The 35-Day Cycle of Hercules X-1 in Multiple Energy Bands from MAXI and Swift/BAT Monitoring
Abstract
:1. Introduction
2. Data and Analysis
2.1. Data
2.2. Analysis
2.2.1. Initial MAXI Analysis
2.2.2. Swift/BAT Analysis
2.2.3. Adopted Method for 35-Day Cycle Analysis
3. Results
3.1. 35-Day Cycle Average Light-Curves from MAXI and Swift/BAT
3.2. Spectral Changes Over the 35-Day Cycle
4. Discussion
4.1. Timing of 35-Day Cycles
4.1.1. Distribution of Orbital Phases of MH Peak
4.1.2. 35-Day Cycle Lengths
4.1.3. Relation between 35-Day Cycle Peak and Turn-On
4.2. 35-Day Cycle Long-Term Average Light-Curve
4.2.1. Timing of the States of the 35-Day Cycle
4.2.2. Delay of Turn-On at Lower Energies
4.2.3. New Detection of Persistent Dips
4.3. Softness Ratio vs. 35-Day Phase
4.3.1. Softness Ratio for MH and SH
4.3.2. Softness Ratio for Other 35-Day Phases
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | cross correlation |
UV | Ultraviolet |
EUV | Extreme Ultraviolet |
MAXI | Monitoring All-Sky X-Ray Images |
BAT | Burst Alert Telescope |
RXTE | Rossi X-ray Timing Explorer |
ASM | All Sky Monitor |
PCA | Proportional Counter Array |
MJD | Modified Julian Date |
MH | Main High |
SH | Short High |
LS | Low State |
ALS | Anomalous Low State |
TO | Turn On |
Appendix A. Modified Cross-Correlation (CC) Method for MAXI Data
- At , calculate and days, assuming a initial 35-day cycle length of . Select data between and (total points).
- For all observed points () in this cycle, convert time (MJD) to 35-day phases with .
- With the list , find corresponding template count rates at using cubic interpolation on the input template.
- Calculate with Equation (A1) from the set of constructed for each .
Appendix B. Calculation of Average 35-Day Light-Curve with Reference MH Peak Times
- Calculate 35-day cycle lengths using reference phase 0 times (MJD) for all cycles. Calculate phase for all data points.
- Split into N bins. We use bins for 35-day cycle light-curve, and reduce to bins for calculating softness ratios, to obtain smaller error bars. For the kth bin: , i points fall in this bin.
- In the kth bin, calculate the average rate and standard deviation given by .
- Estimate the error for this bin:
1. | http://maxi.riken.jp/star_data/J1657+353/J1657+353.html. The data were accessed on 19 June 2020. |
2. | For this analysis we assumed a fixed 35-day cycle length of 35 days to calculate only for simplicity. For the final 35-day light-curve of MAXI we used a variable 35-day cycle length to calculate and our final method described in Section 2.2.3 uses that. |
3. | We use the mean , and sample standard deviation with the data points and n the number of data points. |
4. | The published paper contains only the first 10 lines: the complete table is published as online Table 1 of [25]. |
5. | In Section 4.2.1 below we introduce an improved definition of start of TO. |
6. | |
7. | Dips are a separate phenomena, require a separate explanation from the disk occultation model, and are discussed below. |
8. | Table 2 gives the error in absolute 35-day phase which is ≃, limited by the bin size. The error in difference in 35-day phase between MAXI and BAT is limited by the observation intervals (∼60 s for MAXI and ∼1000 s for BAT, yielding a net 35-day phase uncertainty of ). The CC analysis yielded a time difference between MAXI and BAT of 0.343 days with an error of 0.157 days, which corresponds to an uncertainty of 0.0045 in 35-day phase. |
9. | Available online: https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/w3pimms.pl, accessed on 26 April 2021. |
10. | The errors in SR and inferred column density are large enough for SH, so it is not clear when the rise in column density during SH decline occurs. We can only say that it is between 35-day phases 0.55 to 0.65. |
11. | |
12. | Compared to the CC method used for Swift/BAT and RXTE/ASM in [25], and in the new method are not required to be in the data set. |
References
- Giacconi, R.; Gursky, H.; Kellogg, E.; Levinson, R.; Schreier, E.; Tananbaum, H. Further X-ray observations of Hercules X-1 from Uhuru. Astrophys. J. 1973, 184, 227–236. [Google Scholar] [CrossRef]
- Scott, D.M.; Leahy, D.A.; Wilson, R.B. The 35 Day Evolution of the Hercules X-1 Pulse Profile: Evidence for a Resolved Inner Disk Occultation of the Neutron Star. Astrophys. J. 2000, 539, 392–412. [Google Scholar] [CrossRef] [Green Version]
- Staubert, R.; Klochkov, D.; Vasco, D.; Postnov, K.; Shakura, N.; Wilms, J.; Rothschild, R.E. Variable pulse profiles of Hercules X-1 repeating with the same irregular 35 d clock as the turn-ons. Astron. Astrophys. 2013, 550, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Petterson, J.A. Hercules X-1: A neutron star with a twisted accretion disk? Astrophys. J. 1975, 201, L61–L64. [Google Scholar] [CrossRef]
- Gerend, D.; Boynton, P.E. Optical clues to the nature of Hercules X-1/HZ Herculis. Astrophys. J. 1976, 209, 562–573. [Google Scholar] [CrossRef]
- Parmar, A.N.; Pietsch, W.; McKechnie, S.; White, N.E.; Truemper, J.; Voges, W.; Barr, P. An extended X-ray low state from Hercules X-1. Nature 1985, 313, 119–121. [Google Scholar] [CrossRef]
- Delgado, A.J.; Schmidt, H.U.; Thomas, H.-C. HZ Herculis, still active. Astrophys. J. 1983, 127, L15–L16. [Google Scholar]
- Coburn, W.; Heindl, W.A.; Wilms, J.; Gruber, D.E.; Staubert, R.; Rothschild, R.E.; Pelling, M.R.; Risse, P. The 1999 Hercules X-1 Anomalous Low State. Astrophys. J. 2000, 543, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.A.; Dupuis, J. Extreme Ultraviolet Explorer Observations of Hercules X-1 over a 35 Day Cycle. Astrophys. J. 2010, 715, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.A. GINGA observations of absorption dips in Hercules X-1. Mon. Not. R. Astron. Soc. 1997, 287, 622–628. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.S.; Seon, K.I.; Dotani, T.; Nagase, F. A Low State Eclipse Spectrum of Hercules X-1 Observed with ASCA. Astrophys. J. 1997, 476, L81–L84. [Google Scholar] [CrossRef] [Green Version]
- dal Fiume, D.; Orlandini, M.; Cusumano, G.; Del Sordo, S.; Oosterbroek, T.; Cusumano, G.; Parmar, A.N.; Santangelo, A.; Feroci, M.; Frontera, F.; et al. The broad-band (0.1-200 keV) spectrum of HER X-1 observed with BeppoSAX. Astron. Astrophys. 1998, 329, L41–L44. [Google Scholar]
- Oosterbroek, T.; Parmar, A.N.; Martin, D.D.E.; Lammers, U. The BeppoSAX LECS X-ray spectrum of Hercules X-1. Astron. Astrophys. 1997, 327, 215–218. [Google Scholar]
- Leahy, D.A.; Chen, Y. AstroSat SXT Observations of Her X-1. Astrophys. J. 2019, 871, 152–161. [Google Scholar] [CrossRef]
- Boroson, B.; Blair, W.P.; Davidsen, A.F.; Vrtilek, S.D.; Raymond, J.; Long, K.S.; McCray, R. Hopkins Ultraviolet Telescope Observations of Hercules X-1. Astrophys. J. 1997, 491, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Vrtilek, S.D.; Cheng, F.H. The Ultraviolet/Optical Continuum of Hercules X-1/HZ Herculis. Astrophys. J. 1996, 465, 915–922. [Google Scholar] [CrossRef]
- Leahy, D.A.; Marshall, H.; Scott, D.M. EUVE Observations of Hercules X-1 during a Short High-State Turn-on. Astrophys. J. 2000, 542, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Deeter, J.; Crosa, L.; Gerend, D.; Boynton, P.E. Analysis of periodic optical variability in the compact X-ray source Her X-1/HZ Herculis. Astrophys. J. 1976, 206, 861–868. [Google Scholar] [CrossRef]
- Voloshina, I.B.; Lyutyi, V.M.; Sheffer, E.K. Some Characteristics of the Photometric Behavior of Hz-Herculis HERCULES-X-1—The Effect of the Twisted Disk. Sov. Astron. Lett. 1990, 16, 267–270. [Google Scholar]
- Anderson, S.F.; Wachter, S.; Margon, B.; Downes, R.A.; Blair, W.P.; Halpern, J.P. Ultraviolet Spectra of HZ Herculis/Hercules X-1 from HST: Hot Gas during Total Eclipse of the Neutron Star. Astrophys. J. 1994, 436, 319–325. [Google Scholar] [CrossRef]
- Leahy, D.A.; Abdallah, M.H. HZ Her: Stellar Radius from X-Ray Eclipse Observations, Evolutionary State, and a New Distance. Astrophys. J. 2014, 793, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.A.; Igna, C.D. RXTE-based 35 Day Cycle Turn-on Times for Hercules X-1. Astrophys. J. 2010, 713, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.M.; Leahy, D.A. Rossi X-Ray Timing Explorer All-Sky Monitor Observations of the 35 Day Cycle of Hercules X-1. Astrophys. J. 1999, 510, 974–985. [Google Scholar] [CrossRef]
- Shakura, N.I.; Ketsaris, N.A.; Prokhorov, M.E.; Postnov, K.A. RXTE highlights of the 34.85-day cycle of HER X-1. Mon. Not. R. Astron. Soc. 1998, 300, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.; Wang, Y. Swift/BAT and RXTE/ASM Observations of the 35 day X-Ray Cycle of Hercules X-1. Astrophys. J. 2020, 902, 146–154. [Google Scholar] [CrossRef]
- Matsuoka, M.; Kawasaki, K.; Ueno, S.; Tomida, H.; Kohama, M.; Suzuki, M.; Ebisawa, K. The MAXI Mission on the ISS: Science and Instruments for Monitoring All-Sky X-Ray Images. Publ. Astron. Soc. Jpn. 2009, 61, 999–1010. [Google Scholar] [CrossRef]
- Krimm, H.A.; Holland, S.T.; Corbet, R.H.D.; Pearlman, A.B.; Romano, P.; Kennea, J.A.; Ukwatta, T.N. The Swift/BAT Hard X-Ray Transient Monitor. Astrophys. J. Suppl. Ser. 2013, 209, 14–46. [Google Scholar] [CrossRef] [Green Version]
- Kuster, M.; Wilms, J.; Staubert, R.; Heindl, W.A.; Rothschild, R.E.; Shakura, N.I.; Postnov, K.A. Probing the outer edge of an accretion disk: A Her X-1 turn-on observed with RXTE. Astron. Astrophys. 2005, 443, 753–767. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.A. Modelling RXTE/ASM observations of the 35-d cycle in Her X-1. Mon. Not. R. Astron. Soc. 2002, 334, 847–854. [Google Scholar] [CrossRef]
- Leahy, D.A.; Igna, C. The Light Curve of Hercules X-1 as Observed by the Rossi X-Ray Timing Explorer. Astrophys. J. 2011, 736, 74–80. [Google Scholar] [CrossRef]
- Wijers, R.A.M.J.; Pringle, J.E. Warped accretion discs and the long periods in X-ray binaries. Mon. Not. R. Astron. Soc. 1999, 308, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.A. Observations of spectral shape changes in Hercules X-1. Astron. Astrophys. Suppl. Ser. 1995, 113, 21–31. [Google Scholar]
- Igna, C.D.; Leahy, D.A. Hercules X-1’s light-curve dips as seen by the RXTE/PCA: A study of the entire 1996 February–2005 August light-curve. Mon. Not. R. Astron. Soc. 2011, 418, 2283–2291. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.A.; Yoshida, A.; Matsuoka, M. Spectral Evolution during Pre-Eclipse Dips in Hercules X-1. Astrophys. J. 1994, 434, 341–347. [Google Scholar] [CrossRef]
- Reynolds, A.P.; Parmar, A.N. A comparison between the Hercules X-1 pre-eclipse and anomalous dips. Astron. Astrophys. 1995, 297, 747–753. [Google Scholar]
- Leahy, D.A.; Chen, Y. Results from AstroSat LAXPC Observations of Hercules X-1 (Her X-1). arXiv 2021, arXiv:2012.02736. [Google Scholar]
- Asami, F.; Enoto, T.; Iwakiri, W.; Yamada, S.Y.; Tamagawa, T.; Mihara, T.; Nagase, F. Broad-band spectroscopy of Hercules X-1 with Suzaku. Publ. Astron. Soc. Jpn. 2014, 66, 44. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.H.; Leahy, D.A. Spectral signature of atmospheric reflection in Hercules X-1/HZ Hercules during low and short high states. Mon. Not. R. Astron. Soc. 2015, 4, 4222–4231. [Google Scholar]
- Igna, C.D.; Leahy, D.A. Light-curve dip production through accretion stream-accretion disc impact in the HZ Her/Her X-1 binary star system. Mon. Not. R. Astron. Soc. 2012, 425, 8–20. [Google Scholar] [CrossRef] [Green Version]
Instrument | State | Mean | Error |
---|---|---|---|
MAXI 2–20 keV | MH | 0.3500 | 0.0029 |
SH | 0.0822 | 0.0036 | |
LS | 0.0154 | 0.0010 | |
BAT 15–50 keV | MH | 0.05498 | 0.00026 |
SH | 0.01166 | 0.00037 | |
LS | 0.00210 | 0.00013 |
State | Start Phase (Error) | End Phase (Error) | Duration (Error) |
---|---|---|---|
Main High Turn-On | 0.865 (0.01) | 0.945 (0.01) | 0.08 (0.015) |
Main High | 0.945 (0.01) | 0.055 (0.01) | 0.11 (0.015) |
Main High decline | 0.055 (0.01) | 0.25 (0.02) | 0.195 (0.022) |
Low State 1 | 0.25 (0.02) | 0.435 (0.01) | 0.185 (0.022) |
Short High Turn-On | 0.435 (0.01) | 0.485 (0.01) | 0.05 (0.015) |
Short High | 0.485 (0.01) | 0.515 (0.01) | 0.03 (0.015) |
Short High decline | 0.515 (0.01) | 0.71 (0.02) | 0.195 (0.022) |
Low State 2 | 0.71 (0.02) | 0.865 (0.01) | 0.155 (0.022) |
State | Mean | Error | SD | ||
---|---|---|---|---|---|
MAXI 2–4 keV | MAXI 10–20 keV | MH | 0.90695 | 0.040292 | 0.066322 |
SH | 0.81774 | 0.13156 | 0.16907 | ||
LS | 0.34696 | 0.18948 | 1.0592 | ||
MAXI 4–10 keV | MAXI 10–20 keV | MH | 1.3334 | 0.051164 | 0.070918 |
SH | 1.1542 | 0.16548 | 0.17252 | ||
LS | 0.38835 | 0.22735 | 1.2616 | ||
MAXI 2–10 keV | BAT 15–50 keV | MH | 3.8295 | 0.071815 | 0.22697 |
SH | 4.2979 | 0.35010 | 0.39458 | ||
LS | 3.4399 | 1.5884 | 5.0666 | ||
MAXI 2–20 keV | BAT 15–50 keV | MH | 6.2366 | 0.10947 | 0.29360 |
SH | 7.1769 | 0.57374 | 0.62307 | ||
LS | 7.1742 | 2.8254 | 10.660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leahy, D.; Wang, Y. The 35-Day Cycle of Hercules X-1 in Multiple Energy Bands from MAXI and Swift/BAT Monitoring. Universe 2021, 7, 160. https://doi.org/10.3390/universe7060160
Leahy D, Wang Y. The 35-Day Cycle of Hercules X-1 in Multiple Energy Bands from MAXI and Swift/BAT Monitoring. Universe. 2021; 7(6):160. https://doi.org/10.3390/universe7060160
Chicago/Turabian StyleLeahy, Denis, and Yuyang Wang. 2021. "The 35-Day Cycle of Hercules X-1 in Multiple Energy Bands from MAXI and Swift/BAT Monitoring" Universe 7, no. 6: 160. https://doi.org/10.3390/universe7060160
APA StyleLeahy, D., & Wang, Y. (2021). The 35-Day Cycle of Hercules X-1 in Multiple Energy Bands from MAXI and Swift/BAT Monitoring. Universe, 7(6), 160. https://doi.org/10.3390/universe7060160