Fertilization Mapping Based on the Soil Properties of Paddy Fields in Korea
Abstract
:1. Introduction
- Collect soil samples from salt-affected paddies in South Korea and characterize the soil composition.
- Derive expected nitrogen and phosphate rates based on the analyzed chemical composition.
- Create a map of the total nitrogen and available phosphorus content of salt-affected paddies and a map of the expected nitrogen and phosphorus rates for variable rate technology through a variogram and kriging.
2. Materials and Methods
2.1. Analysis of Soil Components and Model of Fertilization Rate
2.2. Spatial Statistics Model
3. Results and Discussion
3.1. Derivation of Expected Fertilization Rates Accordant with Soil Components
3.2. Spatial Statistics Analysis of Expected Fertilization Rate to Develop a Map of Variable Fertilization
3.3. Map of Variable Fertilization Developed by the Application of Interpolation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, D. Development and Accuracy Evaluation of Field Soil Temperature Prediction Model by Depth Using Artificial Intelligence and Meteorological Parameters. Master’s thesis, The Seoul National University, Seoul, Republic of Korea, 2002. [Google Scholar]
- Passioura, J. Soil conditions and plant growth. Plant Cell Environ. 2002, 25, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F. N uptake and distribution in plant canopies. In Diagnosis of the Nitrogen Status in Crops; Springer: Berlin/Heidelberg, Germany, 1997; pp. 3–43. [Google Scholar]
- Wei, W.; Yang, M.; Liu, Y.; Huang, H.; Ye, C.; Zheng, J.; Guo, C.; Hao, M.; He, X.; Zhu, S. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Sci. Total Environ. 2018, 633, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef]
- Jeong, K.S. Sihwa Construction Project. J. Korean Water Resour. Assoc. 1996, 29, 106–115. [Google Scholar]
- Kim, H.; Kim, S.; Lee, D. The effects of irrigation water salinity levels on growth of rice by growth stage. J. Korean Soc. Agric. Eng. 2019, 2019, 73. [Google Scholar]
- Lee, S.H.; Yoo, S.H.; Seol, S.I. Assessment of Salt Damage for Upland-Crops in Dae-Ho Reclaimed Soil. J. Korean Environ. Agric. 2000, 19, 358–363. [Google Scholar]
- Monzon, J.P.; Calviño, P.; Sadras, V.O.; Zubiaurre, J.; Andrade, F.H. Precision agriculture based on crop physiological principles improves whole-farm yield and profit: A case study. Eur. J. Agron. 2018, 99, 62–71. [Google Scholar] [CrossRef]
- Khuang, T.; Huan, T.; Hach, C. Study on fertilizer rates for getting maximum grain yield and profitability of rice production. Omonrice 2008, 16, 93–99. [Google Scholar]
- Stafford, J.V. Essential technology for precision agriculture. In Proceedings of the Third International Conference on Precision Agriculture, Minneapolis, MN, USA, 23–26 June 1996; Wiley Online Library: New York, NY, USA; pp. 593–604. [Google Scholar]
- Van Rees, H.; McClelland, T.; Hochman, Z.; Carberry, P.; Hunt, J.; Huth, N.; Holzworth, D. Leading farmers in South East Australia have closed the exploitable wheat yield gap: Prospects for further improvement. Field Crops Res. 2014, 164, 1–11. [Google Scholar] [CrossRef]
- Cho, S.I.; Chang, Y.C.; Yeo, W.Y. Construction of a Spatioal Database for Realizing Precision Farming. J. Biosyst. Eng. 2002, 27, 161–172. [Google Scholar]
- Sawyer, J.E. Concepts of variable rate technology with considerations for fertilizer application. J. Prod. Agric. 1994, 7, 195–201. [Google Scholar] [CrossRef]
- Fu, W.; Tunney, H.; Zhang, C. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Res. 2010, 106, 185–193. [Google Scholar] [CrossRef]
- Scull, P.; Franklin, J.; Chadwick, O.A.; McArthur, D. Predictive soil mapping: A review. Prog. Phys. Geogr. 2003, 27, 171–197. [Google Scholar] [CrossRef]
- Sahoo, R.N. Geostatistics in Geoinformatics for Managing Spatial Variability; Indian Agricultural Research Institute: Pusa, India, 2003. [Google Scholar]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Diacono, M.; Castrignanò, A.; Troccoli, A.; De Benedetto, D.; Basso, B.; Rubino, P. Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crops Res. 2012, 131, 49–62. [Google Scholar] [CrossRef]
- Aggelopoulou, K.; Pateras, D.; Fountas, S.; Gemtos, T.; Nanos, G. Soil spatial variability and site-specific fertilization maps in an apple orchard. Precis. Agric. 2011, 12, 118–129. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, G.; Kim, S.; Kang, T. Development of a soil sensor-based variable rate fertilizer applicator. In Proceedings of the KSAM 2013 Spring Conference, Jeju, Republic of Korea, 31 October–1 November 2013; Volume 18, pp. 139–140. [Google Scholar]
- NAAS. Manual of Analysis Procedures for Comprehensive Test Lab; National Academy of Agricultural Science, Rural Development Administration: Suwon-si, Republic of Korea, 2017. [Google Scholar]
- NAAS. Methods of Soil Chemical Analysis; National Academy of Agricultural Science, Rural Development Administration: Suwon-si, Republic of Korea, 2010. [Google Scholar]
- NASS. Fertilization Standard of Crops; National Academy of Agricultural Science, Rural Development Administration: Suwon-si, Republic of Korea, 2017. [Google Scholar]
- Ver Hoef, J.M.; Cressie, N. Multivariable spatial prediction. Math. Geol. 1993, 25, 219–240. [Google Scholar] [CrossRef]
- Yang, F.-g.; Cao, S.-y.; Liu, X.-n.; Yang, K.-j. Design of groundwater level monitoring network with ordinary kriging. J. Hydrodyn. 2008, 20, 339–346. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, D.H.; Jung, I.K.; Chung, S.O.; Sudduth, K.A. Sampling and calibration requirements for optical reflectance soil property sensors for Korean paddy soils. J. Biosyst. Eng. 2008, 33, 260–268. [Google Scholar]
- Gringarten, E.; Deutsch, C.V. Teacher’s aide variogram interpretation and modeling. Math. Geol. 2001, 33, 507–534. [Google Scholar] [CrossRef]
- Hwang, S.H.; Ham, D.H. Evaluation of spatial downscaling methods for enhancement of spatial precipitation estimation. J. Korean Soc. Hazard Mitig. 2013, 13, 149–164. [Google Scholar] [CrossRef]
- Park, N.-W. Integration of categorical data using multivariate kriging for spatial Interpolation of ground survey data. Spat. Inf. Res. 2011, 19, 81–89. [Google Scholar]
Min. | 25% | Median | 75% | Max. | Mean | * S.D. | ||
---|---|---|---|---|---|---|---|---|
All Fields (n = 120) | SOM [g/kg] | 11.37 | 16.89 | 19.96 | 24.33 | 31.29 | 20.60 | 4.48 |
SiO2 [mg/kg] | 300.88 | 414.60 | 466.04 | 524.30 | 637.40 | 471.60 | 72.80 | |
Total Nitrogen [%] | 0.06 | 0.10 | 0.12 | 0.14 | 0.19 | 0.12 | 0.02 | |
Av.P2O5 [mg/kg] | 15.39 | 35.20 | 41.84 | 52.35 | 75.43 | 44.24 | 12.73 | |
Field 1 (n = 30) | SOM [g/kg] | 11.37 | 16.74 | 21.98 | 23.68 | 29.91 | 20.90 | 4.38 |
SiO2 [mg/kg] | 300.88 | 410.51 | 450.74 | 509.21 | 629.48 | 456.00 | 70.47 | |
Total Nitrogen [%] | 0.06 | 0.10 | 0.13 | 0.15 | 0.19 | 0.13 | 0.03 | |
Av.P2O5 [mg/kg] | 28.58 | 33.80 | 37.81 | 42.67 | 48.64 | 38.10 | 5.72 | |
Field 2 (n = 30) | SOM [g/kg] | 20.43 | 24.33 | 25.90 | 27.39 | 31.29 | 25.50 | 3.09 |
SiO2 [mg/kg] | 327.74 | 387.23 | 421.58 | 481.50 | 565.71 | 437.40 | 68.03 | |
Total Nitrogen [%] | 0.11 | 0.13 | 0.14 | 0.15 | 0.17 | 0.14 | 0.02 | |
Av.P2O5 [mg/kg] | 15.39 | 29.31 | 35.61 | 41.74 | 48.78 | 35.70 | 9.63 | |
Field 3 (n = 30) | SOM [g/kg] | 15.25 | 17.21 | 19.05 | 21.08 | 24.74 | 19.20 | 2.47 |
SiO2 [mg/kg] | 409.49 | 442.02 | 474.28 | 533.05 | 637.40 | 488.50 | 52.92 | |
Total Nitrogen [%] | 0.9 | 0.10 | 0.11 | 0.12 | 0.15 | 0.11 | 0.01 | |
Av.P2O5 [mg/kg] | 32.43 | 36.54 | 41.54 | 47.65 | 60.23 | 42.70 | 8.00 | |
Field 4 (n = 30) | SOM [g/kg] | 11.58 | 15.39 | 16.71 | 18.53 | 21.98 | 16.80 | 2.39 |
SiO2 [mg/kg] | 375.14 | 438.22 | 505.41 | 571.92 | 696.36 | 504.60 | 80.42 | |
Total Nitrogen [%] | 0.08 | 0.09 | 0.10 | 0.12 | 0.14 | 0.10 | 0.01 | |
Av.P2O5 [mg/kg] | 48.36 | 54.78 | 58.53 | 64.75 | 75.43 | 60.60 | 9.06 |
All Fields | Field 1 | Field 2 | Field 3 | Field 4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (n = 120) | SD (n = 120) | Mean (n = 30) | SD (n = 30) | Mean (n = 30) | SD (n = 30) | Mean (n = 30) | SD (n = 30) | Mean (n = 30) | SD (n = 30) | |
Nitrogen fertilizer [kg/10a] | 16.3 | 0.27 | 15.9 | 0.15 | 15.1 | 0.17 | 16.8 | 0.12 | 17.4 | 0.12 |
P2O5 fertilizer [kg/10a] | 5.6 | 0.12 | 6.1 | 0.06 | 6.4 | 0.10 | 5.7 | 0.09 | 4.3 | 0.11 |
Field 1 | Field 2 | Field 3 | Field 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Sill (m) | Range (m) | Sill (m) | Range (m) | Sill (m) | Range (m) | Sill (m) | Range (m) | ||
Soil properties | TN in soil (%) | 0.0051 | 276.60 | 0.0009 | 124.00 | 0.0006 | 220.00 | 0.0008 | 182.90 |
Av.P2O5 in soil (mg/kg) | 33.32 | 36.31 | 89.01 | 27.08 | 100 | 99.90 | 66.26 | 30.85 | |
Expected fertilizer | N fertilizer (kg/Sector *) | 0.0199 | 28.42 | 0.0220 | 20.43 | 0.0189 | 27.54 | 0.0614 | 43.26 |
P2O5 fertilizer (kg/Sector *) | 0.0033 | 36.31 | 0.0104 | 31.19 | 0.0112 | 73.68 | 0.0088 | 26.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Won, J.; Kim, S.-M.; Kim, D.-C.; Cho, Y. Fertilization Mapping Based on the Soil Properties of Paddy Fields in Korea. Agriculture 2023, 13, 2049. https://doi.org/10.3390/agriculture13112049
Shin J, Won J, Kim S-M, Kim D-C, Cho Y. Fertilization Mapping Based on the Soil Properties of Paddy Fields in Korea. Agriculture. 2023; 13(11):2049. https://doi.org/10.3390/agriculture13112049
Chicago/Turabian StyleShin, Juwon, Jinho Won, Seong-Min Kim, Dae-Cheol Kim, and Yongjin Cho. 2023. "Fertilization Mapping Based on the Soil Properties of Paddy Fields in Korea" Agriculture 13, no. 11: 2049. https://doi.org/10.3390/agriculture13112049
APA StyleShin, J., Won, J., Kim, S. -M., Kim, D. -C., & Cho, Y. (2023). Fertilization Mapping Based on the Soil Properties of Paddy Fields in Korea. Agriculture, 13(11), 2049. https://doi.org/10.3390/agriculture13112049