 35, 572–588. [Google Scholar] [CrossRef]
- Parker, C.A.; Liu, N.; Wu, S.X.; Shen, Y.; Lam, S.S.W.; Ong, M.E.H. Predicting hospital admission at the emergency department triage: A novel prediction model. Am. J. Emerg. Med. 2019, 37, 1498–1504. [Google Scholar] [CrossRef]
- De Hond, A.; Raven, W.; Schinkelshoek, L.; Gaakeer, M.; Ter Avest, E.; Sir, O.; Lameijer, H.; Hessels, R.A.; Reijnen, R.; De Jonge, E.; et al. Machine learning for developing a prediction model of hospital admission of emergency department patients: Hype or hope? Int. J. Med. Inform. 2021, 152, 104496. [Google Scholar] [CrossRef]
- Hong, W.S.; Haimovich, A.D.; Taylor, R.A. Predicting hospital admission at emergency department triage using machine learning. PLoS ONE 2018, 13, e0201016. [Google Scholar] [CrossRef]
- Graham, B.; Bond, R.; Quinn, M.; Mulvenna, M. Using Data Mining to Predict Hospital Admissions From the Emergency Department. IEEE Access 2018, 6, 10458–10469. [Google Scholar] [CrossRef]
- van Delft, R.A.; de Carvalho, R.M. Using Machine Learning Techniques to Support the Emergency Department. Comput. Inform. 2022, 41, 154–171. [Google Scholar] [CrossRef]
- Cusidó, J.; Comalrena, J.; Alavi, H.; Llunas, L. Predicting hospital admissions to reduce crowding in the emergency departments. Appl. Sci. 2022, 12, 10764. [Google Scholar] [CrossRef]
- Ministry of Health of the Republic of Turkey. Yataklı Sağlık Tesislerinde Acil Servis Hizmetlerinin Uygulama Usul Ve Esasları Hakkında Tebliğ. Available online: https://www.saglik.gov.tr/TR,11321/yatakli-saglik-tesislerinde-acil-servis-hizmetlerinin-uygulama-usul-ve-esaslari-hakkinda-teblig.html (accessed on 13 September 2022).
- Bora, Ş.; Kantarcı, A.; Erdoğan, A.; Beynek, B.; Kheibari, B.; Evren, V.; Erdoğan, M.A.; Kavak, F.; Afyoncu, F.; Eryaz, C.; et al. Machine learning for E-triage. Int. J. Multidiscip. Stud. Innov. Technol. 2022, 6, 86–90. [Google Scholar] [CrossRef]
- Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61–67. [Google Scholar] [CrossRef]
- Sharifani, K.; Amini, M.; Akbari, Y.; Aghajanzadeh Godarzi, J. Operating machine learning across natural language processing techniques for improvement of fabricated news model. Int. J. Sci. Inf. Syst. Res. 2022, 12, 20–44. [Google Scholar]
- Ogunpola, A.; Saeed, F.; Basurra, S.; Albarrak, A.M.; Qasem, S.N. Machine learning-based predictive models for detection of cardiovascular diseases. Diagnostics 2024, 14, 144. [Google Scholar] [CrossRef]
- Adams, R.; Henry, K.E.; Sridharan, A.; Soleimani, H.; Zhan, A.; Rawat, N.; Johnson, L.; Hager, D.N.; Cosgrove, S.E.; Markowski, A.; et al. Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis. Nat. Med. 2022, 28, 1455–1460. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhou, X.; Wang, H.; Xu, C.; Peng, L.; Xu, F.; Lian, L.; Deng, G.; Ji, S.; Hu, M.; Zhu, H.; et al. Application of kNN and SVM to predict the prognosis of advanced sChistosomiasis. Parasitol. Res. 2022, 121, 2457–2460. [Google Scholar] [CrossRef]
- Ho, J.C.; Sotoodeh, M.; Zhang, W.; Simpson, R.L.; Hertzberg, V.S. An AdaBoost-based algorithm to detect hospital-acquired pressure injury in the presence of conflicting annotations. Comput. Biol. Med. 2024, 168, 107754. [Google Scholar] [CrossRef]
- Elhaj, H.; Achour, N.; Tania, M.H.; Aciksari, K. A comparative study of supervised machine learning approaches to predict patient triage outcomes in hospital emergency departments. Array 2023, 17, 100281. [Google Scholar] [CrossRef]
- Jiang, H.; Mao, H.; Lu, H.; Lin, P.; Garry, W.; Lu, H.; Yang, G.; Rainer, T.H.; Chen, X. Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. Int. J. Med. Inform. 2021, 145, 104326. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Z.; Ren, Y.; Nie, H.; Lei, Y.; Qiu, H.; Xu, Z.; Pu, X. Machine learning based early mortality prediction in the emergency department. Int. J. Med. Inform. 2021, 155, 104570. [Google Scholar] [CrossRef]
- Chang, Y.H.; Shih, H.M.; Wu, J.E.; Huang, F.W.; Chen, W.K.; Chen, D.M.; Chung, Y.T.; Wang, C.C. Machine learning–based triage to identify low-severity patients with a short discharge length of stay in emergency department. BMC Emerg. Med. 2022, 22, 88. [Google Scholar] [CrossRef] [PubMed]
- Zabor, E.C.; Reddy, C.A.; Tendulkar, R.D.; Patil, S. Logistic regression in clinical studies. Int. J. Radiat. Oncol. *Biol.* Phys. 2022, 112, 271–277. [Google Scholar] [CrossRef] [PubMed]
Class | # of Instances per Class and the Percentage of These Instances |
---|---|
Mortality | 316 (0.41%) |
Referral | 5285 (6.97%) |
Discharge | 56,885 (75%) |
Hospitalization | 13,317 (17.5%) |
Total | 75,803 (100%) |
ML Model | Accuracy | Precision | Recall | F1 Score | Auc Score |
---|---|---|---|---|---|
CatBoost | 0.8306 | 0.8208 | 0.8306 | 0.8104 | 0.8928 |
AdaBoost | 0.7626 | 0.6818 | 0.7192 | 0.7002 | 0.7680 |
XGBoost | 0.8460 | 0.8402 | 0.8462 | 0.8300 | 0.9234 |
LightGBM | 0.8108 | 0.7942 | 0.8106 | 0.7832 | 0.8798 |
RF | 0.9348 | 0.934 | 0.9332 | 0.9318 | 0.9584 |
KNN | 0.7686 | 0.7432 | 0.7704 | 0.7504 | 0.8290 |
LR | 0.7636 | 0.7212 | 0.7640 | 0.6954 | 0.6944 |
Features | Chi-Square Stats | p-Values |
---|---|---|
Troponine T | 10,530,881.68 | <0.05 |
Crp | 280,593.44 | <0.05 |
Ast | 149,118.869 | <0.05 |
Urea | 136,579.168 | <0.05 |
Alt | 79,168.725 | <0.05 |
Age | 25,553.054 | <0.05 |
Duration of stay ED (minute) | 22,478.567 | <0.05 |
Creatine kinase | 7716.812 | <0.05 |
WBC | 6535.943 | <0.05 |
PLT | 5808.98 | <0.05 |
MCV | 3884.4 | <0.05 |
Triage Code | 2577.869 | <0.05 |
HCT | 1816.841 | <0.05 |
Heart rate | 1776.419 | <0.05 |
Diastolic blood pressure | 1670.305 | <0.05 |
Creatine | 1624.703 | <0.05 |
PDW | 1450.352 | <0.05 |
Arrival mode | 803.162 | <0.05 |
Ck-Mb | 795.198 | <0.05 |
HGB | 776.938 | <0.05 |
Body temperature | 718.661 | <0.05 |
Systolic blood pressure | 332.816 | <0.05 |
Oxygen saturation | 243.629 | <0.05 |
RBC | 231.731 | <0.05 |
Gender | 224.648 | <0.05 |
MCHC | 83.734 | <0.05 |
Potassium | 74.963 | <0.05 |
MCH | 72.013 | <0.05 |
Sodium | 31.5 | <0.05 |
MPV | 24.552 | <0.05 |
PCT | 4.585 | 0.205 |
Prothrombin time | 2.692 | 0.442 |
Arrival type | 1.379 | 0.710 |
INR | 0.213 | 0.975 |
Ref. | The Best ML Algorithm | Performance Metric (AUC) | Number of Features | Outcome Prediction Type | Applying Feature Selection |
---|---|---|---|---|---|
Larburu et al. [13] | LR | [0.75–0.92] | [6–21] | To identify patient hospitalizations | - |
Feretzakis et al. [14] | RF | 0.789 | 18 | To predict hospital admissions | No |
Kishore et al. [15] | A binary classifier | 0.94 | - | For early prediction of hospital admissions | No |
Parker et al. [16] | LR | 0.825 | 8 | To predict hospital admissions | No |
Hond et al. [17] | XGBoost | 0.84 | 5 | Hospitalization modeling | No |
Hong et al. [18] | XGBoost | 0.92 | 10 | To predict hospital admissions | No |
Grahm et al. [19] | GBM | 0.85 | 13 | To predict hospital admissions | Yes |
Van Delft and Medeiros de Carvalho [20] | RF | 0.91 | 10 | To accurately predict emergency department outcomes | Yes |
Cusidó et al. [21] | GBM | 0.89 | 9 | To predict hospital admissions | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezik, S.; Cingiz, M.Ö.; İbiş, E. Machine Learning-Based Model for Emergency Department Disposition at a Public Hospital. Appl. Sci. 2025, 15, 1628. https://doi.org/10.3390/app15031628
Sezik S, Cingiz MÖ, İbiş E. Machine Learning-Based Model for Emergency Department Disposition at a Public Hospital. Applied Sciences. 2025; 15(3):1628. https://doi.org/10.3390/app15031628
Chicago/Turabian StyleSezik, Savaş, Mustafa Özgür Cingiz, and Esma İbiş. 2025. "Machine Learning-Based Model for Emergency Department Disposition at a Public Hospital" Applied Sciences 15, no. 3: 1628. https://doi.org/10.3390/app15031628
APA StyleSezik, S., Cingiz, M. Ö., & İbiş, E. (2025). Machine Learning-Based Model for Emergency Department Disposition at a Public Hospital. Applied Sciences, 15(3), 1628. https://doi.org/10.3390/app15031628