Medical Applications of Picosecond Lasers for Removal of Non-Tattoo Skin Lesions—A Comprehensive Review
Abstract
:1. Introduction
2. The Mechanism of Action in Picosecond Laser Treatment
3. Types of Picosecond Lasers
4. Clinical Indications
4.1. Post-Acne Scarring
4.2. Striae Distensae
4.3. Pigmentation Disorders
4.4. Skin Aging
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Biskanaki, F.; Rallis, E.; Andreou, E.; Sfyri, E.; Tertipi, N.; Ninos, G.; Kefala, V. Laser Innovations in Aesthetics. Rev. Clin. Pharmacol. Pharmacokinet.-Int. 2024, 38, 17–21. [Google Scholar] [CrossRef]
- Wu, D.C.; Goldman, M.P.; Wat, H.; Chan, H.H.L. A Systematic Review of Picosecond Laser in Dermatology: Evidence and Recommendations. Lasers Surg. Med. 2021, 53, 9–49. [Google Scholar] [CrossRef]
- Hong, J.K.; Seok, J.; Choi, S.Y.; Li, K.; Kim, B.J.; Yoo, K.H. Review of picosecond lasers in non-pigmented disorders. Med. Lasers 2022, 11, 125–133. [Google Scholar] [CrossRef]
- Torbeck, R.L.; Schilling, L.; Khorasani, H.; Dover, J.S.; Arndt, K.A.; Saedi, N. Evolution of the Picosecond Laser: A Review of Literature. Dermatol. Surg. 2019, 45, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Gurnani, P.; Williams, N.; AL-Hetheli, G.; Chukwuma, O.; Roth, R.; Fajardo, F.; Nouri, K. Comparing the efficacy and safety of laser treatments in tattoo removal: A systematic review. J. Am. Acad. Dermatol. 2022, 87, 103–109. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, S.E.; Park, Y.H. Efficacy of a laser with a pulse duration of 300 ps in skin rejuvenation and treatment of pigmentation disorders in Asians: A series of four cases. J. Cosmet. Laser Ther. 2021, 23, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Bintanjoyo, L.; Indramaya, D.M. Application of Picosecond Laser in Dermatology. Berk. Ilmu Kesehat. Kulit Dan. Kelamin. 2023, 35, 158–162. [Google Scholar] [CrossRef]
- Kasai, K. Picosecond Laser Treatment for Tattoos and Benign Cutaneous Pigmented Lesions (Secondary publication). Laser Ther. 2017, 26, 274–281. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Y.; Hamblin, M.R.; Wen, X. An update on fractional picosecond laser treatment: Histology and clinical applications. Lasers Med. Sci. 2023, 38, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.H.; Jin, E.M.; Seo, H.S.; Ryu, T.U.; Hong, S.P. Efficacy and Safety of Treatment with Fractional 1,064-nm Picosecond Laser with Diffractive Optic Element for Wrinkles and Acne Scars: A Clinical Study. Ann. Dermatol. 2021, 33, 254–262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Duan, F.; Kuang, J. Fractional picosecond laser for atrophic acne scars: A meta-analysis. J. Cosmet. Dermatol. 2023, 22, 2205–2217. [Google Scholar] [CrossRef] [PubMed]
- Haykal, D.; Cartier, H.; Maire, C.; Mordon, S. Picosecond lasers in cosmetic dermatology: Where are we now? An overview of types and indications. Lasers Med. Sci. 2023, 39, 8. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Yang, T.H.; Li, C.N. Histology changes of in vivo human skin after treatment with fractional 1064 nm Nd:YAG picosecond laser in different energy settings. Lasers Med. Sci. 2022, 37, 2087–2092. [Google Scholar] [CrossRef] [PubMed]
- Hałasiński, P.; Lubarska, M.; Lubarski, K.; Jałowska, M. Lasers’ Q-switched treatment in skin and subcutaneous lesions—Review. Adv. Dermatol. Allergol. /Postępy Dermatol. I Alergologii. 2023, 40, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Chiemi, J.A.; Kelishadi, S.S. “Never Trust the Skin”: A Rationale for Using Polydioxanone Internal Support Matrix to Minimize Scarring in Primary Mastopexy-Augmentation-An Observational Study. Aesthet. Surg. J. Open Forum. 2022, 4, ojac048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanghetti Md, E.; Jennings, J. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic. Lasers Surg. Med. 2018, 50, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Seo, S.J.; Park, K.Y.; Lee, S.J. Acne Scar Successfully Treated with a Picosecond Laser and Subdermal Minimal Surgery Technique. Med. Lasers 2017, 6, 90–92. [Google Scholar] [CrossRef]
- Salameh, F.; Shumaker, P.R.; Goodman, G.J.; Spring, L.K.; Seago, M.; Alam, M.; Al-Niaimi, F.; Cassuto, D.; Chan, H.H.; Dierickx, C.; et al. Energy-based devices for the treatment of Acne Scars: 2022 International consensus recommendations. Lasers Surg. Med. 2022, 54, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Vempati, A.; Tam, C.; Khong, J.; Vasilev, R.; Tam, K.; Hazany, S.; Hazany, S. Beyond the Surface: A Deeper Look at the Psychosocial Impacts of Acne Scarring. Clin. Cosmet. Investig. Dermatol. 2023, 16, 731–738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, Y.; Park, E.S. Subsurface Fractional Ablative Resurfacing of a Periareolar Scar Using 1064-nm Picosecond Laser with Micro-Lens Array. Arch. Aesthetic Plast. Surg. 2018, 24, 36–38. [Google Scholar] [CrossRef]
- Chilicka, K.; Rusztowicz, M.; Szyguła, R.; Nowicka, D. Methods for the Improvement of Acne Scars Used in Dermatology and Cosmetology: A Review. J. Clin. Med. 2022, 11, 2744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brauer, J.A.; Kazlouskaya, V.; Alabdulrazzaq, H.; Bae, Y.S.; Bernstein, L.J.; Anolik, R.; Heller, P.A.; Geronemus, R.G. Use of a picosecond pulse duration laser with specialized optic for treatment of facial acne scarring. JAMA Dermatol. 2015, 151, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Hu, S.; Lin, C.; Chung, W. Comparison of 1550-nm nonablative fractional laser versus 755-nm picosecond laser with diffractive lens array for atrophic facial acne scars in asian skin: A prospective randomized split-face clinical study. Dermatol. Sinica. 2021, 39, 186–191. [Google Scholar] [CrossRef]
- Huang, C.H.; Hsieh, F.S.; Chang, H.C.; Peng, J.H.; Peng, H.P. 755 nm picosecond laser for facial atrophic scar-Case reports of long-term clinical efficacy following up. J. Cosmet. Dermatol. 2019, 18, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Lokhande, A.J.; Mysore, V. Striae Distensae Treatment Review and Update. Indian Dermatol Online J. 2019, 10, 380–395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, R.; Kapoor, B.; Bandopadhyay, R.; Gulati, M.; Rani, P.; Kochhar, R.S. Allicin and Probiotics: Double-edged sword for the management of Striae distensae. Med. Microecol. 2024, 21, 100109. [Google Scholar] [CrossRef]
- Al-Shandawely, A.; Ezz Eldawla, R.; Yassin, F.E.; Aboeldahab, S. An update in the etiopathogenesis of striae distensae: A review article. Sohag Med. J. 2021, 25, 39–44. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, L.L.; Wu, T.; Mu, Y.Z. New Progress in Therapeutic Modalities of Striae Distensae. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2101–2115. [Google Scholar] [CrossRef]
- Verdelli, A.; Bonan, P.; Fusco, I.; Madeddu, F.; Piccolo, D. Striae Distensae: Clinical Results and Evidence-Based Evaluation of a Novel 675 nm Laser Wavelength. Medicina 2023, 59, 841. [Google Scholar] [CrossRef]
- Shen, Y.; Pang, Q.; Xu, J. Comprehensive pathogenesis and clinical therapy in striae distensae: An overview and current perspective. Chin. J. Plast. Reconstr. Surg. 2022, 4, 203–207. [Google Scholar] [CrossRef]
- Seirafianpour, F.; Sodagar, S.; Mozafarpoor, S.; Baradaran, H.R.; Panahi, P.; Hassanlouei, B.; Goodarzi, A. Systematic review of single and combined treatments for different types of striae: A comparison of striae treatments. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 2185–2198. [Google Scholar] [CrossRef] [PubMed]
- Nepomuceno, A.C.; Da-Silva, L.C. Laser treatment for stretch marks: A literature review Rev. Bras. Cir. Plást. 2018, 33, 580–585. [Google Scholar] [CrossRef]
- Yang, Y.J.; Lee, G.Y. Treatment of Striae Distensae with Nonablative Fractional Laser versus Ablative CO2 Fractional Laser: A Randomized Controlled Trial. Ann. Dermatol. 2011, 23, 481–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Surgiel-Gemza, A.; Gemza, K. The use of CO2 ablative fractional laser, non-ablative picosecond fractional lasers 1064 nm and 755 nm and needle mesotherapy in combined therapy to reduce stretch marks and skin laxity. A clinical case. Aesthetic Cosmetol. Med. 2021, 10, 253–259. [Google Scholar] [CrossRef]
- Fusano, M.; Galimberti, M.G.; Bencini, M.; Guida, S.; Bencini, P.L. Picosecond Laser treatment of Striae Distensae: In vivo Evaluation of Results by 3D Analysis, Reflectance Confocal Microscopy, and Patient’s Satisfaction. Lasers Surg. Med. 2021, 53, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Kaewkes, A.; Manuskiatti, W.; Cembrano, K.A.; Wanitphakdeedecha, R. Treatment of abdominal striae distensae in Fitzpat- 549 rick skin types IV to V using a 1064-nm picosecond laser with a fractionated microlens array. Lasers Surg Med. 2022, 54, 129–137. [Google Scholar] [CrossRef]
- Zaleski-Larsen, L.A.; Jones, I.T.; Guiha, I.; Wu, D.C.; Goldman, M.P. A Comparison Study of the Nonablative Fractional 1565-nm Er: Glass and the Picosecond Fractional 1064/532-nm Nd: YAG Lasers in the Treatment of Striae Alba: A Split Body Double-Blinded Trial. Dermatol Surg. 2018, 44, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.H.S. Picosecond laser treatment for Asian skin pigments. J. Cosmet. Med. 2019, 3, 55–63. [Google Scholar] [CrossRef]
- Nasr, M. Skin Pigment Disorders and Mental Health: The Psychological Impact. J. Cosmo. Tricho. 2023, 9, 4. [Google Scholar]
- Dong, W.; Wang, N.X.; Zhang, W. Treatment of pigmentary disorders using picosecond laser in Asian patients: A meta-analysis and systematic review. Dermatol. Ther. 2021, 34, e14709. [Google Scholar] [CrossRef]
- Sharma, G. Advancements in Laser Therapies for Dermal Hyperpigmentation in Skin of Color: A Comprehensive Literature Review and Experience of Sequential Laser Treatments in a Cohort of 122 Indian Patients. J. Clin. Med. 2024, 13, 2116. [Google Scholar] [CrossRef] [PubMed]
- Zawodny, P.; Wahidi, N.; Zawodny, P.; Duchnik, E.; Stój, E.; Malec, W.R.; Kulaszyńska, M.; Skonieczna-Żydecka, K.; Sieńko, J. Evaluation of the Efficacy of the 755 nm Picosecond Laser in Eliminating Pigmented Skin Lesions after a Single Treatment Based on Photographic Analysis with Polarised Light. J. Clin. Med. 2024, 13, 304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Che, Q.; Wa, Q.; Liu, L.; Tang, Q.; Gao, Y.; Lu, J.; Zhou, Z.; Xie, Y. Effectiveness of 730 nm Picosecond Laser for the Treatment of Freckles and Solar Lentigines: A Retrospective Analysis. Dermatol. Ther. 2023, 2023, 2070560. [Google Scholar] [CrossRef]
- Micek, I.; Pawlaczyk, M.; Kroma, A.; Seraszek-Jaros, A.; Urbańska, M.; Gornowicz-Porowska, J. Treatment of melasma with a low-fluence 1064 nm Q-switched Nd:YAG laser: Laser toning in Caucasian women. Lasers Surg Med. 2022, 54, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.F.; Basilavecchio, L.D.; Wang, J. Melasma treatment with a 1064 nm, picosecond-domain laser with a fractionated multibeam lens array. Lasers Surg. Med. 2023, 55, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.S.M.; Chan, M.W.M.; Shek, S.Y.N.; Yeung, C.K.; Chan, H.H.L. Fractional 1064 nm Picosecond Laser in Treatment of Melasma and Skin Rejuvenation in Asians, A Prospective Study. Lasers Surg. Med. 2021, 53, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Kozinska, U.; Gras-Ozimek, J. Use of combined picosecond 1064nm and thulium laser 1927nm in melasma treatment—Case report. J. Educ. Health Sport 2022, 12, 927–932. [Google Scholar] [CrossRef]
- Manuskiatti, W.; Yan, C.; Tantrapornpong, P.; Cembrano, K.A.G.; Techapichetvanich, T.; Wanitphakdeedecha, R. A Prospective, Split-Face, Randomized Study Comparing a 755-nm Picosecond Laser With and Without Diffractive Lens Array in the Treatment of Melasma in Asians. Lasers Surg. Med. 2021, 53, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Shang, S.; Zhang, W.; Tan, A.; Zhou, B.; Mei, X.; Li, L. Comparison of the efficacy and safety of picosecond Nd:YAG laser (1,064 nm), picosecond alexandrite laser (755 nm) and 2% hydroquinone cream in the treatment of melasma: A randomized, controlled, assessor-blinded trial. Front. Med. 2023, 10, 1132823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, R.; Bao, S.; Qian, W.; Zhao, H. 755-nm Alexandrite Picosecond Laser with a Diffractive Lens Array or Zoom Handpiece for Post-Inflammatory Hyperpigmentation: Two Case Reports with a Three-Year Follow-Up. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1459–1464. [Google Scholar] [CrossRef]
- Kauvar, A.N.B.; Sun, R.; Bhawan, J.; Singh, G.; Ugonabo, N.; Feng, H.; Schomacker, K. Treatment of facial and non-facial lentigines with a 730 nm picosecond titanium: Sapphire laser is safe and effective. Lasers Surg. Med. 2022, 54, 89–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, X.; Wan, F.; Su, W.; Xie, W. Research Progress on Skin Aging and Active Ingredients. Molecules 2023, 28, 5556. [Google Scholar] [CrossRef]
- Heidari Beigvand, H.; Razzaghi, M.; Rostami-Nejad, M.; Rezaei-Tavirani, M.; Safari, S.; Rezaei-Tavirani, M. Assessment of laser effects on skin rejuvenation. J. Lasers Med. Sci. 2020, 11, 212–219. [Google Scholar] [CrossRef]
- Houreld, N.N. The use of lasers and light sources in skin rejuvenation. Clin. Dermatol. 2019, 37, 358–364. [Google Scholar] [CrossRef]
- Haykal, D.; Cartier, H.; Goldberg, D.; Gold, M. Advancements in laser technologies for skin rejuvenation: A comprehensive review of efficacy and safety. J. Cosmet. Dermatol. 2024, 23, 3078–3089. [Google Scholar] [CrossRef] [PubMed]
- Urdiales-Gálvez, F.; Trelle, M.A.; Martín-Sánchez, S. Maiz-Jiménez M, Face and neck rejuvenation using an improved non-ablative fractional high power 1064-nm Q-switched Nd:YAG Laser: Clinical results in 16 women. J. Cosmet. Laser Ther. 2020, 22, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Wardhani, P.H.; Prakoeswa, C.R.S.; Listiawan, M.Y. Facial rejuvenation in indonesian skin with a picosecond 755-nm laser. J. Lasers Med. Sci. 2022, 13, e45. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.V.; Tidwell, W.J.; Guss, L.; Sutton, A.V. Study of a 532/1064 Fractional Picosecond Laser for Facial Rejuvenation. Dermatol. Surg. 2022, 48, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Seo, H.S.; Lee, Y.B.; Kang, H.; Hong, S.P. Morphologic and molecular biologic analyses of the skin rejuvenation effect of the fractional 1064-nm picosecond laser: An animal study. Lasers Surg Med. 2023, 55, 190–199. [Google Scholar] [CrossRef]
Fitzpatrick Skin Phototypes | Reaction to Sun Exposure | Complexion |
---|---|---|
always burns, never tans | very fair | |
burns easily, burns develop into a light tan | fair to light | |
burns a moderate amount, burns develop into a light tan | light to medium | |
burns a minimal amount, develops a moderate tan | moderately dark | |
does not burn, develops dark tan | dark | |
does not burn or change in appearance | very dark |
Authors | Type of Study | Number of Patients | Type and Location of the Lesions | Skin PHOTOTYPES | Type of Picosecond Laser | Number of Procedures | Treatment Parameters | Results |
---|---|---|---|---|---|---|---|---|
Brauer et al. [22] | clinical trial | 20 | rolling-type acne scars, boxcar scars, icepick scars; face | I–V | alexandrite (755 nm) with diffractive lens array | 6 | spot size 6 mm; fluence 0.71 J/cm2; repetition rate 5 Hz; pulse width 750 ps | significant improvement in skin texture; high patient satisfaction; increase in collagen and elastin fibers in the skin |
Lin et al. [23] | a prospective randomized split-face clinical study | 23 | rolling-type acne scars, boxcar scars, icepick scars; face | III–IV | alexandrite (755 nm) with diffractive lens array | 3 | spot size 6 mm; fluence 0.71 J/cm2; pulse width 750 ps; repetition rate 10 Hz | improvement in skin texture of 1–25%; no side effects: very low pain level |
Huang et al. [24] | case report | 3 | rolling-type acne scars, boxcar scars, icepick scars; face | III–IV | alexandrite (755 nm) with diffractive lens array lens array | 4–6 | no data | significant improvement in skin texture several months after the last session |
Authors | Type of Study | Number of Patients | Type and Location of the Lesions | Skin PHOTOTYPES | Type of Picosecond Laser | Number of Procedures | Treatment Parameters | Results |
---|---|---|---|---|---|---|---|---|
Fusano et al. [35] | clinical report | 27 | striae albae; breasts, abdomen, buttocks | II–III | fractional Nd:YAG laser with frequency-double wave (1064/532 nm) | 4 | Spot size 8 mm; fluence 0.6 ± 0.2 J/cm2; laser pulse duration 450 ps, | significant improvement in skin texture and marked reduction in stretch marks (PGAIS * 81.4%, SGAIS ** 66.6%); high patient satisfaction, collagen remodeling and presence of new dermal papillae as determined by confocal microscopy |
Kaewkes et al. [36] | clinical report | 20 | striae albae; abdomen | IV–V | fractional Nd:YAG (1064 nm) | 4 | spot size 8 mm; fluence 0.6 J/cm2; repetition rate 10 Hz; pulse duration 750 ps; | significant improvement in skin texture at 1 month post-treatment increasing over time; moderate to marked improvement in appearance of stretch marks in 90% of subjects; high tolerability and safety with skin phototypes IV–V |
Zaleski-Larsen et al. [37] | split body double-blinded trial | 20 | striae alba; abdomen | no data | fractional Nd:YAG laser with frequency-double wave (1064/532 nm) | 3 | 1064 nm (spot size 6 mm; fluence 1.3 mJ/µbeam; 4 passes) 532 nm (spot size 6 mm; fluence 0.4 mJ/µbeam; 2 passes) | improvement in skin texture by 30%; improvement in stretch mark atrophy by 35%; overall improvement in skin condition by 48%; low pain and short recovery |
Authors | Type of Study | Number of Patients | Type and Location of the Lesions | Skin Phototypes | Type of Picosecond Laser | Number of Procedures | Treatment Parameters | Results |
---|---|---|---|---|---|---|---|---|
Bernstein et al. [45] | clinical report | 20 | melasma; face | I–IV | fractional Nd:YAG (1064 nm) | 4 | spot size 6 mm; fluence 1.7−2.9 mJ/µbeam; repetition rate 6–8 Hz; pulse duration 450 ps; 2 passes | significant improvement in skin condition and reduction in the appearance of melasma (according to Mmasi *); high patient satisfaction; high treatment tolerance |
Chan et al. [46] | clinical report | 20 | melasma, face | III–IV | fractional Nd:YAG (1064 nm) | up to 9 | spot size—6 mm; fluence range −1.3–1.9 mJ/µbeam; repetition rate 5–10 Hz; pulse duration 450 ps; 4 passes | statistically significant improvement in mMASI, high patient satisfaction; no serious side effects; no post-treatment hypo-/hyperpigmentation; low procedure pain (VAS **—1.92/10) |
Kozińska, Gras-Ozimek [47] | case report | 1 | melasma; face | no data | Nd:YAG (1064 nm) + thulium laser (1927 nm) | 1 | no data | visible brightening of melasma, low pain of the procedure, short recovery period |
Manuskiatti et al. [48] | randomized controlled trial | 18 | melasma; face | IV–V | alexandrite (755 nm) with and without diffractive lens array | 5 | spot size 8 mm; average fluence 0.4 J/cm2; frequency 2.5 Hz; 2 passes | reduction of melasma by 25% for both lasers, lower incidence of post-inflammatory hyperpigmentation for the unfractionated beam |
Liang et al. [49] | clinical trial | 60 | melasma; face | III–IV | non-fractional Nd:YAG (1064 nm) vs. non-fractional alexandrite (755 nm) vs. topical hydroquinone | 3 | Nd:YAG (spot size 7 mm; fluence 0.75–0.90; repetition 8 Hz; 2 passes; pulse duration 450 ps) alexandrite (spot size 6–8 mm; fluence 0.40–0.71; repetition 10 Hz; 2 passes; pulse duration 750 ps) | greatest reduction of MASI score for Nd:YAG; comparable MASI improvement for alexandrite laser and topical hydroquinone, highest patient assessment score for Nd:YAG laser treatment |
Ren et al. [50] | case reports | 2 | PIH ***; face | III | alexandrite (755 nm) with diffractive lens array | 2–4 | first case (pulse width 750 ps; frequency 10 Hz, spot size 8 mm, energy density 0.4 J/cm2)second case (pulse width 750 ps; frequency 1 Hz; spot size 3.2 mm; energy density 2.49 J/cm2) | significant or complete improvement after treatment in both cases; no recurrence during 3 years of follow-up |
Qilei Che et al. [43] | retrospective analysis | 50 | solar lentigines, freckles; face | III–IV | 730 nm picosecond laser | 2 | Pulse width 250 ps; frequency 1 Hz, energy density 1.5–1.8 J/cm2 | significant lightening of hyperpigmentation after one and six months of treatment; high satisfaction with treatment results; no recurrence of lesions; short downtime |
Kauvar et al. [51] | clinical trial | 20 | solar lentigines; arms, hands, scalp, forehead, face, back | II–III | 730 nm picosecond laser vs. 532 nm picosecond laser vs. 532 and 755 nm nanosecond pulses lasers | up to 4 | mean fluence 2.2–3.9 J/cm2; mean spot size 2.0–2.9 mm; | significant reduction of lentigines; no adverse events; high patient satisfaction; high selectivity of the 730 nm laser to melanin, proven by histological analysis |
Authors | Type of Study | Number of Patients | Type and Location of the Lesions | Skin Phototypes | Type of Picosecond Laser | Number of Procedures | Treatment Parameters | Results |
---|---|---|---|---|---|---|---|---|
Wardhani et al. [57] | retrospective study | 20 | photoaging; face | III–V | alexandrite (755 nm) with diffractive lens array | 2 | spot size 6 mm; fluence 0.71 J/cm2; frequency 10 Hz; 3 to 4 passes | significant improvement in skin pigmentation, texture, and wrinkle depth; mild side effects (short-term erythema and swelling); high safety for dark skins (no hypo/hyperpigmentation) |
Ross et al. [58] | clinical trial | 18 | photoaging; face | I–III | fractional Nd:YAG laser with frequency-double wave (1064/532 nm) | 3 | pulse duration 800 ps; spot size 10 mm; total pulse energy −350 mJ for 1064 nm and 250 mJ for 532 nm | moderate improvement in pigmentation and fine wrinkles in 93% of patients at 532 nm and in 79% at 1064 nm according to GAI *, only mild post-treatment erythema |
Lim et al. [59] | preclinical reports | 5 (2 old and 3 young mice) | in vivo study on the skin of old (60-week-old) and young (20-week-old) female mice | - | fractional Nd:YAG (1064 nm) | older mice −3; younger mice 1 | spot size 10 mm; fluence 0.24 J/cm2; frequency 3 Hz; 5 passes | significant improvement in skin topography of older mice (marked smoothing of the skin); increase in dermal thickness on histological examination, increase in collagen synthesis markers and inflammatory cytokines |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kroma-Szal, A.; Pawlaczyk, M.; Urbańska, M.; Cieślawska, J.; Sobkowska, D.; Pordąb, I.; Gornowicz-Porowska, J. Medical Applications of Picosecond Lasers for Removal of Non-Tattoo Skin Lesions—A Comprehensive Review. Appl. Sci. 2025, 15, 4719. https://doi.org/10.3390/app15094719
Kroma-Szal A, Pawlaczyk M, Urbańska M, Cieślawska J, Sobkowska D, Pordąb I, Gornowicz-Porowska J. Medical Applications of Picosecond Lasers for Removal of Non-Tattoo Skin Lesions—A Comprehensive Review. Applied Sciences. 2025; 15(9):4719. https://doi.org/10.3390/app15094719
Chicago/Turabian StyleKroma-Szal, Anna, Mariola Pawlaczyk, Maria Urbańska, Julia Cieślawska, Daria Sobkowska, Iwona Pordąb, and Justyna Gornowicz-Porowska. 2025. "Medical Applications of Picosecond Lasers for Removal of Non-Tattoo Skin Lesions—A Comprehensive Review" Applied Sciences 15, no. 9: 4719. https://doi.org/10.3390/app15094719
APA StyleKroma-Szal, A., Pawlaczyk, M., Urbańska, M., Cieślawska, J., Sobkowska, D., Pordąb, I., & Gornowicz-Porowska, J. (2025). Medical Applications of Picosecond Lasers for Removal of Non-Tattoo Skin Lesions—A Comprehensive Review. Applied Sciences, 15(9), 4719. https://doi.org/10.3390/app15094719