Cytocompatibility, Antibacterial, and Anti-Biofilm Efficacy of Grape Seed Extract and Quercetin Hydrogels Against a Mature Endodontic Biofilm Ex Vivo Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Sample Preparation
2.3. Preparation of GSE and Quercetin Hydrogels
2.4. Classification of the Samples
2.5. Microbiologic Assessments
2.6. CFLSM Examination
2.7. Cytotoxicity Test
2.8. Statistical Analysis
3. Results
3.1. MIC and MBC
3.2. MBIC
3.3. Antibacterial and Anti-Biofilm Efficacy
3.4. CFLSM
3.5. Cytotoxicity Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, P.N.R. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit. Rev. Oral. Biol. Med. 2004, 15, 348–381. [Google Scholar] [CrossRef] [PubMed]
- Saber, S.M.; Alfadag, A.M.A.; Nawar, N.N.; Plotino, G.; Hassanien, E.E. Instrumentation Kinematics Does Not Affect Bacterial Reduction, Post-operative Pain, and Flare-ups: A Randomized Clinical Trial. Int. Endod. J. 2022, 55, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Saber, S.; Galal, M.M.; Ismail, A.G.; Hamdy, T.M. Thermal, Chemical and Physical Analysis of VDW.1Seal, Fill Root ST, and ADseal Root Canal Sealers. Sci. Rep. 2023, 13, 14829. [Google Scholar] [CrossRef] [PubMed]
- Saber, S.M.; Elashiry, M.M.; Sadat, S.M.A.E.; Nawar, N.N. A Microcomputed Tomographic Analysis of the Morphological Variabilities and Incidence of Extra Canals in Mandibular First Molar Teeth in an Egyptian Subpopulation. Sci. Rep. 2023, 13, 8985. [Google Scholar] [CrossRef]
- Ghoneim, M.; ElDin Saber, S.; El-Badry, T.; Obeid, M.; Hassib, N. The Use of Different Irrigation Techniques to Decrease Bacterial Loads in Healthy and Diabetic Patients with Asymptomatic Apical Periodontitis. Open Access Maced. J. Med. Sci. 2016, 4, 714–719. [Google Scholar] [CrossRef]
- Chong, B.S.; Ford, T.R.P. The Role of Intracanal Medication in Root Canal Treatment. Int. Endod. J. 1992, 25, 97–106. [Google Scholar] [CrossRef]
- Karataş, E.; Baltacı, M.Ö.; Uluköylü, E.; Adıgüzel, A. Antibacterial Effectiveness of Calcium Hydroxide Alone or in Combination with Ibuprofen and Ciprofloxacin in Teeth with Asymptomatic Apical Periodontitis: A Randomized Controlled Clinical Study. Int. Endod. J. 2020, 53, 742–753. [Google Scholar] [CrossRef]
- Kontakiotis, E.; Nakou, M.; Georgopoulou, M. In Vitro Study of the Indirect Action of Calcium Hydroxide on the Anaerobic Flora of the Root Canal. Int. Endod. J. 1995, 28, 285–289. [Google Scholar] [CrossRef]
- Komabayashi, T.; D’souza, R.N.; Dechow, P.C.; Safavi, K.E.; Spångberg, L.S.W. Particle Size and Shape of Calcium Hydroxide. J. Endod. 2009, 35, 284–287. [Google Scholar] [CrossRef]
- Siqueira, J.F.; De Uzeda, M. Influence of Different Vehicles on the Antibacterial Effects of Calcium Hydroxide. J. Endod. 1998, 24, 663–665. [Google Scholar] [CrossRef]
- Nair, P.N.R. On the Causes of Persistent Apical Periodontitis: A Review. Int. Endod. J. 2006, 39, 249–281. [Google Scholar] [CrossRef] [PubMed]
- Ordinola-Zapata, R.; Noblett, W.C.; Perez-Ron, A.; Ye, Z.; Vera, J. Present Status and Future Directions of Intracanal Medicaments. Int. Endod. J. 2022, 55, 613–636. [Google Scholar] [CrossRef] [PubMed]
- Karobari, M.I.; Adil, A.H.; Assiry, A.A.; Basheer, S.N.; Noorani, T.Y.; Pawar, A.M.; Marya, A.; Messina, P.; Scardina, G.A. Herbal Medications in Endodontics and Its Application—A Review of Literature. Materials 2022, 15, 3111. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.E.; Farber, R.M.; Namerow, K.N.; Kuttler, S.; Garcia-Godoy, F. Evaluation of Morinda Citrifolia as an Endodontic Irrigant. J. Endod. 2008, 34, 66–70. [Google Scholar] [CrossRef]
- Fiallos, N.D.M.; Cecchin, D.; De Lima, C.O.; Hirata, R.; Silva, E.J.N.L.; Sassone, L.M. Antimicrobial Effectiveness of Grape Seed Extract against Enterococcus Faecalis Biofilm: A Confocal Laser Scanning Microscopy Analysis. Aust. Endod. J. 2020, 46, 191–196. [Google Scholar] [CrossRef]
- Yang, S.Y.; Liu, Y.; Mao, J.; Wu, Y.B.; Deng, Y.L.; Qi, S.C.; Zhou, Y.C.; Gong, S.Q. The Antibiofilm and Collagen-stabilizing Effects of Proanthocyanidin as an Auxiliary Endodontic Irrigant. Int. Endod. J. 2020, 53, 824–833. [Google Scholar] [CrossRef]
- Anand David, A.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84. [Google Scholar] [CrossRef]
- Das, S.; Batra, S.; Gupta, P.P.; Kumar, M.; Srivastava, V.K.; Jyoti, A.; Singh, N.; Kaushik, S. Identification and Evaluation of Quercetin as a Potential Inhibitor of Naphthoate Synthase from Enterococcus Faecalis. J. Mol. Recognit. 2019, 32, e2802. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Sidhu, S.K.; Melo, M.A.S.; Yeo, I.-S.L.; Diogenes, A.; Darvell, B.W. Bioactive Dental Materials. JADA Found. Sci. 2023, 2, 100022. [Google Scholar] [CrossRef]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Dummer, P.M.H. Properties and Applications of Calcium Hydroxide in Endodontics and Dental Traumatology: Calcium Hydroxide in Endodontics and Dental Traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef] [PubMed]
- Sameer, N.; Kataia, M.; Abouelseoud, M.; Nader, R.; Mousa, H.; Saber, S. Effect of Different Calcium Hydroxide Formulations Used During Regenerative Endodontic Procedures on the Viability, Mineralization, and Dentino/Cemento/Osteogenic Differentiation Potential of Human Periodontal Ligament Stem Cells: An In Vitro Study. Ain Shams Dent. J. 2024, 34, 88–97. [Google Scholar]
- Varshini, R.; Subha, A.; Prabhakar, V.; Mathini, P.; Narayanan, S.; Minu, K. Antimicrobial Efficacy of Aloe vera, Lemon, Ricinus communis, and Calcium Hydroxide as Intracanal Medicament Against Enterococcus faecalis: A Confocal Microscopic Study. J. Pharm. Bioallied Sci. 2019, 11, S256–S259. [Google Scholar] [PubMed]
- Eloff, J. A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
- Mogana, R.; Adhikari, A.; Tzar, M.N.; Ramliza, R.; Wiart, C. Antibacterial Activities of the Extracts, Fractions and Isolated Compounds from Canarium Patentinervium Miq. against Bacterial Clinical Isolates. BMC Complement. Med. Ther. 2020, 20, 55. [Google Scholar] [CrossRef]
- Antunes, A.L.S.; Trentin, D.S.; Bonfanti, J.W.; Pinto, C.C.F.; Perez, L.R.R.; Macedo, A.J.; Barth, A.L. Application of a Feasible Method for Determination of Biofilm Antimicrobial Susceptibility in Staphylococci. APMIS 2010, 118, 873–877. [Google Scholar] [CrossRef]
- Mohamed Saber, S.E.-D.; El-Hady, S.A. Development of an Intracanal Mature Enterococcus Faecalis Biofilm and Its Susceptibility to Some Antimicrobial Intracanal Medications; an In Vitro Study. Eur. J. Dent. 2012, 6, 043–050. [Google Scholar] [CrossRef]
- Fahim, M.M.; Saber, S.E.M.; Elkhatib, W.F.; Nagy, M.M.; Schafer, E. The Antibacterial Effect and the Incidence of Post-Operative Pain after the Application of Nano-Based Intracanal Medications during Endodontic Retreatment: A Randomized Controlled Clinical Trial. Clin. Oral. Investig. 2022, 26, 2155–2163. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Shen, Y.; Haapasalo, M. A New Noninvasive Model to Study the Effectiveness of Dentin Disinfection by Using Confocal Laser Scanning Microscopy. J. Endod. 2011, 37, 1380–1385. [Google Scholar] [CrossRef]
- Mountcastle, S.E.; Vyas, N.; Villapun, V.M.; Cox, S.C.; Jabbari, S.; Sammons, R.L.; Shelton, R.M.; Walmsley, A.D.; Kuehne, S.A. Biofilm Viability Checker: An Open-Source Tool for Automated Biofilm Viability Analysis from Confocal Microscopy Images. NPJ Biofilms Microbiomes 2021, 7, 44. [Google Scholar] [CrossRef]
- Saber, S.M.; Gomaa, S.M.; Elashiry, M.M.; El-Banna, A.; Schäfer, E. Comparative Biological Properties of Resin-Free and Resin-Based Calcium Silicate-Based Endodontic Repair Materials on Human Periodontal Ligament Stem Cells. Clin. Oral. Investig. 2023, 27, 6757–6768. [Google Scholar] [CrossRef] [PubMed]
- Elashiry, M.M.; Raafat, S.N.; Tay, F.R.; Saber, S.M. Effect of Rapamycin on Human Periodontal Ligament Stem Cells That Have Been Exposed to Sodium Hypochlorite. Life Sci. 2023, 329, 121989. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Mahmoud, E.M.; Saber, S.M.; Raafat, S.N.; Gomaa, S.M.; Naga, S.M. Effect of the injectable alginate/nano-hydroxyapatite and the silica/nano-hydroxyapatite composites on the stem cells: A comparative study. J. Non-Cryst. Solids 2023, 610, 122327. [Google Scholar] [CrossRef]
- Saber, S.; Raafat, S.; Elashiry, M.; El-Banna, A.; Schäfer, E. Effect of Different Sealers on the Cytocompatibility and Osteogenic Potential of Human Periodontal Ligament Stem Cells: An In Vitro Study. J. Clin. Med. 2023, 12, 2344. [Google Scholar] [CrossRef] [PubMed]
- Shamel, M.; Raafat, S.; El Karim, I.; Saber, S. Photobiomodulation and Low-Intensity Pulsed Ultrasound Synergistically Enhance Dental Mesenchymal Stem Cells Viability, Migration and Differentiation: An Invitro Study. Odontology 2024, 112, 1142–1156. [Google Scholar] [CrossRef]
- Estrela, C.; Sydney, G.B.; Figueiredo, J.A.P.; Estrela, C.R.D.A. A Model System to Study Antimicrobial Strategies in Endodontic Biofilms. J. Appl. Oral. Sci. 2009, 17, 87–91. [Google Scholar] [CrossRef]
- Al-Hassan Abdo Heidar, S.; Saber, S.E.; Abdel-Latif Abdel-Aziz Eissa, S.; Hassan El-Ashry, S. Antibacterial Potential of Nano-Particulate Intracanal Medications on a Mature E. Faecalis Biofilm in an Ex-Vivo Model. G. Ital. Endod. 2020, 34, 100–109. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of Synthesis of Hydrogels—A Review. Saudi Pharm. J. 2016, 24, 554–559. [Google Scholar] [CrossRef]
- Cecchin, D.; Farina, A.P.; Souza, M.A.; Albarello, L.L.; Schneider, A.P.; Vidal, C.M.P.; Bedran-Russo, A.K. Evaluation of Antimicrobial Effectiveness and Dentine Mechanical Properties after Use of Chemical and Natural Auxiliary Irrigants. J. Dent. 2015, 43, 695–702. [Google Scholar] [CrossRef]
- Albino Souza, M.; Dalla Lana, D.; Gabrielli, E.; Barbosa Ribeiro, M.; Miyagaki, D.C.; Cecchin, D. Effectiveness of Final Decontamination Protocols against Enterococcus Faecalis and Its Influence on Bond Strength of Filling Material to Root Canal Dentin. Photodiagnosis Photodyn. Ther. 2017, 17, 92–97. [Google Scholar] [CrossRef]
- Furiga, A.; Roques, C.; Badet, C. Preventive Effects of an Original Combination of Grape Seed Polyphenols with Amine Fluoride on Dental Biofilm Formation and Oxidative Damage by Oral Bacteria. J. Appl. Microbiol. 2014, 116, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Kalemba-Drożdż, M. Hydrogel Wound Dressings with Natural Polyphenols as an Innovative Direction in Regenerative Medicine. Pharmaceutics 2019, 11, 460. [Google Scholar]
- Pereira, G.G.; Dimer, F.A.; Guterres, S.S.; Kist, T.B.; Stein, V.C. Development of Quercetin-Loaded Chitosan-Based Hydrogel for Topical Application. Colloids Surf. B Biointerfaces 2018, 163, 34–43. [Google Scholar]
- Singh, R.; Shitiz, K.; Singh, A. Immobilization of Bacterial Cells in Hydrogels Prepared by Gamma Irradiation for Bioremoval of Strontium Ions. Water Air Soil Pollut. 2020, 231, 7. [Google Scholar] [CrossRef]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia Buxifolia. J. Food Qual. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, X.; Wang, X.; Yang, S.; Mao, J.; Gong, S. Quercetin as an Auxiliary Endodontic Irrigant for Root Canal Treatment: Anti-Biofilm and Dentin Collagen-Stabilizing Effects In Vitro. Materials 2021, 14, 1178. [Google Scholar] [CrossRef]
- Qayyum, S.; Sharma, D.; Bisht, D.; Khan, A.U. Identification of Factors Involved in Enterococcus Faecalis Biofilm under Quercetin Stress. Micro Pathog. 2019, 126, 205–211. [Google Scholar] [CrossRef]
- Wang, L.; Zhan, J.; Huang, W. Grape Seed Proanthocyanidins Induce Apoptosis and Cell Cycle Arrest of HepG2 Cells Accompanied by Induction of the MAPK Pathway and NAG-1. Antioxidants 2020, 9, 1200. [Google Scholar] [CrossRef]
- Shrotriya, S.; Sharma, P.; Singh, R.; Mishra, S.K.; Morrow, J.S.; Singh, S. Grape Seed Extract Inhibits Stemness and Metastatic Potential of Pancreatic Cancer Cells. Sci. Rep. 2015, 5, 16064. [Google Scholar]
- Nandakumar, V.; Mohan, S.; Ghosh, S.; Sundaram, P.; Rajan, R.; Abraham, S.; Thomas, S. Grape Seed Proanthocyanidins Induce Apoptosis and Inhibit Metastasis of Highly Metastatic Breast Carcinoma Cells. Carcinogenesis 2008, 29, 2109–2115. [Google Scholar]
- Shen, Y.; Xu, J.; Pan, X.; Wu, Y.; Li, C.; Zheng, W.; Cheng, X.; Wang, Y. Quercetin Inhibits the Growth of Human Gastric Cancer Stem Cells by Inducing Cell Cycle Arrest and Apoptosis. Tumor Biol. 2013, 34, 649–659. [Google Scholar]
- Kim, J.H.; Lee, K.W.; Oh, S.H. Quercetin Induces Apoptosis by Inhibiting MAPKs and STAT3 Signaling in Human Lung Adenocarcinoma A549 Cells. Acta Pharmacol. Sin. 2016, 37, 923–934. [Google Scholar]
- Li, X.; Huang, G.; Yang, X.; Li, M.; Wang, Y.; Zhang, Y. Quercetin Induces Mitochondrial Dysfunction and Apoptosis in Human Bronchial Epithelial Cells. Toxicol. Appl. Pharmacol. 2016, 308, 28–36. [Google Scholar]
- Nishimura, T.; Tsukamoto, S.; Yamaguchi, H.; Shibuya, M.; Nishida, T.; Shimada, T.; Hasegawa, K. Quercetin Inhibits the Self-Renewal Capacity of Renal Cancer Stem-Like Cells through Down-Regulation of the c-Myc/hTERT/Nanog Signaling Pathway. Biochem. Biophys. Res. Commun. 2020, 523, 165–171. [Google Scholar]
- Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The Flavonoid Quercetin Induces Cell Cycle Arrest and Mitochondria-Mediated Apoptosis in Human Cervical Cancer (HeLa) Cells through P53 Induction and NF-κB Inhibition. Eur. J. Pharmacol. 2010, 649, 84–91. [Google Scholar] [CrossRef]
- Haapasalo, H.K.; Sirén, E.K.; Waltimo, T.M.T.; Òrstavik, D.; Haapasalo, M.P.P. Inactivation of Local Root Canal Medicaments by Dentine: An in Vitro Study. Int. Endod. J. 2000, 33, 126–131. [Google Scholar] [CrossRef]
Concentration | Biofilm Inhibition (%) (Mean ± SD) | |||
---|---|---|---|---|
CaOH | GSE | Quercetin | p-Value | |
25% of MBC | 75.88 ± 0.53 C | 89.88 ± 0.12 A | 86.14 ± 0.69 B | <0.001 * |
50% of MBC | 89.07 ± 0.55 C | 96.46 ± 0.19 A | 92.98 ± 0.25 B | <0.001 * |
75% of MBC | 95.77 ± 0.50 B | 98.34 ± 0.16 A | 95.70 ± 0.17 B | <0.001 * |
CaOH | GSE | Quercetin | Positive Control | p-Value | |
---|---|---|---|---|---|
Log bacterial count (CFU/mL) | 5.25 ± 0.56 D | 6.47 ± 0.28 C | 7.86 ± 0.46 B | 12.44 ± 0.14 A | <0.001 * |
Anti-biofilm activity (%) | 91.40 ± 0.15 C | 95.71 ± 0.22 A | 92.55 ± 0.22 B | 0.00 ± 0.00 D | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqabat, H.M.A.; Abouelseoud, M.; Rafaat, S.N.; Shamel, M.; Schäfer, E.; Souza, E.M.; Saber, S. Cytocompatibility, Antibacterial, and Anti-Biofilm Efficacy of Grape Seed Extract and Quercetin Hydrogels Against a Mature Endodontic Biofilm Ex Vivo Model. J. Clin. Med. 2024, 13, 6464. https://doi.org/10.3390/jcm13216464
Aqabat HMA, Abouelseoud M, Rafaat SN, Shamel M, Schäfer E, Souza EM, Saber S. Cytocompatibility, Antibacterial, and Anti-Biofilm Efficacy of Grape Seed Extract and Quercetin Hydrogels Against a Mature Endodontic Biofilm Ex Vivo Model. Journal of Clinical Medicine. 2024; 13(21):6464. https://doi.org/10.3390/jcm13216464
Chicago/Turabian StyleAqabat, Huda Mohammed Ahmed, Mohamed Abouelseoud, Shereen N. Rafaat, Mohamed Shamel, Edgar Schäfer, Erick Miranda Souza, and Shehabeldin Saber. 2024. "Cytocompatibility, Antibacterial, and Anti-Biofilm Efficacy of Grape Seed Extract and Quercetin Hydrogels Against a Mature Endodontic Biofilm Ex Vivo Model" Journal of Clinical Medicine 13, no. 21: 6464. https://doi.org/10.3390/jcm13216464
APA StyleAqabat, H. M. A., Abouelseoud, M., Rafaat, S. N., Shamel, M., Schäfer, E., Souza, E. M., & Saber, S. (2024). Cytocompatibility, Antibacterial, and Anti-Biofilm Efficacy of Grape Seed Extract and Quercetin Hydrogels Against a Mature Endodontic Biofilm Ex Vivo Model. Journal of Clinical Medicine, 13(21), 6464. https://doi.org/10.3390/jcm13216464