Demographic and Injury Characteristics as Potential Risk Factors for Anterior Cruciate Ligament Injuries: A Multicentric Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Data Collection
2.4. Variables
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Injury Characteristics, Surgical Management, and Associated Injuries
3.3. Association of Injury Characteristics with Gender
3.4. Association of Injury Characteristics with Age
3.5. Association of Injury Characteristics with BMI
3.6. Characteristics of Sports-Related ACL Injuries: Analysis by Gender, Age, and BMI
3.7. Risk Factors for ACL Injuries among Athletic Population
4. Discussion
4.1. Sex Distribution and Cultural Context
4.2. Graft Selection and Clinical Consideration
4.3. Sports-Related vs. Non-Sports-Related ACL Injuries
4.4. Age-Related Patterns in Sports Injuries
4.5. BMI and ACL Injury Risk
4.6. Associated Injuries and Clinical Implications
4.7. Risk Factors for Sports-Related ACL Injuries
4.8. Mechanism of ACL Injury
4.9. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diermeier, T.; Rothrauff, B.B.; Engebretsen, L.; Lynch, A.D.; Ayeni, O.R.; Paterno, M.V.; Xerogeanes, J.W.; Fu, F.H.; Karlsson, J.; Musahl, V.; et al. Treatment after anterior cruciate ligament injury: Panther Symposium ACL Treatment Consensus Group. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.C.; Garcia, G.H.; Garner, M.R.; Marx, R.G. Quality of Life Following ACL Reconstruction: Baseline Predictors of Patient-Reported Outcomes. HSS J. 2016, 12, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Spindler, K.P.; Huston, L.J.; Chagin, K.M.; Kattan, M.W.; Reinke, E.K.; Amendola, A.; Andrish, J.T.; Brophy, R.H.; Cox, C.L.; Dunn, W.R.; et al. Ten-Year Outcomes and Risk Factors After Anterior Cruciate Ligament Reconstruction: A MOON Longitudinal Prospective Cohort Study. Am. J. Sports Med. 2018, 46, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Maheshwer, B.; Paliobeis, A.; Halkiadakis, P.; Konda, S.; Calcei, J.G.; Voos, J.E. Anterior Cruciate Ligament Tears in the Adolescent Population: Injury Demographics and Risk of Reinjury Among High School Athletes. J. Pediatr. Orthop. 2023, 43, 591–597. [Google Scholar] [CrossRef]
- Dewig, D.R.; Boltz, A.J.; Moffit, R.E.; Rao, N.; Collins, C.L.; Chandran, A. Epidemiology of Anterior Cruciate Ligament Tears in National Collegiate Athletic Association Athletes: 2014/2015–2018/2019. Med. Sci. Sports Exerc. 2024, 56, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.L.; Maradit Kremers, H.; Bryan, A.J.; Larson, D.R.; Dahm, D.L.; Levy, B.A.; Stuart, M.J.; Krych, A.J. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. Am. J. Sports Med. 2016, 44, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Mall, N.A.; Chalmers, P.N.; Moric, M.; Tanaka, M.J.; Cole, B.J.; Bach, B.R., Jr.; Paletta, G.A., Jr. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am. J. Sports Med. 2014, 42, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Alsayed, H.N.; Alkhateeb, M.A.; Aldossary, A.A.; Houbani, K.M.; Aljamaan, Y.M.; Alrashidi, Y.A. Risk of anterior cruciate ligament injury in population with elevated body mass index. Med. Glas. 2023, 20, 83–87. [Google Scholar] [CrossRef]
- Shultz, S.J.; Cruz, M.R.; Casey, E.; Dompier, T.P.; Ford, K.R.; Pietrosimone, B.; Schmitz, R.J.; Taylor, J.B. Sex-Specific Changes in Physical Risk Factors for Anterior Cruciate Ligament Injury by Chronological Age and Stages of Growth and Maturation From 8 to 18 Years of Age. J. Athl. Train. 2022, 57, 830–876. [Google Scholar] [CrossRef]
- Yu, W.; Xianmin, L.; Liangbi, X.; Chunbao, L. Risk factors of young males with physically demanding occupations having accumulated damage of anterior cruciate ligament. Orthop. Surg. 2022, 14, 1109–1114. [Google Scholar] [CrossRef]
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef] [PubMed]
- Beynnon, B.D.; Vacek, P.M.; Newell, M.K.; Tourville, T.W.; Smith, H.C.; Shultz, S.J.; Slauterbeck, J.R.; Johnson, R.J. The Effects of Level of Competition, Sport, and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2014, 42, 1806–1812. [Google Scholar] [CrossRef]
- Shen, L.; Jin, Z.G.; Dong, Q.R.; Li, L.B. Anatomical Risk Factors of Anterior Cruciate Ligament Injury. Chin. Med. J. 2018, 131, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Zebis, M.K.; Andersen, L.L.; Brandt, M.; Myklebust, G.; Bencke, J.; Lauridsen, H.B.; Bandholm, T.; Thorborg, K.; Hölmich, P.; Aagaard, P. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: A randomised controlled trial. Br. J. Sports Med. 2016, 50, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Posch, M.; Ruedl, G.; Greier, K.; Faulhaber, M.; Tecklenburg, K.; Schranz, A.; Schliernzauer, B.; Burtscher, M. Impact of Environmental Factors on the ACL Injury Risk in Recreational Alpine Skiing. Int. J. Sports Med. 2023, 44, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.; Hooper, J.; Strauss, E. Anterior Cruciate Ligament Injuries in Females: Risk Factors, Prevention, and Outcome. Bull. NYU Hosp. Jt. Dis. 2016, 74, 46–51. [Google Scholar]
- Piedade, S.R.; Leite Arruda, B.P.; de Vasconcelos, R.A.; Parker, D.A.; Maffulli, N. Rehabilitation following surgical reconstruction for anterior cruciate ligament insufficiency: What has changed since the 1960s?—State of the art. J. ISAKOS 2023, 8, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Shaerf, D.A.; Pastides, P.S.; Sarraf, K.M.; Willis-Owen, C.A. Anterior cruciate ligament reconstruction best practice: A review of graft choice. World J. Orthop. 2014, 5, 23–29. [Google Scholar] [CrossRef]
- Davies, W.T.; Myer, G.D.; Read, P.J. Is It Time We Better Understood the Tests We are Using for Return to Sport Decision Making Following ACL Reconstruction? A Critical Review of the Hop Tests. Sports Med. 2020, 50, 485–495. [Google Scholar] [CrossRef]
- Lesevic, M.; Kew, M.E.; Bodkin, S.G.; Diduch, D.R.; Brockmeier, S.F.; Miller, M.D.; Gwathmey, F.W.; Werner, B.C.; Hart, J.M. The Affect of Patient Sex and Graft Type on Postoperative Functional Outcomes After Primary ACL Reconstruction. Orthop. J. Sports Med. 2020, 8, 2325967120926052. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Jabalameli, M.; Bagherifard, A.; Askari, A. The anterior cruciate ligament (ACL) reconstruction in athletes and non-athletes: Single-or double-bundle; review. Acad. J. Health Sci. 2022, 37, 120–127. [Google Scholar]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 2007, 41 (Suppl. S1), i47–i51. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A.; Smiley, S.P.; Roberti di Sarsina, T.; Signorelli, C.; Marcheggiani Muccioli, G.M.; Bondi, A.; Romagnoli, M.; Agostini, A.; Zaffagnini, S. Mechanisms and situations of anterior cruciate ligament injuries in professional male soccer players: A YouTube-based video analysis. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Choi, B.; Lee, Y.S.; Lee, K.W.; Lee, J.W.; Lee, B.K. The mechanism and cause of anterior cruciate ligament tear in the Korean military environment. Knee Surg. Relat. Res. 2019, 31, 13. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A., Jr.; Garrett, W.E., Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Kaeding, C.C.; Léger-St-Jean, B.; Magnussen, R.A. Epidemiology and Diagnosis of Anterior Cruciate Ligament Injuries. Clin. Sports Med. 2017, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Okuwaki, T. Epidemiological survey of anterior cruciate ligament injury in Japanese junior high school and high school athletes: Cross-sectional study. Res. Sports Med. 2017, 25, 266–276. [Google Scholar] [CrossRef]
- Tayeb, A.M.; Almohammadi, A.A.; Hegaze, A.H.; Roublah, F.; Althakafi, K.A. Anterior Cruciate Ligament Injury in Association with Other Knee Injuries in King Abdulaziz University Hospital, Saudi Arabia. Cureus 2020, 12, e10240. [Google Scholar] [CrossRef]
- Wright, R.W.; Huston, L.J.; Haas, A.K.; Pennings, J.S.; Allen, C.R.; Cooper, D.E.; DeBerardino, T.M.; Dunn, W.R.; Lantz, B.B.A.; Spindler, K.P.; et al. Association Between Graft Choice and 6-Year Outcomes of Revision Anterior Cruciate Ligament Reconstruction in the MARS Cohort. Am. J. Sports Med. 2021, 49, 2589–2598. [Google Scholar] [CrossRef]
- Nukuto, K.; Hoshino, Y.; Kataoka, K.; Kuroda, R. Current development in surgical techniques, graft selection and additional procedures for anterior cruciate ligament injury: A path towards anatomic restoration and improved clinical outcomes—A narrative review. Ann. Jt. 2023, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.M.; Boyle, C.; Marom, N.; Marx, R.G. Graft Selection in Anterior Cruciate Ligament Reconstruction. Sports Med. Arthrosc. Rev. 2020, 28, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Baawa-Ameyaw, J.; Plastow, R.; Begum, F.A.; Kayani, B.; Jeddy, H.; Haddad, F. Current concepts in graft selection for anterior cruciate ligament reconstruction. EFORT Open Rev. 2021, 6, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Vilchez-Cavazos, F.; Dávila-Martínez, A.; Garza-Castro, S.; Simental-Mendía, M.; Garay-Mendoza, D.; Tamez-Mata, Y.; Peña-Martínez, V.; Acosta-Olivo, C. Anterior cruciate ligament injuries treated with quadriceps tendon autograft versus hamstring autograft: A randomized controlled trial. Cir. Cir. 2020, 88, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Werner, D.M.; Golightly, Y.M.; Tao, M.; Post, A.; Wellsandt, E. Environmental Risk Factors for Osteoarthritis: The Impact on Individuals with Knee Joint Injury. Rheum. Dis. Clin. N. Am. 2022, 48, 907–930. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.L.; Coen, S.E.; Bekker, S. Anterior cruciate ligament injury: Towards a gendered environmental approach. Br. J. Sports Med. 2021, 55, 984–990. [Google Scholar] [CrossRef]
- Shibata, S.; Takemura, M.; Miyakawa, S. The influence of differences in neurocognitive function on lower limb kinematics, kinetics, and muscle activity during an unanticipated cutting motion. Phys. Ther. Res. 2018, 21, 44–52. [Google Scholar] [CrossRef]
- Acevedo, R.J.; Rivera-Vega, A.; Miranda, G.; Micheo, W. Anterior cruciate ligament injury: Identification of risk factors and prevention strategies. Curr. Sports Med. Rep. 2014, 13, 186–191. [Google Scholar] [CrossRef]
- Mausehund, L.; Krosshaug, T. Knee Biomechanics During Cutting Maneuvers and Secondary ACL Injury Risk: A Prospective Cohort Study of Knee Biomechanics in 756 Female Elite Handball and Soccer Players. Am. J. Sports Med. 2024, 52, 1209–1219. [Google Scholar] [CrossRef]
- Bradsell, H.; Frank, R.M. Anterior cruciate ligament injury prevention. Ann. Jt. 2022, 7, 1. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- Alyami, A.H.; Darraj, H.; Hamdi, S.; Saber, A.; Bakri, N.; Maghrabi, R.; Hakami, K.M.; Darraj, A. Awareness of Anterior Cruciate Ligament Injury-Preventive Training Programs among Saudi Athletes. Clin. Pract. 2023, 13, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Kar, J.; Quesada, P.M. A musculoskeletal modeling approach for estimating anterior cruciate ligament strains and knee anterior-posterior shear forces in stop-jumps performed by young recreational female athletes. Ann. Biomed. Eng. 2013, 41, 338–348. [Google Scholar] [CrossRef]
- Georgoulis, J.D.; Melissaridou, D.; Patras, K.; Megaloikonomos, P.D.; Trikoupis, I.; Savvidou, O.D.; Papagelopoulos, P.J. Neuromuscular activity of the lower-extremities during running, landing and changing-of-direction movements in individuals with anterior cruciate ligament reconstruction: A review of electromyographic studies. J. Exp. Orthop. 2023, 10, 43. [Google Scholar] [CrossRef]
- LaBella, C.R.; Hennrikus, W.; Hewett, T.E.; Council on Sports Medicine and Fitness, and Section on Orthopaedics; Brenner, J.S.; Brookes, M.A.; Demorest, R.A.; Halstead, M.E.; Kelly, A.K.W.; Koutures, C.G.; et al. Anterior cruciate ligament injuries: Diagnosis, treatment, and prevention. Pediatrics 2014, 133, e1437–e1450. [Google Scholar] [CrossRef]
- Snaebjörnsson, T.; Svantesson, E.; Sundemo, D.; Westin, O.; Sansone, M.; Engebretsen, L.; Hamrin-Senorski, E. Young age and high BMI are predictors of early revision surgery after primary anterior cruciate ligament reconstruction: A cohort study from the Swedish and Norwegian knee ligament registries based on 30,747 patients. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 3583–3591. [Google Scholar] [CrossRef]
- Ahn, H.S.; Lee, D.H.; Kazmi, S.Z.; Kang, T.; Lee, Y.S.; Sung, R.; Cha, J.; Choi, Y.J.; Hong, G.; Hann, H.J.; et al. Familial Risk and Its Interaction with Body Mass Index and Physical Activity in Anterior Cruciate Ligament Injury Among First-Degree Relatives: A Population-Based Cohort Study. Am. J. Sports Med. 2021, 49, 3312–3321. [Google Scholar] [CrossRef] [PubMed]
- Kızılgöz, V.; Sivrioğlu, A.K.; Aydın, H.; Ulusoy, G.R.; Çetin, T.; Tuncer, K. The Combined Effect of Body Mass Index and Tibial Slope Angles on Anterior Cruciate Ligament Injury Risk in Male Knees: A Case-Control Study. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2019, 12, 1179544119867922. [Google Scholar] [CrossRef]
- Uhorchak, J.M.; Scoville, C.R.; Williams, G.N.; Arciero, R.A.; St Pierre, P.; Taylor, D.C. Risk factors associated with noncontact injury of the anterior cruciate ligament: A prospective four-year evaluation of 859 West Point cadets. Am. J. Sports Med. 2003, 31, 831–842. [Google Scholar] [CrossRef]
- Fares, A.; Horteur, C.; Abou Al Ezz, M.; Hardy, A.; Rubens-Duval, B.; Karam, K.; Gaulin, B.; Pailhe, R. Posterior tibial slope (PTS) ≥ 10 degrees is a risk factor for further anterior cruciate ligament (ACL) injury; BMI is not. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 2091–2099. [Google Scholar] [CrossRef]
- Inderhaug, E.; Drogset, J.O.; Lygre, S.H.L.; Gifstad, T. No effect of graft size or body mass index on risk of revision after ACL reconstruction using hamstrings autograft. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, S.; Khan, F.A.; Chethan, R.; Kumar, P.; Singh, S. Meniscal and Chondral Injury Patterns in Athletes with Anterior Cruciate Ligament Tear. Cureus 2023, 15, e49282. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, R.W.; Inacio, M.C.; Liddle, K.D.; Maletis, G.B. Prevalence and Incidence of Cartilage Injuries and Meniscus Tears in Patients Who Underwent Both Primary and Revision Anterior Cruciate Ligament Reconstructions. Am. J. Sports Med. 2014, 42, 1841–1846. [Google Scholar] [CrossRef] [PubMed]
- Gracia, G.; Cavaignac, M.; Marot, V.; Mouarbes, D.; Laumonerie, P.; Cavaignac, E. Epidemiology of Combined Injuries of the Secondary Stabilizers in ACL-Deficient Knees: Medial Meniscal Ramp Lesion, Lateral Meniscus Root Tear, and ALL Tear: A Prospective Case Series of 602 Patients with ACL Tears From the SANTI Study Group. Am. J. Sports Med. 2022, 50, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Kapoor, A.; DavidMasih, G. Prevalence of concomitant knee injuries associated with anterior cruciate ligament tear in kabaddi and football players. J. Clin. Orthop. Trauma 2020, 11, S784–S788. [Google Scholar] [CrossRef] [PubMed]
- Hagino, T.; Ochiai, S.; Senga, S.; Yamashita, T.; Wako, M.; Ando, T.; Haro, H. Meniscal tears associated with anterior cruciate ligament injury. Arch. Orthop. Trauma. Surg. 2015, 135, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, C.; Chen, S. Posttraumatic knee osteoarthritis following anterior cruciate ligament injury: Potential biochemical mediators of degenerative alteration and specific biochemical markers. Biomed. Rep. 2015, 3, 147–151. [Google Scholar] [CrossRef]
- Bayerl, D.; Moser, L.B.; Neubauer, M.; Neugebauer, J.; Dammerer, D.; Winnisch, M.; Schabus, R. Influence of a Concomitant Medial Meniscus Injury on Knee Joint Function and Osteoarthritis Presence after Anterior Cruciate Ligament Reconstruction. J. Clin. Med. 2024, 13, 2433. [Google Scholar] [CrossRef] [PubMed]
- Balasingam, S.; Sernert, N.; Magnusson, H.; Kartus, J. Patients with Concomitant Intra-articular Lesions at Index Surgery Deteriorate in Their Knee Injury and Osteoarthritis Outcome Score in the Long Term More Than Patients with Isolated Anterior Cruciate Ligament Rupture: A Study from the Swedish National Anterior Cruciate Ligament Register. Arthroscopy 2018, 34, 1520–1529. [Google Scholar] [CrossRef]
- Beynnon, B.D.; Fiorentino, N.; Gardner-Morse, M.; Tourville, T.W.; Slauterbeck, J.R.; Sturnick, D.R.; Argentieri, E.C.; Imhauser, C.W. Combined Injury to the ACL and Lateral Meniscus Alters the Geometry of Articular Cartilage and Meniscus Soon After Initial Trauma. J. Orthop. Res. 2020, 38, 759–767. [Google Scholar] [CrossRef]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin. J. Sport. Med. 2012, 22, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Nagase, T.; Tateishi, T.; Nakagawa, T.; Tsuchiya, M. Second Anterior Cruciate Ligament Injuries After Anterior Cruciate Ligament Reconstruction in Professional Sumo Wrestlers: A Case Series. Orthop. J. Sports Med. 2020, 8, 2325967120903698. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; DiStefano, L.J.; Hewett, T.E.; Garrett, W.E.; Marshall, S.W.; Golden, G.M.; Shultz, S.J.; Sigward, S.M. National Athletic Trainers’ Association Position Statement: Prevention of Anterior Cruciate Ligament Injury. J. Athl. Train. 2018, 53, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Petway, A.J.; Jordan, M.J.; Epsley, S.; Anloague, P.; Rimer, E. Mechanisms of Anterior Cruciate Ligament Tears in Professional National Basketball Association Players: A Video Analysis. J. Appl. Biomech. 2023, 39, 143–150. [Google Scholar] [CrossRef]
Variables | Sub-Categories | Male | Female | p-Value |
---|---|---|---|---|
Type of Tendon Grafts | Allograft | 25 | 3 | 0.432 |
Autograft | 628 | 46 | ||
Mechanism of Injury | Non-Contact | 467 | 39 | 0.19 |
Contact | 196 | 10 | ||
ACL Associated Injuries | Yes | 525 | 41 | 0.58 |
No | 138 | 8 | ||
Sport-Leading ACL Injuries | Yes | 340 | 21 | 0.30 |
No | 323 | 28 |
Variables | Sub-Categories | 15–30 Years | 31–45 Years | 46–60 Years | p-Value |
---|---|---|---|---|---|
Type of Tendon Grafts | Allograft | 22 | 6 | 0 | 0.15 |
Autograft | 549 | 86 | 49 | ||
Mechanism of Injury | Non-Contact | 410 | 63 | 33 | 0.66 |
Contact | 161 | 29 | 16 | ||
ACL Associated Injuries | Yes | 447 | 75 | 5 | 0.13 |
No | 124 | 17 | 44 | ||
Sport-Leading ACL Injuries | Yes | 288 | 48 | 25 | 0.90 |
No | 283 | 44 | 24 |
Variables | Sub-Categories | ≤18.5 kg/m2 | 18.5–24.9 kg/m2 | 25–29.9 kg/m2 | ≥30 kg/m2 | p-Value |
---|---|---|---|---|---|---|
Type of Tendon Grafts | Allograft | 0 | 7 | 18 | 3 | 0.69 |
Autograft | 19 | 133 | 457 | 75 | ||
Mechanism of Injury | Non-Contact | 10 | 105 | 331 | 60 | 0.12 |
Contact | 9 | 35 | 144 | 18 | ||
ACL Associated Injuries | Yes | 5 | 108 | 374 | 70 | 0.08 |
No | 14 | 32 | 101 | 8 | ||
Sport-Leading ACL Injuries | Yes | 9 | 71 | 246 | 38 | 0.79 |
No | 11 | 69 | 229 | 40 |
Variables | Sub-Categories | Male | Female | p-Value |
---|---|---|---|---|
Type of Tendon Grafts | Allograft | 13 | 2 | 0.269 |
Autograft | 327 | 19 | ||
Mechanism of Injury | Non-Contact | 252 | 14 | 0.45 |
Contact | 88 | 7 | ||
ACL Associated Injuries | Yes | 283 | 17 | 0.749 |
No | 57 | 4 | ||
Type of Sport | Basketball | 11 | 0 | 0.349 |
Cycling | 3 | 0 | ||
Climbing | 7 | 0 | ||
Football | 272 | 16 | ||
Handball | 3 | 0 | ||
Running | 15 | 3 | ||
Volleyball | 15 | 0 | ||
Walking | 10 | 1 | ||
Wrestling | 4 | 1 |
Variables | Sub-Categories | 15–30 Years | 31–45 Years | 46–60 Years | p-Value |
---|---|---|---|---|---|
Type of Tendon Grafts | Allograft | 12 | 3 | 0 | 0.529 |
Autograft | 276 | 45 | 25 | ||
Mechanism of Injury | Non-Contact | 215 | 36 | 15 | 0.287 |
Contact | 73 | 12 | 10 | ||
ACL Associated Injuries | Yes | 234 | 42 | 24 | 0.115 |
No | 54 | 6 | 1 | ||
Type of Sport | Basketball | 8 | 3 | 0 | 0.024 * |
Cycling | 1 | 1 | 1 | ||
Climbing | 5 | 1 | 1 | ||
Football | 234 | 35 | 1 | ||
Handball | 1 | 0 | 0 | ||
Running | 17 | 0 | 1 | ||
Volleyball | 10 | 4 | 2 | ||
Walking | 8 | 3 | 0 | ||
Wrestling | 4 | 0 | 0 |
Variables | Sub-Categories | ≤18.5 kg/m2 | 18.5–24.9 kg/m2 | 25–29.9 kg/m2 | ≥30 kg/m2 | p-Value |
---|---|---|---|---|---|---|
Type of Tendon Grafts | Allograft | 0 | 4 | 9 | 2 | 0.735 |
Autograft | 8 | 65 | 237 | 36 | ||
Mechanism of Injury | Non- Contact | 5 | 48 | 184 | 29 | 0.736 |
Contact | 3 | 21 | 62 | 9 | ||
ACL Associated Injuries | Yes | 7 | 58 | 201 | 34 | 0.671 |
No | 1 | 11 | 45 | 4 | ||
Type of Sport | Basketball | 0 | 4 | 7 | 0 | 0.232 |
Cycling | 0 | 1 | 1 | 1 | ||
Climbing | 1 | 1 | 4 | 1 | ||
Football | 5 | 52 | 201 | 30 | ||
Handball | 0 | 1 | 2 | 0 | ||
Running | 1 | 3 | 13 | 1 | ||
Volleyball | 0 | 3 | 10 | 2 | ||
Walking | 1 | 2 | 7 | 1 | ||
Wrestling | 0 | 2 | 1 | 2 |
Variables | OR (95% CI) | p-Value |
---|---|---|
Gender | 0.674 (0.373–1.219) | 0.192 |
Type of Tendon Grafts | 0.871 (0.405–1.873) | 0.724 |
BMI | 1.028 (0.811–1.303) | 0.821 |
Age | 1.002 (0.775–1.297) | 0.986 |
Type of Injury | 0.756 (0.545–1.049) | 0.094 |
ACL Associated Injuries | 1.596 (1.101–2.314) | 0.014 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motififard, M.; Akbari Aghdam, H.; Ravanbod, H.; Jafarpishe, M.S.; Shahsavan, M.; Daemi, A.; Mehrvar, A.; Rezvani, A.; Jamalirad, H.; Jajroudi, M.; et al. Demographic and Injury Characteristics as Potential Risk Factors for Anterior Cruciate Ligament Injuries: A Multicentric Cross-Sectional Study. J. Clin. Med. 2024, 13, 5063. https://doi.org/10.3390/jcm13175063
Motififard M, Akbari Aghdam H, Ravanbod H, Jafarpishe MS, Shahsavan M, Daemi A, Mehrvar A, Rezvani A, Jamalirad H, Jajroudi M, et al. Demographic and Injury Characteristics as Potential Risk Factors for Anterior Cruciate Ligament Injuries: A Multicentric Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(17):5063. https://doi.org/10.3390/jcm13175063
Chicago/Turabian StyleMotififard, Mehdi, Hossein Akbari Aghdam, Hadi Ravanbod, Mohammad Saleh Jafarpishe, Mahdi Shahsavan, Amin Daemi, Amir Mehrvar, Arghavan Rezvani, Hossein Jamalirad, Mahdie Jajroudi, and et al. 2024. "Demographic and Injury Characteristics as Potential Risk Factors for Anterior Cruciate Ligament Injuries: A Multicentric Cross-Sectional Study" Journal of Clinical Medicine 13, no. 17: 5063. https://doi.org/10.3390/jcm13175063
APA StyleMotififard, M., Akbari Aghdam, H., Ravanbod, H., Jafarpishe, M. S., Shahsavan, M., Daemi, A., Mehrvar, A., Rezvani, A., Jamalirad, H., Jajroudi, M., & Shahsavan, M. (2024). Demographic and Injury Characteristics as Potential Risk Factors for Anterior Cruciate Ligament Injuries: A Multicentric Cross-Sectional Study. Journal of Clinical Medicine, 13(17), 5063. https://doi.org/10.3390/jcm13175063