Fat-to-Muscle Ratio: Exploring Associations with Motor Competence and Physical Fitness in 7-Year-Old Children †
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Study Measures and Procedure
2.2.1. Anthropometrics
2.2.2. Motor Competence
2.2.3. Physical Fitness
2.3. Data Analysis
3. Results
3.1. Sample Participants
3.2. Associations Between Body Composition, Motor Competence and Physical Fitness Index
3.3. FMR Does Not Modify the Associations Between MC and PFI
4. Discussion
4.1. Relations Between Body Composition, Motor Competence and Physical Fitness Index
4.2. The Associations Between MC and PFI in Acordance with FMR
4.3. Featured Applications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.Y.; Fang, W.H.; Wang, C.C.; Kao, T.-W.; Yang, H.-F.; Wu, C.-J.; Sun, Y.-S.; Wang, Y.-C.; Chen, W.-L. Fat-to-muscle ratio is a useful index for cardiometabolic risks: A population-based observational study. PLoS ONE 2019, 14, e0214994. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, S. Validity of muscle-to-fat ratio as a predictor of adult metabolic syndrome. J. Phys. Ther. Sci. 2016, 28, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, H.D.; Samani-Radia, D.; Jebb, S.A.; Prentice, A.M. Skeletal muscle mass reference curves for children and adolescents. Pediatr. Obes. 2014, 9, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Cattuzzo, M.T.; Dos Santos Henrique, R.; Ré, A.H.; de Oliveira, I.S.; Melo, B.M.; Moura, M.D.S.; de Araújo, R.C.; Stodden, D. Motor competence and health related physical fitness in youth: A systematic review. J. Sci. Med. Sport 2016, 19, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents: Review of associated health benefits. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef]
- Okely, A.D.; Booth, M.L.; Chey, T. Relationships between body composition and fundamental movement skills among children and adolescents. Res. Q. Exerc. Sport 2004, 75, 238–247. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- American College Sports Medicine. ACSM’s Health-Related Physical Fitness Assessment Manual, Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010.
- Connolly, K.; Bruner, J.S. The Growth of Competence; Academic Press: London, UK, 1973. [Google Scholar]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef]
- Riso, E.M.; Toplaan, L.; Viira, P.; Vaiksaar, S.; Jürimäe, J. Physical fitness and physical activity of 6-7-year-old children according to weight status and sports participation. PLoS ONE 2019, 14, e0218901. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.F.; Gao, Z.; Goodway, J.D.; Langendorfer, S.J. Dynamic relationships between motor skill competence and health-related fitness in youth. Pediatr. Exerc. Sci. 2014, 26, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Font-Lladó, R.; López-Ros, V.; Montalvo, A.M.; Sinclair, G.; Prats-Puig, A.; Fort-Vanmeerhaeghe, A. A Pedagogical Approach to Integrative Neuromuscular Training to Improve Motor Competence in Children: A Randomized Controlled Trail. J. Strength Cond. Res. 2020, 34, 3078–3085. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Misra, A.; Aggarwal, P.; Bardia, A.; Goel, R.; Vikram, N.K.; Wasir, J.S.; Hussain, N.; Ramachandran, K.; Pandey, R.M. Waist circumference measurement by site, posture, respiratory phase, and meal time: Implications for methodology. Obesity 2009, 17, 1056–1061. [Google Scholar] [CrossRef]
- Longmuir, P.E.; Boyer, C.; Lloyd, M.; Borghese, M.M.; Knight, E.; Saunders, T.J.; Boiarskaia, E.; Zhu, W.; Tremblay, M.S. Canadian Agility and Movement Skill Assessment (CAMSA): Validity, objectivity, and reliability evidence for children 8–12 years of age. J. Sport Health Sci. 2017, 6, 231–240. [Google Scholar] [CrossRef]
- Castro-Piñero, J.; Ortega, F.B.; Mora, J.; Sjöström, M.; Ruiz, J.R. Criterion related validity of 1/2 mile run-walk test for estimating VO2peak in children aged 6-17 years. Int. J. Sports Med. 2009, 30, 366–371. [Google Scholar] [CrossRef]
- Gulías-González, R.; Sánchez-López, M.; Olivas-Bravo, Á.; Solera-Martínez, M.; Martínez-Vizcaíno, V. Physical fitness in Spanish schoolchildren aged 6–12 years: Reference values of the battery EUROFIT and associated cardiovascular risk. J. Sch. Health 2014, 84, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Eurofit. Eurofit Tests of Physical Fitness, 2nd ed.; Eurofit: Strasbourg, France, 1993. [Google Scholar]
- Henriksson, P.; Leppänen, M.H.; Henriksson, H.; Nyström, C.D.; Cadenas-Sanchez, C.; Ek, A.; Ruiz, J.R.; Ortega, F.B.; Löf, M. Physical fitness in relation to later body composition in pre-school children. J. Sci. Med. Sport 2019, 22, 574–579. [Google Scholar] [CrossRef]
- Freedman, D.S.; Wang, J.; Maynard, L.M.; Thornton, J.C.; Mei, Z.; Pierson, R.N.; Dietz, W.H.; Horlick, M. Relation of BMI to fat and fat-free mass among children and adolescents. Int. J. Obes. 2005, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Purcell, S.A.; Prado, C.M.; Gonzalez, M.C. Fat mass to fat-free mass ratio reference values from NHANES III using bioelectrical impedance analysis. Clin. Nutr. 2018, 37 Pt A, 2284–2287. [Google Scholar] [CrossRef]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Wijayatunga, N.N.; Dhurandhar, E.J. Normal weight obesity and unaddressed cardiometabolic health risk-a narrative review. Int. J. Obes. 2021, 45, 2511. [Google Scholar] [CrossRef] [PubMed]
- Poortmans, J.R.; Boisseau, N.; Moraine, J.J.; Moreno-Reyes, R.; Goldman, S. Estimation of total-body skeletal muscle mass in children and adolescents. Med. Sci. Sports Exerc. 2005, 37, 316–322. [Google Scholar] [CrossRef]
- Sayer, A.A.; Syddall, H.; Martin, H.; Patel, H.; Baylis, D.; Cooper, C. The developmental origins of sarcopenia. J. Nutr. Health Aging 2008, 12, 427–432. [Google Scholar] [CrossRef]
- Brüning, J.C.; Michael, M.D.; Winnay, J.N.; Hayashi, T.; Hörsch, D.; Accili, D.; Goodyear, L.J.; Kahn, C. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 1998, 2, 559–569. [Google Scholar] [CrossRef]
- Reid, K.F.; Fielding, R.A. Skeletal muscle power: A critical determinant of physical functioning in older adults. Exerc. Sport Sci. Rev. 2012, 40, 4–12. [Google Scholar] [CrossRef]
- Dimitri, P. Fat and bone in children—Where are we now? Ann. Pediatr. Endocrinol. Metab. 2018, 23, 62–69. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2021, 42, 97–99. [Google Scholar] [CrossRef]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef]
- Żegleń, M.; Kryst, Ł.; Kowal, M.; Woronkowicz, A. Sexual dimorphism of adiposity and fat distribution among children and adolescents (8–18 year olds) from Poland. Am. J. Hum. Biol. 2024, 36, e24046. [Google Scholar] [CrossRef]
- Bolger, L.E.; Bolger, L.A.; O’Neill, C.; Coughlan, E.; O’Brien, W.; Lacey, S.; Burns, C.; Bardid, F. Global levels of fundamental motor skills in children: A systematic review. J. Sports Sci. 2021, 39, 717–753. [Google Scholar] [CrossRef] [PubMed]
- Telford, R.M.; Telford, R.D.; Olive, L.S.; Cochrane, T.; Davey, R. Why Are Girls Less Physically Active than Boys? Findings from the LOOK Longitudinal Study. PLoS ONE 2016, 11, e0150041. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ye, W.; Korivi, M.; Liu, Y.; Hong, F. Gender Differences in Fundamental Motor Skills Proficiency in Children Aged 3–6 Years: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8318. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Rodrigues, L.P.; Meester, A.; Cordovil, R. The relationship between motor competence and health-related fitness in children and adolescents. PLoS ONE 2017, 12, e0179993. [Google Scholar] [CrossRef] [PubMed]
- Haga, M. Physical fitness in children with high motor competence is different from that in children with low motor competence. Phys. Ther. 2009, 89, 1089–1097. [Google Scholar] [CrossRef]
- King-Dowling, S.; Proudfoot, N.A.; Cairney, J.; Timmons, B.W. Motor Competence, Physical Activity, and Fitness across Early Childhood. Med. Sci. Sports Exerc. 2020, 52, 2342–2348. [Google Scholar] [CrossRef]
- Wu, S.Y.; Jensen, J.L. Association Between Motor Competence and Percentage of Body Fat in Late Childhood: Comparing Proficiency in Fundamental Motor Skills and Advanced Movement Skills. Child. Obes. 2023, 19, 452–460. [Google Scholar] [CrossRef]
- Barnett, L.; Hinkley, T.; Okely, A.D.; Salmon, J. Child, family and environmental correlates of children’s motor skill proficiency. J. Sci. Med. Sport. 2013, 16, 332–336. [Google Scholar] [CrossRef]
- Jaakkola, T.; Yli-Piipari, S.; Huhtiniemi, M.; Salin, K.; Seppälä, S.; Hakonen, H.; Gråstén, A. Longitudinal associations among cardiorespiratory and muscular fitness, motor competence and objectively measured physical activity. J. Sci. Med. Sport. 2019, 22, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
Total (n = 164) | Boys (n = 81) | Girls (n = 83) | p-Value | |
---|---|---|---|---|
Age (years) | 7.41 ± 0.32 | 7.41 ± 0.32 | 7.41 ± 0.33 | 0.95 |
ANTHROPOMETRICS | ||||
Fat mass (Kg) | 5.63 ± 2.70 | 5.19 ± 2.27 | 6.07 ± 3.01 | 0.04 |
Muscle mass (kg) | 16.71 ± 2.57 | 18.67 ± 1.63 | 14.78 ± 1.72 | <0.01 |
FMR (Kg) | 0.34 ± 0.16 | 0.27 ± 0.11 | 0.40 ± 0.17 | <0.01 |
WC (cm) | 58.84 ± 6.12 | 58.82 ± 6.0 | 58.86 ± 6.24 | 0.97 |
BMI_SDS (Kg/m2) | −0.21 ± 0.84 | −0.23 ± 0.8 | −0.18 ± 0.88 | 0.06 |
MOTOR COMPETENCE | ||||
MC (CAMSA points) | 14.58 ± 4.18 | 15.91 ± 4.35 | 13.29 ± 3.59 | <0.01 |
PHYSICAL FITNESS | ||||
CRF (min) | 5.23 ± 0.76 | 4.98 ± 0.73 | 5.44 ± 0.70 | <0.01 |
UBMS (Kg) | 20.09 ± 4.34 | 20.66 ± 3.82 | 19.53 ± 4.67 | 0.09 |
LBMS (m) | 95.53 ± 16.60 | 100.48 ± 17.46 | 90.72 ± 14.23 | <0.01 |
SP (min) | 25.17 ± 2.58 | 24.27 ± 2.39 | 26.03 ± 2.47 | <0.01 |
PFI (points) | −0.17 ± 2.74 | 0.97 ± 2.25 | −1.26 ± 2.46 | <0.01 |
FMR | WC | BMI | ||
---|---|---|---|---|
Motor competence (CAMSA points) | −0.333 ** | −0.192 * | −0.183 * | |
Physical fitness index (points) | −0.410 ** | −0.246 * | −0.322 ** |
(A) | MC | PFI | ||
---|---|---|---|---|
β | p | β | p | |
Sex | −0.229 | 0.05 | −0.285 | <0.01 |
Age | 0.083 | 0.26 | 0.172 | 0.01 |
FMR | −0.237 | <0.01 | −0.294 | <0.01 |
Total R2 | 0.158 | 0.265 | ||
(B) | MC | PFI | ||
β | p | β | p | |
Sex | −0.327 | <0.01 | −0.400 | <0.01 |
Age | 0.079 | 0.29 | 0.187 | 0.01 |
WC | −0.195 | 0.01 | −0.254 | <0.01 |
Total R2 | 0.150 | 0.256 | ||
(C) | MC | PFI | ||
β | p | β | p | |
Sex | −0.311 | <0.01 | −0.392 | <0.01 |
Age | 0.092 | 0.23 | 0.161 | 0.02 |
BMI | −0.165 | 0.03 | −0.292 | <0.01 |
Total R2 | 0.139 | 0.284 | ||
(D) | MC | PFI | ||
β | p | β | p | |
FMR | −0.571 | <0.01 | −0.621 | <0.01 |
WC | 0.033 | 0.85 | 0.088 | 0.59 |
BMI | 0.268 | 0.17 | 0.130 | 0.48 |
Total R2 | 0.126 | 0.209 |
Low FMR n = 74 | High FMR n = 82 | p | ||
---|---|---|---|---|
All children | MC | 15.55 ± 4.52 | 13.71 ± 3.66 | 0.01 |
PFI | 0.82 ± 2.64 | −1.08 ± 2.51 | <0.01 | |
Boys | MC | 16.10 ± 4.60 | 15.73 ± 4.18 | 0.71 |
PFI | 2.04 ± 2.17 | −0.40 ± 2.50 | 0.01 | |
Girls | MC | 13.29 ± 3.78 | 13.30 ± 3.42 | 0.99 |
PFI | −0.92 ± 2.35 | −1.61 ± 2.54 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Font-Lladó, R.; López-Ros, V.; Sinclair, G.; Vasileva, F.; Jódar-Portas, A.; Homs, J.; Prats-Puig, A. Fat-to-Muscle Ratio: Exploring Associations with Motor Competence and Physical Fitness in 7-Year-Old Children. Appl. Sci. 2025, 15, 1665. https://doi.org/10.3390/app15031665
Font-Lladó R, López-Ros V, Sinclair G, Vasileva F, Jódar-Portas A, Homs J, Prats-Puig A. Fat-to-Muscle Ratio: Exploring Associations with Motor Competence and Physical Fitness in 7-Year-Old Children. Applied Sciences. 2025; 15(3):1665. https://doi.org/10.3390/app15031665
Chicago/Turabian StyleFont-Lladó, Raquel, Víctor López-Ros, Graham Sinclair, Fidanka Vasileva, Anna Jódar-Portas, Judit Homs, and Anna Prats-Puig. 2025. "Fat-to-Muscle Ratio: Exploring Associations with Motor Competence and Physical Fitness in 7-Year-Old Children" Applied Sciences 15, no. 3: 1665. https://doi.org/10.3390/app15031665
APA StyleFont-Lladó, R., López-Ros, V., Sinclair, G., Vasileva, F., Jódar-Portas, A., Homs, J., & Prats-Puig, A. (2025). Fat-to-Muscle Ratio: Exploring Associations with Motor Competence and Physical Fitness in 7-Year-Old Children. Applied Sciences, 15(3), 1665. https://doi.org/10.3390/app15031665