Effects of a CrossFit Training Program on Body Composition and Physical Fitness in Novice and Advanced Practitioners: An Inter-Individual Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Body Composition
Measurements Included
2.4. Maximal Strength
2.5. Countermovement Jump (CMJ)
2.6. Sit-Ups Test
2.7. Push-Ups Test
2.8. 30-Meter Sprint Speed Test
2.9. Intervention
2.10. Intervention Design
2.10.1. Warm-Up (15 Minutes)
2.10.2. Central Part (45 Minutes)
Primary Block (20 Minutes)
Secondary Block (20 Minutes)
Workout of the Day (WOD) (15 Minutes)
2.10.3. Cool-Down (5 Minutes)
2.10.4. Training Program Progression
2.11. Statistical Analysis
3. Results
3.1. Morphological Variables
3.2. Muscle Strength and Physical Fitness Variables
3.3. Inter-Individual Variability (Rs vs. NRs)
4. Discussion
4.1. Morphological Variables
4.2. Muscle Strength and Physical Fitness Variables
4.3. Inter-Individual Variability (Rs vs. NRs)
4.4. Limitations and Strengths
4.5. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Physical Activity 2022: Country Profiles; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Grasdalsmoen, M.; Eriksen, H.R.; Lønning, K.J.; Sivertsen, B. Physical exercise and body-mass index in young adults: A national survey of Norwegian university students. BMC Public Health 2019, 19, 1354. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Oppert, J.M.; Ciangura, C.; Bellicha, A. Physical activity and exercise for weight loss and maintenance in people living with obesity. Rev. Endocr. Metab. Disord. 2023, 24, 937–949. [Google Scholar] [CrossRef]
- Arboleda-Serna, V.; Feito, Y.; Patiño-Villada, F.; Vargas-Romero, A.; Arango-Vélez, E. Effects of high-intensity interval training compared to moderate-intensity continuous training on maximal oxygen consumption and blood pressure in healthy men: A randomized controlled trial. Biomedica 2019, 39, 524–536. [Google Scholar] [CrossRef]
- Gianzina, E.A.; Kassotaki, O.A. The benefits and risks of the high-intensity CrossFit training. Sport Sci. Health 2019, 15, 21–33. [Google Scholar] [CrossRef]
- Meyer, J.; Morrison, J.; Zuniga, J. The benefits and risks of CrossFit: A systematic review. Workplace Health Saf. 2017, 65, 612–618. [Google Scholar] [CrossRef]
- Menargues-Ramírez, R.; Sospedra, I.; Holway, F.; Hurtado-Sánchez, J.A.; Martínez-Sanz, J.M. Evaluation of body composition in CrossFit® athletes and the relation with their results in official training. Int. J. Environ. Res. Public Health 2022, 19, 11003. [Google Scholar] [CrossRef]
- Mangine, G.T.; Seay, T.R. Quantifying CrossFit®: Potential solutions for monitoring multimodal workloads and identifying training targets. Front. Sports Act. Living 2022, 4, 949429. [Google Scholar] [CrossRef]
- Claudino, J.; Gabbett, T.; Bourgeois, F.; Souza, H.; Miranda, R.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit Overview: Systematic review and meta-analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.; Heinrich, K.M. Are changes in physical work capacity induced by high-intensity functional training related to changes in associated physiologic measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P. CrossFit® training strategies from the perspective of concurrent training: A systematic review. J. Sports Sci. Med. 2020, 19, 670–678. [Google Scholar] [PubMed]
- Wagener, S.; Hoppe, M.W.; Hotfiel, T.; Engelhardt, M.; Javanmardi, S.; Baumgart, C.; Freiwald, J. CrossFit®—Development, benefits and risks. Sports Orthop. Traumatol. 2020, 36, 241–249. [Google Scholar] [CrossRef]
- Cosgrove, S.J.; Crawford, D.A.; Heinrich, K.M. Multiple fitness improvements found after six months of high-intensity functional training. Sports 2019, 7, 203. [Google Scholar] [CrossRef]
- Mangine, G.T.; Stratton, M.T.; Almeda, C.G.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Physiological differences between advanced CrossFit athletes, recreational CrossFit participants, and physically active adults. PLoS ONE 2020, 15, e0223548. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Martín, E.B.; Cancino-López, J.; Gallardo, J.A.; Zapata-Bastías, J.; García-García, J.M. Effects of high-intensity interval training with specific techniques on jumping ability and change of direction speed in karate athletes: An inter-individual analysis. Front. Physiol. 2021, 12, 769267. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Gentil, P.; Moran, J.; Garcíaos, F.; Alonso-Martínez, A.M.; Izquierdo, M. Inter-individual variability in responses to 7 weeks of plyometric jump training in male youth soccer players. Front. Physiol. 2018, 9, 405951. [Google Scholar] [CrossRef]
- Des Jarlais, D.C.; Lyles, C.; Crepaz, N.; The TREND Group. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: The TREND statement. Am. J. Public Health 2004, 94, 361–366. [Google Scholar] [CrossRef]
- Martínez-Gómez, R.; Valenzuela, P.L.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-squat as a determinant of performance in CrossFit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef]
- Tibana, R.; de Sousa Neto, I.; Sousa, N.; Romeiro, C.; Hanai, A.; Brandão, H.; Dominski, F.H.; Voltarelli, F.A. Local muscle endurance and strength had strong relationship with CrossFit® Open 2020 in amateur athletes. Sports 2021, 9, 98. [Google Scholar] [CrossRef]
- Marfell-Jones, M.; Stewart, A.; de Ridder, J. International Standards for Anthropometric Assessment; ISAK: Glasgow, UK, 2012. [Google Scholar]
- Ross, W.; Kerr, D. Fraccionamiento de la masa corporal: Un nuevo método para utilizar en nutrición clínica y medicina deportiva. Apunts 1993, 18, 175–187. [Google Scholar]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.; Pedisic, Z. Test-retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- López, E.J.M. Pruebas de Aptitud Física; Editorial Paidotribo: Badalona, Spain, 2007. [Google Scholar]
- Rhea, M.R. Determining the magnitude of treatment effects in strength training research through the use of effect size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar]
- Bonafiglia, J.T.; Rotundo, M.P.; Whittall, J.P.; Scribbans, T.D.; Graham, R.B.; Gurd, B.J. Inter-individual variability in the adaptive responses to endurance and sprint interval training: A randomized crossover study. PLoS ONE 2016, 11, e0167790. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Drake, N.; Smeed, J.; Carper, M.J.; Crawford, D.A. Effects of short-term CrossFit™ training: A magnitude-based approach. J. Exerc. Physiol. Online 2017, 20, 111–133. [Google Scholar]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. CrossFit training changes brain-derived neurotrophic factor and irisin levels at rest, after Wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Cavedon, V.; Milanese, C.; Marchi, A.; Zancanaro, C. Different amounts of training affect body composition and performance in high-intensity functional training participants. PLoS ONE 2020, 15, e0237887. [Google Scholar] [CrossRef]
- Brisebois, M.F.; Rigby, B.R.; Nichols, D.L. Physiological and fitness adaptations after eight weeks of high-intensity functional training in physically inactive adults. Sports 2018, 6, 146. [Google Scholar] [CrossRef]
Pre-Test | INTERVENTION | Post-Test | |||
---|---|---|---|---|---|
Week 1 65% to 70% | Week 2 70% to 75% | Week 3 75% to 80% | Week 4 80% to 85% | ||
Session 1 Body composition Sit-ups | Session 1 1°LBP/2°UBP Warm-up Block 1° 4 × 10 Deadlift Block 2° 4 × 10 DLKB one leg, Half kneeling press WOD | Session 1 1°LBP/2°UBP Warm-up Block 1° 4 × 8 Deadlift Block 2° 4 × 8 DBRDL, Seated press WOD | Session 1 1°LBP/2°UBP Warm-up Block 1° 4 × 6 Deadlift Block 2° 4 × 6 Dual DBDL, Half kneeling press WOD | Session 1 1°LBP/2°UBP Warm-up Block 1° 4 × 4 Deadlift Block 2° 4 × 6 DLKB one leg, half kneeling WOD | Session 1 Body composition Sit-ups |
Session 2 1RM Back squat Deadlift Military press CMJ | Session 2 1°UBP/2°LBP Warm-up Block 1° 4 × 10 Military press Block 2° 4 × 10 Handstand Push-up RDL WOD | Session 2 1°UBP/2°LBP Warm-up Block 1° 4 × 8 Military press Block 2° 4 × 8 Jerk supported DBDL WOD | Session 2 1°UBP/2°LBP Warm-up Block 1° 4 × 6 Military press Block 2° 4 × 6 Strict handstand push-ups, barbell good morning | Session 2 1°UBP/2°LBP Warm-up Block 1° 4 × 4 Military press Block 2°4 × 10 Push press DBDL WOD | Session 2 1RM Back squat Deadlift Military press CMJ |
Session 3 30 m sprint speed Push-ups | Session 3 1°LBP/2°UBL Warm-up Block 1°4 × 10 Back squat Block 2° 4 × 12 Reverse lunge seated band row WOD | Session 3 1°LBP/2°UBL Warm-up Block 1° 4 × 8 Back squat Block 2° 4 × 8 Step up, box jump, Barbell row WOD | Session 3 1°LBP/2°UBL Warm-up Block 1° 4 × 6 Back squat Block 2° 4 × 6 Dual DB lunge, Sumo DL High pull WOD | Session 3 1°LBP/2°UBL Warm-up Block 1° 4 × 4 Back squat Block 2° 4 × 10 Reverse lunge, barbell row WOD | Session 3 30 m sprint speed Push-ups |
Variables | Novice Group (n = 10) | Advanced Group (n = 11) | Group by Time Interaction | ||
---|---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | ||
Body weight (kg) a | 66.64 ± 10.47 | 66.19 ± 10.76 | 69.51 ± 5.43 | 69.86 ± 6.40 | F(1,8) = 1.302; p = 0.2868 |
Bipedal height (m) | 1.646 ± 0.067 | 1.646 ± 0.067 | 1.687 ± 0.056 | 1.687 ± 0.056 | F(1,8) = 6.714; p > 0.9999 |
BMI (kg/m2) | 24.46 ± 2.28 | 24.28 ± 2.37 | 24.41 ± 1.47 | 24.52 ± 1.89 | F(1,8) = 1.328; p = 0.2824 |
Fat mass (%) b,c | 32.45 ± 4.56 | 31.20 ± 4.40 | 27.27 ± 3.76 | 25.15 ± 3.80 | F(1,8) = 0.329; p = 0.5822 |
Free-fat mass (%) d | 40.63 ± 4.04 | 41.57 ± 3.88 | 44.05 ± 3.27 | 46.35 ± 3.24 | F(1,8) = 0.819; p = 0.3918 |
Variables | Novice Group (n = 10) | Advanced Group (n = 11) | Group × Time Interaction | ||
---|---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | ||
Back squat (kg) a,b,c | 61.5 ± 19.2 | 79.6 ± 27.78 | 96.73 ± 20.94 | 98.91 ± 20.79 | F(1,8) = 6.852; p = 0.0308 |
Deadlift (kg) b | 76.7 ± 30.4 | 91.7 ± 30.64 | 110.3 ± 33.16 | 111.2 ± 27.52 | F(1,8) = 4.406; p = 0.0690 |
Military press (kg) a,c,d | 29.5 ± 11.28 | 32.1 ± 12.13 | 41.91 ± 10.22 | 42.91 ± 9.607 | F(1,8) = 0.405; p = 0.5424 |
CMJ (cm) | 23.9 ± 8.535 | 25.41 ± 8.161 | 29.42 ± 6.924 | 28.69 ± 5.788 | F(1,8) = 2.596; p = 0.1458 |
Sit-ups (reps) a,b,c | 28.1 ± 6.74 | 35.0 ± 4.397 | 34.82 ± 4.708 | 36.45 ± 3.83 | F(1,8) = 4.612; p = 0.0640 |
Push-ups (reps) c | 17.1 ± 6.839 | 21.8 ±4.709 | 23.36 ± 8.453 | 26.18 ± 6.646 | F(1,8) = 0.760; p = 0.4087 |
30 m sprint speed (s) | 6.152 ± 0.902 | 5.897 ± 0.928 | 5.648 ± 0.798 | 5.404 ± 0.608 | F(1,8) = 0.001; p = 0.9717 |
Variables | Novice Group (n = 10) | Advanced Group (n = 11) | ||||
---|---|---|---|---|---|---|
Mean Difference (SD) | Responders (%) | Eta2 | Mean Difference (SD) | Responders (%) | Eta2 | |
Pre vs. Post | Pre vs. Post | |||||
Body weight (kg) | −0.45 (1.14) | 0 (0) | 0.15 ^ | 0.36 (1.95) | 0 (0) | 0.04 ^ |
BMI | −0.18 (0.41) | 0 (0) | 0.17 ^ | 0.10 (0.67) | 1 (9) | 0.03 ^ |
Fat mass (%) | −1.25 (1.36) | 0 (0) | 0.49 ° | −2.12 (4.58) | 1 (9) | 0.19 ^ |
Fat-free mass (%) | 0.94 (1.36) | 0 (0) | 0.35 ° | 2.31 (4.58) | 1 (9) | 0.22 ^ |
Back squat (kg) | 18.10 (18.78) | 4 (40) | 0.51 † | 2.18 (7.11) | 0 (0) | 0.09 ^ |
Deadlift (kg) | 15.00 (17.75) | 2 (20) | 0.44 ° | 0.91 (12.84) | 0 (0) | 0.01 ^ |
Military press (kg) | 2.60 (8.51) | 1 (10) | 0.09 ^ | 1.00 (3.10) | 0 (0) | 0.10 ^ |
CMJ (cm) | 1.51 (2.21) | 1 (10) | 0.34 ° | −0.74 (3.87) | 0 (0) | 0.04 ^ |
Sit-ups (rep) | 6.90 (7.70) | 3 (30) | 0.47 ° | 1.64 (4.37) | 2 (18) | 0.13 ^ |
Push-ups (rep) | 4.70 (4.97) | 3 (30) | 0.50 † | 2.82 (4.92) | 2 (18) | 0.27 ° |
30 m sprint speed (s) | −0.26 (0.51) | 1 (10) | 0.22 ^ | −0.25 (0.53) | 1 (9) | 0.19 ^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravena-Sagardia, P.; Barramuño-Medina, M.; Vásquez, B.P.; Pichinao Pichinao, S.; Sepúlveda, P.R.; Herrera-Valenzuela, T.; Hernandez-Martinez, J.; Levín-Catrilao, Á.; Villagrán-Silva, F.; Vásquez-Carrasco, E.; et al. Effects of a CrossFit Training Program on Body Composition and Physical Fitness in Novice and Advanced Practitioners: An Inter-Individual Analysis. Appl. Sci. 2025, 15, 3554. https://doi.org/10.3390/app15073554
Aravena-Sagardia P, Barramuño-Medina M, Vásquez BP, Pichinao Pichinao S, Sepúlveda PR, Herrera-Valenzuela T, Hernandez-Martinez J, Levín-Catrilao Á, Villagrán-Silva F, Vásquez-Carrasco E, et al. Effects of a CrossFit Training Program on Body Composition and Physical Fitness in Novice and Advanced Practitioners: An Inter-Individual Analysis. Applied Sciences. 2025; 15(7):3554. https://doi.org/10.3390/app15073554
Chicago/Turabian StyleAravena-Sagardia, Pablo, Mauricio Barramuño-Medina, Bárbara Palma Vásquez, Sebastián Pichinao Pichinao, Paula Rodríguez Sepúlveda, Tomás Herrera-Valenzuela, Jordan Hernandez-Martinez, Álvaro Levín-Catrilao, Francisca Villagrán-Silva, Edgar Vásquez-Carrasco, and et al. 2025. "Effects of a CrossFit Training Program on Body Composition and Physical Fitness in Novice and Advanced Practitioners: An Inter-Individual Analysis" Applied Sciences 15, no. 7: 3554. https://doi.org/10.3390/app15073554
APA StyleAravena-Sagardia, P., Barramuño-Medina, M., Vásquez, B. P., Pichinao Pichinao, S., Sepúlveda, P. R., Herrera-Valenzuela, T., Hernandez-Martinez, J., Levín-Catrilao, Á., Villagrán-Silva, F., Vásquez-Carrasco, E., Branco, B. H. M., Sandoval, C., & Valdés-Badilla, P. (2025). Effects of a CrossFit Training Program on Body Composition and Physical Fitness in Novice and Advanced Practitioners: An Inter-Individual Analysis. Applied Sciences, 15(7), 3554. https://doi.org/10.3390/app15073554