Concept of Normativity in Multi-Omics Analysis of Axon Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proteins
2.1.1. Experimental Design
2.1.2. Protein Extraction
2.1.3. Untargeted Liquid Chromatography and Mass Spectrometry
2.1.4. Protein Identification
2.1.5. Regen Peptide Normalization
2.1.6. Protein Normalization and Pathway Analysis
2.2. Lipids
2.2.1. Experimental Design
2.2.2. Lipid Extraction
2.2.3. Untargeted Liquid Chromatography and Mass Spectrometry
2.2.4. Lipid Identification and Analysis
2.3. Metabolites
2.3.1. Experimental Design
2.3.2. Metabolite Extraction
2.3.3. Untargeted Liquid Chromatography and Mass Spectrometry
2.3.4. Metabolite Identification and Analysis
3. Results
3.1. Proteomic Data Normalization by Regen Peptides
3.2. Normativity of Metabolome and Lipidome
3.3. Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curcio, M.; Bradke, F. Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annu. Rev. Cell Dev. Biol. 2018, 34, 495–521. [Google Scholar] [CrossRef] [PubMed]
- Alfadil, E.; Bradke, F. Moving through the crowd. Where are we at understanding physiological axon growth? Semin. Cell Dev. Biol. 2023, 140, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, R.L.; Marc, R.E.; Jones, B.W. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog. Retin. Eye Res. 2020, 74, 100771. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, R.L.; Anderson, J.R.; Dahal, J.; Garcia, J.C.; Yang, J.H.; Sigulinsky, C.L.; Rapp, K.; Emrich, D.P.; Watt, C.B.; Johnstun, H.A.; et al. A pathoconnectome of early neurodegeneration: Network changes in retinal degeneration. Exp. Eye Res. 2020, 199, 108196. [Google Scholar] [CrossRef] [PubMed]
- Masuda, S.; Tanaka, S.; Shiraki, H.; Sotomaru, Y.; Harada, K.; Hide, I.; Kiuchi, Y.; Sakai, N. GPR3 expression in retinal ganglion cells contributes to neuron survival and accelerates axonal regeneration after optic nerve crush in mice. Neurobiol. Dis. 2022, 172, 105811. [Google Scholar] [CrossRef]
- Harvey, B.M.; Baxter, M.; Granato, M. Optic nerve regeneration in larval zebrafish exhibits spontaneous capacity for retinotopic but not tectum specific axon targeting. PLoS ONE 2019, 14, e0218667. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.A.; Khodursky, A.B.; Lin, P.H.; Lin-Chao, S.; Cohen, S.N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 2002, 99, 9697–9702. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 1999, 19, 1720–1730. [Google Scholar] [CrossRef]
- Weiner, S.; Sauer, M.; Visser, P.J.; Tijms, B.M.; Vorontsov, E.; Blennow, K.; Zetterberg, H.; Gobom, J. Optimized sample preparation and data analysis for TMT proteomic analysis of cerebrospinal fluid applied to the identification of Alzheimer′s disease biomarkers. Clin. Proteom. 2022, 19, 13. [Google Scholar] [CrossRef]
- Bei, F.; Lee, H.H.C.; Liu, X.; Gunner, G.; Jin, H.; Ma, L.; Wang, C.; Hou, L.; Hensch, T.K.; Frank, E.; et al. Restoration of Visual Function by Enhancing Conduction in Regenerated Axons. Cell 2016, 164, 219–232. [Google Scholar] [CrossRef]
- Harvey, F.C.; Mendoza, X.; Liu, Y.; Lee, R.K.; Bhattacharya, S.K. Labeled quantitative proteomics dataset of optogenetics induced axon regeneration in mice. Data Brief 2022, 42, 108304. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Cui, Q.; Li, Y.; Irwin, N.; Fischer, D.; Harvey, A.R.; Benowitz, L.I. Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 2003, 23, 2284–2293. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.L. Glaucoma. Lancet 1999, 354, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, L.I.; He, Z.; Goldberg, J.L. Reaching the brain: Advances in optic nerve regeneration. Exp. Neurol. 2017, 287, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Park, K.K.; Liu, K.; Hu, Y.; Kanter, J.L.; He, Z. PTEN/mTOR and axon regeneration. Exp. Neurol. 2010, 223, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, M.; et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322, 963–966. [Google Scholar] [CrossRef] [PubMed]
- Arnemann, J. Ueber Die Reproduktion der Nerven; Dieterich, J.C., Ed.; Nabu Press: Göttingen, Germany, 1786. [Google Scholar]
- Arnemann, J. Versuche Über Die Regeneration an Lebenden Thieren/1 Über Die Regeneration der Nerven: Mit IV Kupfertafeln; Dieterich, J.C., Ed.; Nabu Press: Göttingen, Germany, 1787. [Google Scholar]
- Cruikshank, W.E. Experiments on the Nerves, Particularly on Their Reproduction; and on the Spinal Marrow of Living Animals: From the Same Work. Med. Facts Obs. 1797, 7, 136–154. [Google Scholar] [PubMed]
- Geoffroy, C.G.; Hilton, B.J.; Tetzlaff, W.; Zheng, B. Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Rep. 2016, 15, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Chintalapudi, S.R.; Djenderedjian, L.; Stiemke, A.B.; Steinle, J.J.; Jablonski, M.M.; Morales-Tirado, V.M. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas. Front. Aging Neurosci. 2016, 8, 93. [Google Scholar] [CrossRef]
- Kaneda, M.; Nagashima, M.; Mawatari, K.; Nunome, T.; Muramoto, K.; Sugitani, K.; Kato, S. Growth-associated protein43 (GAP43) is a biochemical marker for the whole period of fish optic nerve regeneration. Adv. Exp. Med. Biol. 2010, 664, 97–104. [Google Scholar] [CrossRef]
- Kwong, J.M.; Quan, A.; Kyung, H.; Piri, N.; Caprioli, J. Quantitative analysis of retinal ganglion cell survival with Rbpms immunolabeling in animal models of optic neuropathies. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9694–9702. [Google Scholar] [CrossRef] [PubMed]
- Mesentier-Louro, L.A.; Zaverucha-do-Valle, C.; da Silva-Junior, A.J.; Nascimento-Dos-Santos, G.; Gubert, F.; de Figueiredo, A.B.; Torres, A.L.; Paredes, B.D.; Teixeira, C.; Tovar-Moll, F.; et al. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS ONE 2014, 9, e110722. [Google Scholar] [CrossRef]
- Sharma, T.P.; Liu, Y.; Wordinger, R.J.; Pang, I.H.; Clark, A.F. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis. 2015, 6, e1661. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Clark, A.F.; McDowell, C.M. Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Discov. 2018, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Young, B.K.; Wang, P.; Tian, N. The Susceptibility of Retinal Ganglion Cells to Optic Nerve Injury is Type Specific. Cells 2020, 9, 677. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; King, R.; Struebing, F.L.; Geisert, E.E. Optic nerve regeneration in the mouse is a complex trait modulated by genetic background. Mol. Vis. 2018, 24, 174–186. [Google Scholar]
- Meehan, S.D.; Abdelrahman, L.; Arcuri, J.; Park, K.K.; Samarah, M.; Bhattacharya, S.K. Proteomics and systems biology in optic nerve regeneration. Adv. Protein Chem. Struct. Biol. 2021, 127, 249–270. [Google Scholar] [CrossRef]
- Chauhan, M.Z.; Arcuri, J.; Park, K.K.; Zafar, M.K.; Fatmi, R.; Hackam, A.S.; Yin, Y.; Benowitz, L.; Goldberg, J.L.; Samarah, M.; et al. Multi-Omic Analyses of Growth Cones at Different Developmental Stages Provides Insight into Pathways in Adult Neuroregeneration. iScience 2020, 23, 100836. [Google Scholar] [CrossRef]
- Chauhan, M.Z.; Valencia, A.K.; Piqueras, M.C.; Enriquez-Algeciras, M.; Bhattacharya, S.K. Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1789–1798. [Google Scholar] [CrossRef]
- Pfenninger, K.H. Plasma membrane expansion: A neuron′s Herculean task. Nat. Rev. Neurosci. 2009, 10, 251–261. [Google Scholar] [CrossRef]
- Pitto, M.; Miglio, A.; Kirschner, G.; Leon, A.; Ghidoni, R. Metabolism of semisynthetic single-chain GM1 derivatives in cerebellar granule cells in culture. Neurochem. Res. 1991, 16, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, W.; Ma, J.; Li, B.; Chen, J.; Yang, H. mTOR signaling pathway differently regulates central and peripheral axon regeneration. Acta Biochim. Biophys. Sin. 2017, 49, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Sbaschnig-Agler, M.; Ledeen, R.W.; Grafstein, B.; Alpert, R.M. Ganglioside changes in the regenerating goldfish optic system: Comparison with glycoproteins and phospholipids. J. Neurosci. Res. 1984, 12, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Meehan, S.D.; Neag, E.; Bhattacharya, S.K. Glycerophospholipid Analysis of Optic Nerve Regeneration Models Indicate Potential Membrane Order Changes Associated with the Lipidomic Shifts. J. Ocul. Pharmacol. Ther. 2023, 39, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Kalinski, A.L.; Yoon, C.; Huffman, L.D.; Duncker, P.C.; Kohen, R.; Passino, R.; Hafner, H.; Johnson, C.; Kawaguchi, R.; Carbajal, K.S.; et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. Elife 2020, 9, e60223. [Google Scholar] [CrossRef] [PubMed]
- Estera, L.A.; Walsh, S.P.; Headen, J.A.; Williamson, R.E.; Kalinski, A.L. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci. Res. 2023, 197, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Wong, K.A.; Benowitz, L.I. Full-length optic nerve regeneration in the absence of genetic manipulations. JCI Insight 2023, 8, e164579. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Ji, Y.; Ma, N.; Chen, K.; Zhang, W.; Bai, D.; Jia, X.; Xia, S.; Yin, H. RNA-seq Analysis Reveals Potential Molecular Mechanisms of ZNF580/ZFP580 Promoting Neuronal Survival and Inhibiting Apoptosis after Hypoxic-ischemic Brain damage. Neuroscience 2022, 483, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Zhang, Q.; Zhang, Y.; Li, R.; Zhao, T.; Chen, L.; Liu, Q.; Zheng, S.; Li, H.; Qian, Z.; et al. Growth Differentiation Factor 15 Regulates Oxidative Stress-Dependent Ferroptosis Post Spinal Cord Injury by Stabilizing the p62-Keap1-Nrf2 Signaling Pathway. Front. Aging Neurosci. 2022, 14, 905115. [Google Scholar] [CrossRef]
- Arraras, J.I.; Nolte, S.; Liegl, G.; Rose, M.; Manterola, A.; Illarramendi, J.J.; Zarandona, U.; Rico, M.; Teiejria, L.; Asin, G.; et al. General Spanish population normative data analysis for the EORTC QLQ-C30 by sex, age, and health condition. Health Qual. Life Outcomes 2021, 19, 208. [Google Scholar] [CrossRef]
- Ejigu, B.A.; Valkenborg, D.; Baggerman, G.; Vanaerschot, M.; Witters, E.; Dujardin, J.C.; Burzykowski, T.; Berg, M. Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments. Omics 2013, 17, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed]
- Salloch, S.; Schildmann, J.; Vollmann, J. Empirical research in medical ethics: How conceptual accounts on normative-empirical collaboration may improve research practice. BMC Med. Ethics 2012, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Salloch, S.; Wascher, S.; Vollmann, J.; Schildmann, J. The normative background of empirical-ethical research: First steps towards a transparent and reasoned approach in the selection of an ethical theory. BMC Med. Ethics 2015, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Ewald, J.D.; Zhou, G.; Lu, Y.; Kolic, J.; Ellis, C.; Johnson, J.D.; Macdonald, P.E.; Xia, J. Web-based multi-omics integration using the Analyst software suite. Nat. Protoc. 2024, 19, 1467–1497. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moceri, I.; Meehan, S.; Gonzalez, E.; Park, K.K.; Hackam, A.; Lee, R.K.; Bhattacharya, S. Concept of Normativity in Multi-Omics Analysis of Axon Regeneration. Biomolecules 2024, 14, 735. https://doi.org/10.3390/biom14070735
Moceri I, Meehan S, Gonzalez E, Park KK, Hackam A, Lee RK, Bhattacharya S. Concept of Normativity in Multi-Omics Analysis of Axon Regeneration. Biomolecules. 2024; 14(7):735. https://doi.org/10.3390/biom14070735
Chicago/Turabian StyleMoceri, Isabella, Sean Meehan, Emily Gonzalez, Kevin K. Park, Abigail Hackam, Richard K. Lee, and Sanjoy Bhattacharya. 2024. "Concept of Normativity in Multi-Omics Analysis of Axon Regeneration" Biomolecules 14, no. 7: 735. https://doi.org/10.3390/biom14070735
APA StyleMoceri, I., Meehan, S., Gonzalez, E., Park, K. K., Hackam, A., Lee, R. K., & Bhattacharya, S. (2024). Concept of Normativity in Multi-Omics Analysis of Axon Regeneration. Biomolecules, 14(7), 735. https://doi.org/10.3390/biom14070735