Obesity, Bone Loss, and Periodontitis: The Interlink
Abstract
:1. Introduction
2. Obesity and Periodontitis: Epidemiological and Clinical Association
3. How Does Obesity Influence Bone Quality?
3.1. Obesity-Drives Disruptive Bone Homeostasis
3.2. Systemic Bone Loss
3.3. Periodontal Bone Loss
4. Mechanisms Underpinning Dysregulated Bone Homeostasis in General under Obesity
4.1. Adiposity Associated Hyperinflammation
4.2. Bone Marrow Adiposity-Related Bone Turnover
4.3. Genetic Factors
4.4. Gut Microbiota
4.5. Other Factors: Diet and Hypermetabolism
5. Mechanisms by Which Obesity Enhances Periodontal Bone Loss
5.1. Hyperinflammation in Periodontium
5.2. Resident Immune Cells’ Dysregulation
5.3. Periodontal Osteoblast and Osteoclast Activity
5.4. Periodontal Microbiota
6. Prevention and Treatment of Periodontal Bone Loss in Patients with Obesity
6.1. Basic Periodontal Therapy
6.2. Combating Periodontal Bone Loss and Obesity with Exercise
6.3. Systemic or Local Adjunctive Therapy
6.4. Future Perspectives
7. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garrow, J.S.; Webster, J. Quetelet’s index (W/H2) as a measure of fatness. Int. J. Obes. 1985, 9, 147–153. [Google Scholar] [PubMed]
- World Health Organization. Obesity and Overweight. 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 31 March 2022).
- Proietto, J. Obesity and Bone. F1000Research 2020, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Gkastaris, K.; Goulis, D.G.; Potoupnis, M.; Anastasilakis, A.D.; Kapetanos, G. Obesity, osteoporosis and bone metabolism. J. Musculoskelet. Neuronal Interact. 2020, 20, 372–381. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493444/pdf/JMNI-20-372.pdf (accessed on 31 March 2022). [PubMed]
- Turcotte, A.F.; O’Connor, S.; Morin, S.N.; Gibbs, J.C.; Willie, B.M.; Jean, S.; Gagnon, C. Association between obesity and risk of fracture, bone mineral density and bone quality in adults: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0252487. [Google Scholar] [CrossRef]
- Albandar, J.M.; Susin, C.; Hughes, F.J. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S171–S189. [Google Scholar] [CrossRef] [Green Version]
- Benova, A.; Tencerova, M. Obesity-induced changes in bone marrow homeostasis. Front. Endocrinol. 2020, 11, 294. [Google Scholar] [CrossRef]
- Jepsen, S.; Suvan, J.; Deschner, J. The association of periodontal diseases with metabolic syndrome and obesity. Periodontol. 2000 2020, 83, 125–153. [Google Scholar] [CrossRef]
- Ganesan, S.M.; Vazana, S.; Stuhr, S. Waistline to the gumline: Relationship between obesity and periodontal disease-biological and management considerations. Periodontol. 2000 2021, 87, 299–314. [Google Scholar] [CrossRef]
- Saito, T.; Shimazaki, Y.; Sakamoto, M. Obesity and periodontitis. N. Engl. J. Med. 1998, 339, 482–483. [Google Scholar] [CrossRef]
- Al-Zahrani, M.S.; Bissada, N.F.; Borawskit, E.A. Obesity and periodontal disease in young, middle-aged, and older adults. J. Periodontol. 2003, 74, 610–615. [Google Scholar] [CrossRef]
- Chaffee, B.W.; Weston, S.J. Association between chronic periodontal disease and obesity: A systematic review and meta-analysis. J. Periodontol. 2010, 81, 1708–1724. [Google Scholar] [CrossRef] [PubMed]
- Suvan, J.; D’Aiuto, F.; Moles, D.R.; Petrie, A.; Donos, N. Association between overweight/obesity and periodontitis in adults. A systematic review. Obes. Rev. 2011, 12, e381–e404. [Google Scholar] [CrossRef] [PubMed]
- Moura-Grec, P.G.; Marsicano, J.A.; Carvalho, C.A.; Sales-Peres, S.H. Obesity and periodontitis: Systematic review and meta-analysis. Cien. Saúde Colet. 2014, 19, 1763–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.W.; Wong, H.M.; Sun, L.; Wen, Y.F.; McGrath, C.P. Anthropometric measurements and periodontal diseases in children and adolescents: A systematic review and meta-analysis. Adv. Nutr. 2015, 6, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, G.G.; Leite, F.R.; Do, L.G.; Peres, K.G.; Correa, M.B.; Demarco, F.F.; Peres, M.A. Is weight gain associated with the incidence of periodontitis? A systematic review and meta-analysis. J. Clin. Periodontol. 2015, 42, 495–505. [Google Scholar] [CrossRef]
- Nascimento, G.G.; Leite, F.R.; Conceição, D.A.; Ferrúa, C.P.; Singh, A.; Demarco, F.F. Is there a relationship between obesity and tooth loss and edentulism? A systematic review and meta-analysis. Obes. Rev. 2016, 17, 587–598. [Google Scholar] [CrossRef]
- Martens, L.; De Smet, S.; Yusof, M.Y.; Rajasekharan, S. Association between overweight/obesity and periodontal disease in children and adolescents: A systematic review and meta-analysis. Eur. Arch. Paediatr. Dent. 2017, 18, 69–82. [Google Scholar] [CrossRef]
- Foratori-Junior, G.A.; Pereira, P.R.; Gasparoto, I.A.; de Carvalho Sales-Peres, S.H.; Storniolo de Souza, J.M.; Khan, S. Is overweight associated with periodontitis in pregnant women? Systematic review and meta-analysis. Jpn. Dent. Sci. Rev. 2022, 58, 41–51. [Google Scholar] [CrossRef]
- Keller, A.; Rohde, J.F.; Raymond, K.; Heitmann, B.L. Association between periodontal disease and overweight and obesity: A systematic review. J. Periodontol. 2015, 86, 766–776. [Google Scholar] [CrossRef]
- Martinez-Herrera, M.; Silvestre-Rangil, J.; Silvestre, F.J. Association between obesity and periodontal disease. A systematic review of epidemiological studies and controlled clinical trials. Med. Oral Patol. Oral Cir. Bucal. 2017, 22, e708–e715. [Google Scholar] [CrossRef]
- Khan, S.; Barrington, G.; Bettiol, S.; Barnett, T.; Crocombe, L. Is overweight/obesity a risk factor for periodontitis in young adults and adolescents? A systematic review. Obes. Rev. 2018, 19, 852–883. [Google Scholar] [CrossRef]
- Whiting, P.; Savović, J.; Higgins, J.P.; Caldwell, D.M.; Reeves, B.C.; Shea, B.; Davies, P.; Kleijnen, J.; Churchill, R. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J. Clin. Epidemiol. 2016, 69, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munn, Z.; Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int. J. Evid. Based Healthc. 2015, 13, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, G.G.; Peres, K.G.; Mittinty, M.N.; Mejia, G.C.; Silva, D.A.; Gonzalez-Chica, D.; Peres, M.A. Obesity and periodontal outcomes: A population-based cohort study in Brazil. J. Periodontol. 2017, 88, 50–58. [Google Scholar] [CrossRef]
- Deszczyńska, K.; Górska, R.; Haładyj, A. Clinical condition of the oral cavity in overweight and obese patients. Dent. Med. Probl. 2021, 58, 147–154. [Google Scholar] [CrossRef]
- Pedersen, S.D. Metabolic complications of obesity. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 179–193. [Google Scholar] [CrossRef]
- Devlin, M.J.; Rosen, C.J. The bone-fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. 2015, 3, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed. Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020, 9, 2073. [Google Scholar] [CrossRef]
- Albala, C.; Yáñez, M.; Devoto, E.; Sostin, C.; Zeballos, L.; Santos, J.L. Obesity as a protective factor for postmenopausal osteoporosis. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 1027–1032. [Google Scholar] [PubMed]
- Zhao, L.J.; Jiang, H.; Papasian, C.J.; Maulik, D.; Drees, B.; Hamilton, J.; Deng, H.W. Correlation of obesity and osteoporosis: Effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 2008, 23, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Adami, G.; Gatti, D.; Rossini, M.; Orsolini, G.; Pollastri, F.; Bertoldo, E.; Viapiana, O.; Bertoldo, F.; Giollo, A.; Fassio, A. Risk of fragility fractures in obesity and diabetes: A retrospective analysis on a nation-wide cohort. Osteoporos. Int. 2020, 31, 2113–2122. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, E.A.; Fornari, R.; Rossi, F.; Santiemma, V.; Prossomariti, G.; Annoscia, C.; Aversa, A.; Brama, M.; Marini, M.; Donini, L.M.; et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 2010, 64, 817–820. [Google Scholar] [CrossRef]
- Adler, B.J.; Kaushansky, K.; Rubin, C.T. Obesity-driven disruption of haematopoiesis and the bone marrow niche. Nat. Rev. Endocrinol. 2014, 10, 737–748. [Google Scholar] [CrossRef]
- Hind, K.; Burrows, M. Weight-bearing exercise and bone mineral accrual in children and adolescents: A review of controlled trials. Bone 2007, 40, 14–27. [Google Scholar] [CrossRef]
- Chen, Z.; Lohman, T.G.; Stini, W.A.; Ritenbaugh, C.; Aickin, M. Fat or lean tissue mass: Which one is the major determinant of bone mineral mass in healthy postmenopausal women? J. Bone Miner. Res. 1997, 12, 144–151. [Google Scholar] [CrossRef]
- Compston, J.E.; Watts, N.B.; Chapurlat, R.; Cooper, C.; Boonen, S.; Greenspan, S.; Pfeilschifter, J.; Silverman, S.; Díez-Pérez, A.; Lindsay, R.; et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 2011, 124, 1043–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.Y.; Ilich, J.Z.; Brummel-Smith, K.; Ghosh, S. New insight into fat, muscle and bone relationship in women: Determining the threshold at which body fat assumes negative relationship with bone mineral density. Int. J. Prev. Med. 2014, 5, 1452–1463. [Google Scholar]
- Li, J.; Wu, H.; Liu, Y.; Yang, L. High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp. Anim. 2020, 69, 326–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tencerova, M.; Figeac, F.; Ditzel, N.; Taipaleenmäki, H.; Nielsen, T.K.; Kassem, M. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J. Bone Miner. Res. 2018, 33, 1154–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patsch, J.M.; Kiefer, F.W.; Varga, P.; Pail, P.; Rauner, M.; Stupphann, D.; Resch, H.; Moser, D.; Zysset, P.K.; Stulnig, T.M.; et al. Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism 2011, 60, 243–249. [Google Scholar] [CrossRef]
- D’Erminio, D.N.; Krishnamoorthy, D.; Lai, A.; Hoy, R.C.; Natelson, D.M.; Poeran, J.; Torres, A.; Laudier, D.M.; Nasser, P.; Vashishth, D.; et al. High fat diet causes inferior vertebral structure and function without disc degeneration in RAGE-KO mice. J. Orthop. Res. 2021. online first. [Google Scholar] [CrossRef]
- Eaimworawuthikul, S.; Thiennimitr, P.; Chattipakorn, N.; Chattipakorn, S.C. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss. Arch. Oral Biol. 2017, 78, 65–81. [Google Scholar] [CrossRef]
- Cavagni, J.; de Macedo, I.C.; Gaio, E.J.; Souza, A.; de Molon, R.S.; Cirelli, J.A.; Hoefel, A.L.; Kucharski, L.C.; Torres, I.L.; Rösing, C.K. Obesity and hyperlipidemia modulate alveolar bone loss in Wistar rats. J. Periodontol. 2016, 87, e9–e17. [Google Scholar] [CrossRef]
- Muluke, M.; Gold, T.; Kiefhaber, K.; Al-Sahli, A.; Celenti, R.; Jiang, H.; Cremers, S.; Van Dyke, T.; Schulze-Späte, U. Diet-induced obesity and its differential impact on periodontal bone loss. J. Dent. Res. 2016, 95, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, Z.; Zhang, X.; Yu, H.; Kirkwood, K.L.; Lopes-Virella, M.F.; Huang, Y. Metabolic syndrome exacerbates inflammation and bone loss in periodontitis. J. Dent. Res. 2015, 94, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Damanaki, A.; Memmert, S.; Nokhbehsaim, M.; Sanyal, A.; Gnad, T.; Pfeifer, A.; Deschner, J. Impact of obesity and aging on crestal alveolar bone height in mice. Ann. Anat. 2018, 218, 227–235. [Google Scholar] [CrossRef]
- Fujita, Y.; Maki, K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC Obes. 2015, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Gómez, J.J.; Pérez Castrillón, J.L.; de Luis Román, D.A. Impact of obesity on bone metabolism. Endocrinol. Nutr. 2016, 63, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Maury, E.; Brichard, S.M. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 2010, 314, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Barbour, K.E.; Zmuda, J.M.; Boudreau, R.; Strotmeyer, E.S.; Horwitz, M.J.; Evans, R.W.; Kanaya, A.M.; Harris, T.B.; Cauley, J.A. The effects of adiponectin and leptin on changes in bone mineral density. Osteoporos. Int. 2012, 23, 1699–1710. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Gori, F.; Khosla, S.; Jensen, M.D.; Burguera, B.; Riggs, B.L. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999, 140, 1630–1638. [Google Scholar] [CrossRef]
- Astudillo, P.; Ríos, S.; Pastenes, L.; Pino, A.M.; Rodríguez, J.P. Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J. Cell. Biochem. 2008, 103, 1054–1065. [Google Scholar] [CrossRef]
- Gordeladze, J.O.; Drevon, C.A.; Syversen, U.; Reseland, J.E. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J. Cell. Biochem. 2002, 85, 825–836. [Google Scholar] [CrossRef]
- Bao, D.; Ma, Y.; Zhang, X.; Guan, F.; Chen, W.; Gao, K.; Qin, C.; Zhang, L. Preliminary characterization of a leptin receptor knockout rat created by CRISPR/Cas9 system. Sci. Rep. 2015, 5, 15942. [Google Scholar] [CrossRef] [Green Version]
- Steppan, C.M.; Crawford, D.T.; Chidsey-Frink, K.L.; Ke, H.; Swick, A.G. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 2000, 92, 73–78. [Google Scholar] [CrossRef]
- Ducy, P.; Amling, M.; Takeda, S.; Priemel, M.; Schilling, A.F.; Beil, F.T.; Shen, J.; Vinson, C.; Rueger, J.M.; Karsenty, G. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 2000, 100, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.X.; Yang, T. Roles of leptin in bone metabolism and bone diseases. J. Bone Miner. Metab. 2015, 33, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Baldock, P.A.; Cornish, J. Effects of leptin on the skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yadav, V.K.; Suda, N.; Liu, X.S.; Guo, X.E.; Myers, M.G., Jr.; Karsenty, G. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 20529–20533. [Google Scholar] [CrossRef] [Green Version]
- Karsenty, G.; Ferron, M. The contribution of bone to whole-organism physiology. Nature 2012, 481, 314–320. [Google Scholar] [CrossRef]
- Oshima, K.; Nampei, A.; Matsuda, M.; Iwaki, M.; Fukuhara, A.; Hashimoto, J.; Yoshikawa, H.; Shimomura, I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 2005, 331, 520–526. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, S.Y.; Kim, A.Y.; Lee, E.J.; Choi, J.Y.; Kim, J.B. Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 2009, 27, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Lee, C.Y.; Chen, M.Y.; Tsai, H.C.; Hsu, H.C.; Tang, C.H. Adiponectin increases BMP-2 expression in osteoblasts via AdipoR receptor signaling pathway. J. Cell. Physiol. 2010, 224, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.H.; Guo, L.J.; Yuan, L.Q.; Xie, H.; Zhou, H.D.; Wu, X.P.; Liao, E.Y. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 2005, 309, 99–109. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Li, Y.; Wang, Y.; Xing, R.; Mi, F.; Xiang, C.; Fu, R. Adiponectin inhibits the differentiation and maturation of osteoclasts via the mTOR pathway in multiple myeloma. Int. J. Mol. Med. 2020, 45, 1112–1120. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993, 259, 87–91. [Google Scholar] [CrossRef]
- Jeong, B.C. ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation through the JNK signaling pathway. Biochem. Biophys. Res. Commun. 2018, 499, 696–701. [Google Scholar] [CrossRef]
- Zheng, L.W.; Wang, W.C.; Mao, X.Z.; Luo, Y.H.; Tong, Z.Y.; Li, D. TNF-α regulates the early development of avascular necrosis of the femoral head by mediating osteoblast autophagy and apoptosis via the p38 MAPK/NF-κB signaling pathway. Cell Biol. Int. 2020, 44, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Asagiri, M.; Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 2007, 40, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; D’Amato, G.; Chiarito, M.; Colaianni, G.; Colucci, S.; Grano, M.; Corbo, F.; Brunetti, G. Mechanisms involved in childhood obesity-related bone fragility. Front. Endocrinol. 2019, 10, 269. [Google Scholar] [CrossRef]
- Wang, T.; He, C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018, 44, 38–50. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Scheller, E.L. Editorial: Bone marrow adipose tissue: Formation, function, and impact on health and disease. Front. Endocrinol. 2017, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Veldhuis-Vlug, A.G.; Rosen, C.J. Clinical implications of bone marrow adiposity. J. Intern. Med. 2018, 283, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Wehrli, F.W.; Hopkins, J.A.; Hwang, S.N.; Song, H.K.; Snyder, P.J.; Haddad, J.G. Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry. Radiology 2000, 217, 527–538. [Google Scholar] [CrossRef]
- Pierce, J.L.; Begun, D.L.; Westendorf, J.J.; McGee-Lawrence, M.E. Defining osteoblast and adipocyte lineages in the bone marrow. Bone 2019, 118, 2–7. [Google Scholar] [CrossRef]
- Cristancho, A.G.; Lazar, M.A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Lagathu, C.; Christodoulides, C.; Tan, C.Y.; Virtue, S.; Laudes, M.; Campbell, M.; Ishikawa, K.; Ortega, F.; Tinahones, F.J.; Fernández-Real, J.M.; et al. Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. Int. J. Obes. 2010, 34, 1695–1705. [Google Scholar] [CrossRef] [Green Version]
- Lackey, D.E.; Reis, F.C.G.; Isaac, R.; Zapata, R.C.; El Ouarrat, D.; Lee, Y.S.; Bandyopadhyay, G.; Ofrecio, J.M.; Oh, D.Y.; Osborn, O. Adipocyte PU.1 knockout promotes insulin sensitivity in HFD-fed obese mice. Sci. Rep. 2019, 9, 14779. [Google Scholar] [CrossRef]
- Liu, A.; Chen, M.; Kumar, R.; Stefanovic-Racic, M.; O’Doherty, R.M.; Ding, Y.; Jahnen-Dechent, W.; Borghesi, L. Bone marrow lympho-myeloid malfunction in obesity requires precursor cell-autonomous TLR4. Nat. Commun. 2018, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Yücel, R.; Kosan, C.; Klein-Hitpass, L.; Möröy, T. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J. 2004, 23, 4116–4125. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Isoda, F.; Ishihara, Y.; Kimura, M.; Yamakawa, T. T lymphopaenia in relation to body mass index and TNF-alpha in human obesity: Adequate weight reduction can be corrective. Clin. Endocrinol. (Oxf.) 2001, 54, 347–354. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, R.W.; Kay, T.; Scholz, M.H.; Diggs, B.; Jobe, B.A.; Lewinsohn, D.M.; Bakke, A.C. Alterations in T-cell subset frequency in peripheral blood in obesity. Obes. Surg. 2005, 15, 1463–1468. [Google Scholar] [CrossRef]
- Chan, M.E.; Adler, B.J.; Green, D.E.; Rubin, C.T. Bone structure and B-cell populations, crippled by obesity, are partially rescued by brief daily exposure to low-magnitude mechanical signals. FASEB J. 2012, 26, 4855–4863. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Dina, C.; Meyre, D.; Gallina, S.; Durand, E.; Körner, A.; Jacobson, P.; Carlsson, L.M.; Kiess, W.; Vatin, V.; Lecoeur, C.; et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 2007, 39, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scuteri, A.; Sanna, S.; Chen, W.M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007, 3, e115. [Google Scholar] [CrossRef] [PubMed]
- Lan, N.; Lu, Y.; Zhang, Y.; Pu, S.; Xi, H.; Nie, X.; Liu, J.; Yuan, W. FTO—A common genetic basis for obesity and cancer. Front. Genet. 2020, 11, 559138. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, H.; Yang, T.L.; Li, S.M.; Li, S.K.; Tian, Q.; Liu, Y.J.; Deng, H.W. The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS ONE 2011, 6, e27312. [Google Scholar] [CrossRef]
- Loos, R.J.; Yeo, G.S. The bigger picture of FTO: The first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 2014, 10, 51–61. [Google Scholar] [CrossRef]
- Zhang, Q.; Riddle, R.C.; Yang, Q.; Rosen, C.R.; Guttridge, D.C.; Dirckx, N.; Faugere, M.C.; Farber, C.R.; Clemens, T.L. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc. Natl. Acad. Sci. USA 2019, 116, 17980–17989. [Google Scholar] [CrossRef] [Green Version]
- Usategui-Martín, R.; Pérez-Castrillón, J.L.; Briongos-Figuero, L.; Abadía-Otero, J.; Lara-Hernandez, F.; García-Sorribes, S.; Martín-Vallejo, J.; García-García, A.B.; Chaves, F.J.; Martín-Escudero, J.C. Genetic variants in obesity-related genes and the risk of osteoporotic fracture. The Hortega Follow-up Study. Front. Biosci. 2022, 27, 32. [Google Scholar] [CrossRef]
- Jin, H.S.; Kim, B.Y.; Kim, J.; Hong, K.W.; Jung, S.Y.; Lee, Y.S.; Huh, D.; Oh, B.; Chung, Y.S.; Jeong, S.Y. Association between the SPRY1 gene polymorphism and obesity-related traits and osteoporosis in Korean women. Mol. Genet. Metab. 2013, 108, 95–101. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; Schmidt-RioValle, J.; Rueda-Medina, B. SOX6 rs7117858 polymorphism is associated with osteoporosis and obesity-related phenotypes. Eur. J. Clin. Investig. 2018, 48, e13011. [Google Scholar] [CrossRef]
- Tu, Y.; Yang, R.; Xu, X.; Zhou, X. The microbiota-gut-bone axis and bone health. J. Leukoc. Biol. 2021, 110, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.H.; Paul, H.A.; Reimer, R.A.; Seerattan, R.A.; Hart, D.A.; Herzog, W. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: Studies in a rat model. Osteoarthr. Cartil. 2015, 23, 1989–1998. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Chen, G.L.; Hannemann, N.; Ipseiz, N.; Krönke, G.; Bäuerle, T.; Munos, L.; Wirtz, S.; Schett, G.; Bozec, A. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 2015, 22, 886–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Murga, M.L.; Olivares, M.; Sanz, Y. Bifidobacterium pseudocatenulatum CECT 7765 reverses the adverse effects of diet-induced obesity through the gut-bone axis. Bone 2020, 141, 115580. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Jain, D.; McNeill, J.N.; Little, D.; Anderson, J.A.; Huebner, J.L.; Kraus, V.B.; Rodriguiz, R.M.; Wetsel, W.C.; Guilak, F. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Ann. Rheum. Dis. 2015, 74, 2076–2083. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Rai, R.; Singh, D.; Vohora, D. Octanoic acid a major component of widely consumed medium-chain triglyceride ketogenic diet is detrimental to bone. Sci. Rep. 2021, 11, 7003. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.; Zhang, K.; Wei, Y.; Hua, W.; Gao, Y.; Li, X.; Ye, L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif. 2020, 53, e12735. [Google Scholar] [CrossRef] [Green Version]
- Tencerova, M.; Frost, M.; Figeac, F.; Nielsen, T.K.; Ali, D.; Lauterlein, J.L.; Andersen, T.L.; Haakonsson, A.K.; Rauch, A.; Madsen, J.S.; et al. Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep. 2019, 27, 2050–2062.e6. [Google Scholar] [CrossRef] [Green Version]
- Guntur, A.R.; Gerencser, A.A.; Le, P.T.; DeMambro, V.E.; Bornstein, S.A.; Mookerjee, S.A.; Maridas, D.E.; Clemmons, D.E.; Brand, M.D.; Rosen, C.J. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J. Bone Miner. Res. 2018, 33, 1052–1065. [Google Scholar] [CrossRef]
- Slots, J. Periodontitis: Facts, fallacies and the future. Periodontol. 2000 2017, 75, 7–23. [Google Scholar] [CrossRef]
- Cochran, D.L. Inflammation and bone loss in periodontal disease. J. Periodontol. 2008, 79, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Akram, Z.; Abduljabbar, T.; Abu Hassan, M.I.; Javed, F.; Vohra, F. Cytokine profile in chronic periodontitis patients with and without obesity: A systematic review and meta-analysis. Dis. Markers 2016, 2016, 4801418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanakun, S.; Pornprasertsuk-Damrongsri, S.; Izumi, Y. Increased oral inflammation, leukocytes, and leptin, and lower adiponectin in overweight or obesity. Oral Dis. 2017, 23, 956–965. [Google Scholar] [CrossRef]
- Tomofuji, T.; Yamamoto, T.; Tamaki, N.; Ekuni, D.; Azuma, T.; Sanbe, T.; Irie, K.; Kasuyama, K.; Umakoshi, M.; Murakami, J.; et al. Effects of obesity on gingival oxidative stress in a rat model. J. Periodontol. 2009, 80, 1324–1329. [Google Scholar] [CrossRef]
- Yoneda, T.; Tomofuji, T.; Kunitomo, M.; Ekuni, D.; Irie, K.; Azuma, T.; Machida, T.; Miyai, H.; Fujimori, K.; Morita, M. Preventive effects of drinking hydrogen-rich water on gingival oxidative stress and alveolar bone resorption in rats fed a high-fat diet. Nutrients 2017, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Atabay, V.E.; Lutfioğlu, M.; Avci, B.; Sakallioglu, E.E.; Aydoğdu, A. Obesity and oxidative stress in patients with different periodontal status: A case-control study. J. Periodontal Res. 2017, 52, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, F.Y.; Li, Y.; Yang, E.K.; Yang, S.Q.; Lin, H.Z.; Trush, M.A.; Dannenberg, A.J.; Diehl, A.M. Phenotypic abnormalities in macrophages from leptin-deficient, obese mice. Am. J. Physiol. 1999, 276, C386–C394. [Google Scholar] [CrossRef]
- Huang, X.; Yu, T.; Ma, C.; Wang, Y.; Xie, B.; Xuan, D.; Zhang, J. Macrophages play a key role in the obesity-induced periodontal innate immune dysfunction via nucleotide-binding oligomerization domain-like receptor protein 3 pathway. J. Periodontol. 2016, 87, 1195–1205. [Google Scholar] [CrossRef]
- Muñoz, J.; Akhavan, N.S.; Mullins, A.P.; Arjmandi, B.H. Macrophage polarization and osteoporosis: A review. Nutrients 2020, 12, 2999. [Google Scholar] [CrossRef]
- Kwack, K.H.; Maglaras, V.; Thiyagarajan, R.; Zhang, L.; Kirkwood, K.L. Myeloid-derived suppressor cells in obesity-associated periodontal disease: A conceptual model. Periodontol. 2000 2021, 87, 268–275. [Google Scholar] [CrossRef]
- Zhou, Q.; Leeman, S.E.; Amar, S. Signaling mechanisms involved in altered function of macrophages from diet-induced obese mice affect immune responses. Proc. Natl. Acad. Sci. USA 2009, 106, 10740–10745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.T.; Favelyukis, S.; Nguyen, A.K.; Reichart, D.; Scott, P.A.; Jenn, A.; Liu-Bryan, R.; Glass, C.K.; Neels, J.G.; Olefsky, J.M. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 2007, 282, 35279–35292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelkha, S.A.; Freilich, R.W.; Amar, S. Periodontal innate immune mechanisms relevant to atherosclerosis and obesity. Periodontol. 2000 2010, 54, 207–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amar, S.; Leeman, S. Periodontal innate immune mechanisms relevant to obesity. Mol. Oral Microbiol. 2013, 28, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhang, X.; Lu, Z.; Perry, D.M.; Li, Y.; Russo, S.B.; Cowart, L.A.; Hannun, Y.A.; Huang, Y. Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E853–E867. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Robles, S.; Lu, Z.; Li, Y.; Krayer, J.W.; Leite, R.S.; Huang, Y. Upregulation of free fatty acid receptors in periodontal tissues of patients with metabolic syndrome and periodontitis. J. Periodontal Res. 2019, 54, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; He, C.; Yu, X. Pro-inflammatory cytokines: New potential therapeutic targets for obesity-related bone disorders. Curr. Drug Targets 2017, 18, 1664–1675. [Google Scholar] [CrossRef]
- Wang, Y.H.; Jiang, J.; Zhu, Q.; AlAnezi, A.Z.; Clark, R.B.; Jiang, X.; Rowe, D.W.; Nichols, F.C. Porphyromonas gingivalis lipids inhibit osteoblastic differentiation and function. Infect. Immun. 2010, 78, 3726–3735. [Google Scholar] [CrossRef] [Green Version]
- Dittmann, C.; Doueiri, S.; Kluge, R.; Dommisch, H.; Gaber, T.; Pischon, N. Porphyromonas gingivalis suppresses differentiation and increases apoptosis of osteoblasts from New Zealand obese mice. J. Periodontol. 2015, 86, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Wu, H.; Tan, X.; Ye, Y.; Huang, L.; Dai, H.; Mei, L. Osteopenic effects of high-fat diet-induced obesity on mechanically induced alveolar bone remodeling. Oral Dis. 2021, 27, 1243–1256. [Google Scholar] [CrossRef]
- Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab. 2021, 39, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Zuza, E.P.; Garcia, V.G.; Theodoro, L.H.; Ervolino, E.; Favero, L.F.V.; Longo, M.; Ribeiro, F.S.; Martins, A.T.; Spolidorio, L.C.; Zuanon, J.A.S.; et al. Influence of obesity on experimental periodontitis in rats: Histopathological, histometric and immunohistochemical study. Clin. Oral Investig. 2018, 22, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Drosatos-Tampakaki, Z.; Drosatos, K.; Siegelin, Y.; Gong, S.; Khan, S.; Van Dyke, T.; Goldberg, I.J.; Schulze, P.C.; Schulze-Späte, U. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J. Bone Miner. Res. 2014, 29, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Symmank, J.; Chorus, M.; Appel, S.; Marciniak, J.; Knaup, I.; Bastian, A.; Hennig, C.L.; Döding, A.; Schulze-Späte, U.; Jacobs, C.; et al. Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts. Sci. Rep. 2020, 10, 15706. [Google Scholar] [CrossRef] [PubMed]
- Haffajee, A.D.; Socransky, S.S. Relation of body mass index, periodontitis and Tannerella forsythia. J. Clin. Periodontol. 2009, 36, 89–99. [Google Scholar] [CrossRef]
- Al-Rawi, N.; Al-Marzooq, F. The relation between periodontopathogenic bacterial levels and resistin in the saliva of obese type 2 diabetic patients. J. Diabetes Res. 2017, 2017, 2643079. [Google Scholar] [CrossRef] [Green Version]
- Maciel, S.S.; Feres, M.; Gonçalves, T.E.; Zimmermann, G.S.; da Silva, H.D.; Figueiredo, L.C.; Duarte, P.M. Does obesity influence the subgingival microbiota composition in periodontal health and disease? J. Clin. Periodontol. 2016, 43, 1003–1012. [Google Scholar] [CrossRef]
- Gasmi Benahmed, A.; Gasmi, A.; Doşa, A.; Chirumbolo, S.; Mujawdiya, P.K.; Aaseth, J.; Dadar, M.; Bjørklund, G. Association between the gut and oral microbiome with obesity. Anaerobe 2021, 70, 102248. [Google Scholar] [CrossRef]
- Sato, K.; Yamazaki, K.; Kato, T.; Nakanishi, Y.; Tsuzuno, T.; Yokoji-Takeuchi, M.; Yamada-Hara, M.; Miura, N.; Okuda, S.; Ohno, H.; et al. Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid. mBio 2021, 12, e0077121. [Google Scholar] [CrossRef]
- Zuza, E.P.; Barroso, E.M.; Carrareto, A.L.; Pires, J.R.; Carlos, I.Z.; Theodoro, L.H.; Toledo, B.E. The role of obesity as a modifying factor in patients undergoing non-surgical periodontal therapy. J. Periodontol. 2011, 82, 676–682. [Google Scholar] [CrossRef]
- Altay, U.; Gürgan, C.A.; Ağbaht, K. Changes in inflammatory and metabolic parameters after periodontal treatment in patients with and without obesity. J. Periodontol. 2013, 84, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Suvan, J.; Petrie, A.; Moles, D.R.; Nibali, L.; Patel, K.; Darbar, U.; Donos, N.; Tonetti, M.; D’Aiuto, F. Body mass index as a predictive factor of periodontal therapy outcomes. J. Dent. Res. 2014, 93, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouaziz, W.; Davideau, J.L.; Tenenbaum, H.; Huck, O. Adiposity measurements and non-surgical periodontal therapy outcomes. J. Periodontol. 2015, 86, 1030–1037. [Google Scholar] [CrossRef]
- Gerber, F.A.; Sahrmann, P.; Schmidlin, O.A.; Heumann, C.; Beer, J.H.; Schmidlin, P.R. Influence of obesity on the outcome of non-surgical periodontal therapy–a systematic review. BMC Oral Health 2016, 16, 90. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Herrera, M.; López-Domènech, S.; Silvestre, F.J.; Silvestre-Rangil, J.; Bañuls, C.; Hernández-Mijares, A.; Rocha, M. Dietary therapy and non-surgical periodontal treatment in obese patients with chronic periodontitis. J. Clin. Periodontol. 2018, 45, 1448–1457. [Google Scholar] [CrossRef]
- Lakkis, D.; Bissada, N.F.; Saber, A.; Khaitan, L.; Palomo, L.; Narendran, S.; Al-Zahrani, M.S. Response to periodontal therapy in patients who had weight loss after bariatric surgery and obese counterparts: A pilot study. J. Periodontol. 2012, 83, 684–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, T.; Tomofuji, T.; Endo, Y.; Tamaki, N.; Ekuni, D.; Irie, K.; Kasuyama, K.; Kato, T.; Morita, M. Effects of exercise training on gingival oxidative stress in obese rats. Arch. Oral Biol. 2011, 56, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Andrade, E.F.; Orlando, D.R.; Gomes, J.A.S.; Foureaux, R.C.; Costa, R.C.; Varaschin, M.S.; Rogatto, G.P.; de Moura, R.F.; Pereira, L.J. Exercise attenuates alveolar bone loss and anxiety-like behaviour in rats with periodontitis. J. Clin. Periodontol. 2017, 44, 1153–1163. [Google Scholar] [CrossRef]
- Andrade, E.F.; Silva, V.O.; Moura, N.O.; Foureaux, R.C.; Orlando, D.R.; Moura, R.F.; Pereira, L.J. Physical exercise improves glycemic and inflammatory profile and attenuates progression of periodontitis in diabetic rats (HFD/STZ). Nutrients 2018, 10, 1702. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.J.; Macari, S.; Coimbra, C.C.; Pereira, T.; Barrioni, B.R.; Gomez, R.S.; Silva, T.A.; Paiva, S.M. Aerobic and resistance training improve alveolar bone quality and interferes with bone-remodeling during orthodontic tooth movement in mice. Bone 2020, 138, 115496. [Google Scholar] [CrossRef]
- Al-Zahrani, M.S.; Borawski, E.A.; Bissada, N.F. Periodontitis and three health-enhancing behaviors: Maintaining normal weight, engaging in recommended level of exercise, and consuming a high-quality diet. J. Periodontol. 2005, 76, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Ramseier, C.A.; Woelber, J.P.; Kitzmann, J.; Detzen, L.; Carra, M.C.; Bouchard, P. Impact of risk factor control interventions for smoking cessation and promotion of healthy lifestyles in patients with periodontitis: A systematic review. J. Clin. Periodontol. 2020, 47 (Suppl. S22), 90–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhanshu, A.; Sharma, U.; Vadiraja, H.S.; Rana, R.K.; Singhal, R. Impact of yoga on periodontal disease and stress management. Int. J. Yoga 2017, 10, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Omori, S.; Uchida, F.; Oh, S.; So, R.; Tsujimoto, T.; Yanagawa, T.; Sakai, S.; Shoda, J.; Tanaka, K.; Bukawa, H. Exercise habituation is effective for improvement of periodontal disease status: A prospective intervention study. Ther. Clin. Risk Manag. 2018, 14, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szewczyk-Golec, K.; Rajewski, P.; Gackowski, M.; Mila-Kierzenkowska, C.; Wesołowski, R.; Sutkowy, P.; Pawłowska, M.; Woźniak, A. Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxid. Med. Cell. Longev. 2017, 2017, 8494107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virto, L.; Cano, P.; Jiménez-Ortega, V.; Fernández-Mateos, P.; González, J.; Haugen, H.J.; Esquifino, A.I.; Sanz, M. Melatonin as adjunctive therapy in the treatment of periodontitis associated with obesity. J. Clin. Periodontol. 2018, 45, 1336–1346. [Google Scholar] [CrossRef] [Green Version]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef]
- Mulhall, H.; DiChiara, J.M.; Huck, O.; Amar, S. Pasteurized Akkermansia muciniphila reduces periodontal and systemic inflammation induced by Porphyromonas gingivalis in lean and obese mice. J. Clin. Periodontol. 2022, 49, 717–729. [Google Scholar] [CrossRef]
- Vohra, F.; Akram, Z.; Bukhari, I.A.; Sheikh, S.A.; Javed, F. Short-term effects of adjunctive antimicrobial photodynamic therapy in obese patients with chronic periodontitis: A randomized controlled clinical trial. Photodiagnosis Photodyn. Ther. 2018, 21, 10–15. [Google Scholar] [CrossRef]
Authors and Year (Report Nature) | Aim and Objective | Studies Included and Disease Definition | No. of Participants (Grand Total and Range in Parenthesis) and Outcome of MA | Quality Assessment | Subgroup Analysis (I); Sensitivity Analysis (II); and Publication Bias Assessment (III) | Summary |
---|---|---|---|---|---|---|
Chaffee et al. 2010 [12] (SR and MA) | To compile the evidence concerning relationship between obesity and periodontal disease. | 70/28 studies included for SR/MA. Obesity definition: BMI or WHR Periodontal disease definition—up to 18 different selected clinical criteria with top 3 as: (1) CPI = 4; (2) CPI ≥ 3; (3) ≥1 site with CAL ≥ 3 mm and PPD ≥ 4 mm. | 70,855 (96–13,665) participants; ORs, or MD of CAL between obese and non-obese groups. | Using a specific scale design by the authors. 13, 7, and 8 studies were rated with high, medium, or low quality of evidence, respectively. | (I) Yes. Based on study characteristics. (II) Attempted. Exclusion of any single study only slightly altered the outcome. (III) Limited bias detected. | A positive association between periodontal disease and obesity. Overall OR: 1.35, 95% CI (1.23, 1.47). Obese patients were prone to show greater mean CAL. Summary MD = 0.58 mm; 95% CI (0.40, 0.74). |
Suvan et al. 2011 [13] (SR and MA) | To systematically review the evidence investigating the association between obesity and periodontitis. | 33/19 studies included for SR/MA. Obesity definition: BMI, WHR, WC, or body fat%. Periodontal disease definition—up to 16 different selected clinical criteria, with top 3 criteria are: (1) CPI ≥ 3; (2) > 4 teeth with minimum one site with CAL ≥ 3 mm and PPD ≥4 mm; (3) ≥ 1 site with CAL ≥3 mm and PD ≥ 4 mm. | 39,777 (96–13,665) participants; pooled estimates of ORs. | Newcastle-Ottawa Quality Assessment Scale (N-OQAS) [24]. | (I) Yes. Based on BMI categories. (II) Not reported. (III) Not reported. | Significant associations between periodontitis and obesity (OR: 1.81, 95% CI (1.42, 2.30]), or overweight (OR: 1.27, 95% CI (1.06, 1.51]), and obese and overweight combined (OR: 2.13, 95% CI (1.40, 3.26]). Results suggested a positive association of BMI categories, obese and overweight with presence of periodontitis, although the magnitude appeared unclear. |
de Moura-Grec et al. 2014 [14] (SR and MA) | To systematically review the studies regarding association between overweight/ obesity and periodontitis. | 31/22 studies included for SR/MA. Obesity definition: BMI or WC. Periodontal disease definition—up to 16 different selected clinical criteria, with top 3 as: (1) PPD ≥ 4 mm; (2) CPI ≥ 3; (3) PPD ≥ 5 mm. | 69,089 (79–13,665) participants; ORs, MD in BMI between periodontitis and periodontally healthy group. | Not reported. | (I) Not reported. (II) Not reported. (III) Not reported. | Obesity and overweight showed an increased odds for periodontitis (OR: 1.3, 95% CI (1.25, 1.35)). Participants with periodontitis had higher BMI compared to periodontally healthy participants. MD: 2.74 kg/m2 (95% CI (2.70, 2.79]). |
Keller et al. 2015 [20] (SR) | To longitudinally examine the association between obesity and periodontitis. | 13 studies included for SR. Obesity definition: BMI or WC. Periodontal disease definition—7 clinical outcomes: PPD, CAL, ABL, PI, GI, CPI, BOP, and FMBS with thresholds not reported. | 44,758 (46–36,910) participants; NA. | Not reported. | (I) Not reported. (II) Not reported. (III) Not reported. | Suggests overweight, obesity, weight gain, and increased waist circumference could be considered as risk factors for development of periodontitis. |
Li et al. 2015 [15] (SR and MA) | To investigate the association between anthropometric measurements and periodontal diseases in children and adolescents. | 16/5 studies included for SR/MA. Obesity definition: BMI or WC. Periodontal disease definition—3 clinical criteria: (1) either two sites between adjacent teeth with CAL ≥4 mm, or at least two such sites with PPD ≥ 5 mm; (2) ≥1 sites with CAL ≥ 3 mm and PPD ≥ 3 mm; (3) ≥ 1 bleeding site. | 589(87–164) participants; ORs. | Strengthening the Reporting of Observational studies in epidemiology (STROBE) checklist [25]. | (I) Yes, based on different periodontal markers. (II) Not reported. (III) No substantial bias detected. | Reported positive association between obesity and presence of subgingival calculus (OR: 3.07, 95% CI (1.10, 8.62]), visible Plaque Index (OR: 4.75; 95% CI (2.42, 9.34]), BOP (OR: 5.41; 95% CI (2.75, 10.63]), and risk of PPD > 4 mm (OR: 14.15; 95% CI (5.10, 39.25]) in children and adolescents. Concluded that obesity is associated with some signs of periodontal disease in children and adolescents. |
Nascimento et al. 2015 [16] (SR and MA) | To systematically review the effect of weight gain on incidence of periodontitis. | Both 5 studies included for SR and MA. Obesity definition: BMI or WC. Periodontal disease and progression definition— 3 sets of clinical criteria: (1) PPD ≥ 4 mm; (2) ABL ≥ 40% or PPD or CAL ≥ 5 mm; (3) self-reported periodontal disease. | 42,158 (224–36,910) participants; RRs. | N-OQAS | (I) Yes, based on obese status. (II) Attempted. Omission of any single study did not alter the findings. (III) No substantial bias detected. | Results showed overweight (RR: 1.13, 95% CI (1.06, 1.20]) and those participants who became obese (RR: 1.33, 95% CI (1.21, 1.47]) had a significant higher risk to develop periodontitis. |
Nascimento et al. 2016 [17] (SR and MA) | To examine the bidirectional association of tooth loss and obesity. | 25/16 studies included for SR/MA. Obesity definition: BMI. Periodontal disease and progression manifestation: number of teeth lost. | 42,430 (186–16,416) participants; ORs. | The Critical Appraisal Checklist (Joanna Briggs Institute [26]). | (I) Yes, based on tooth loss or edentulism. (II) Attempted. Omission of any single study did not alter the findings. (III) Presence of a small-study effect when any tooth loss was considered as an exposure. | Results indicated obese individuals had higher odds of having any tooth loss (OR: 1.49, 95% CI (1.20, 1.86)) or being edentulous (OR: 1.25, 95% CI (1.10, 1.42]), respectively. Individual with any tooth loss had higher odds (OR: 1.41, 95% CI [1.11, 1.79]) for obesity; similar for edentulous participants (OR: 1.60, 95% CI: (1.29, 2.00)). Suggested bidirectional association between tooth loss and obesity. |
Martens et al. 2017 [18] (SR and MA) | To investigate the association between overweight/ obesity and periodontal disease in children and/or adolescents. | 12/7 studies included for SR/MA. Obesity definition: BMI, WHR, WC, or body fat%, and skinfold thickness. Periodontal disease definition: ≥ 1 site with CAL≥ 3 mm and PPD ≥ 3 mm. | 1983 (87–1204) participants; ORs. | Downs and Black checklist [27]. | (I) Not reported. (II) Attempted. Omission of any single study did not alter the findings. (III) No evidence of publication bias detected. | Significant association between periodontal disease and obesity in children (OR: 1.46, 95% CI (1.20, 1.77]). |
Martinez-Herrera et al. 2017 [21] (SR) | To systematically review the association between obesity and periodontal disease. | 28 studies included for SR. Obesity definition: BMI, WC, WHR, or body fat%. Periodontal disease definition—7 clinical outcomes: PPD, CAL, PI, BOP, ABL, CPI and GI with thresholds not reported. | 102,221 (91–36,910) participants; NA. | Not reported. | (I) Not reported. (II) Not reported. (III) Not reported. | All studies except two articles described an association between obesity and periodontal disease. |
Khan et al. 2018 [22] (SR) | To investigate if overweight or obese is risk factor for periodontitis in adolescents and young adults. | 25 studies included for SR. Obesity definition: BMI, WC, WHR, or body fat%. Periodontal disease definition—up to 17 different selected clinical criteria, with top 2 as: (1) CPI ≥ 3; (2) ≥ 1 sites with PPD ≥ 4 mm. | 51,597 (55–17,660) participants; NA. | N-OQAS | (I) Not reported. (II) Not reported. (III) Not reported. | Suggested evidence available indicating obesity was associated with periodontitis in adolescents and young adults. |
Foratori-Junior et al. 2022 [19] (SR and MA) | To generate pooled evidence for the association between excess weight and periodontitis during pregnancy. | Both 11 studies included for SR and MA. Obesity definition: BMI. Periodontal disease definition—up to 8 different selected clinical criteria, with top 3 as: (1) ≥ 2 interproximal CAL ≥ 4 mm on different teeth; (2) ≥ 2 interproximal sites with CAL ≥ 3 mm or PPD ≥ 4 mm (on different teeth), or one site with PPD ≥ 5 mm; (3) interproximal CAL ≥ 2 on nonadjacent teeth or buccal or oral CAL ≥ 3 mm with PPD > 3 mm detectable on ≥ 2 teeth. | 2152 (50–682) participants; RRs. | N-OQAS | (I) Not reported. (II) Not reported. (III) No evidence of publication bias detected. | Positive association between overweight/obesity and periodontitis during pregnancy (RR: 2.21, 95% CI (1.53, 3.17]). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Xu, A.; Leung, W.K. Obesity, Bone Loss, and Periodontitis: The Interlink. Biomolecules 2022, 12, 865. https://doi.org/10.3390/biom12070865
Zhao P, Xu A, Leung WK. Obesity, Bone Loss, and Periodontitis: The Interlink. Biomolecules. 2022; 12(7):865. https://doi.org/10.3390/biom12070865
Chicago/Turabian StyleZhao, Pengfei, Aimin Xu, and Wai Keung Leung. 2022. "Obesity, Bone Loss, and Periodontitis: The Interlink" Biomolecules 12, no. 7: 865. https://doi.org/10.3390/biom12070865
APA StyleZhao, P., Xu, A., & Leung, W. K. (2022). Obesity, Bone Loss, and Periodontitis: The Interlink. Biomolecules, 12(7), 865. https://doi.org/10.3390/biom12070865