Exploring the Phytochemicals of Acacia melanoxylon R. Br.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compound Identification
2.2. Cytotoxicity Evaluation
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Collection and Preparation
3.3. Extraction and Isolation
3.3.1. Dichloromethane Extract
3.3.2. Vomifoliol 5 Extraction
3.4. Compound Characterization
3.5. Cell Culture and Treatments
3.6. Viability Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, G.P.; Singh, J.S.; Raghubanshi, A.S. Plant invasions: Emerging trends and future implications. Curr. Sci. 2005, 88, 726–734. [Google Scholar]
- Kumar Rai, P.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Almeida, J.D.D.; Freitas, H. The exotic and invasive flora of portugal. Bot. Complut. 2001, 25, 317–327. [Google Scholar]
- Almeida, J.D.D.; Freitas, H. Exotic naturalized flora of continental portugal—A reassessment. Bot. Complut. 2006, 30, 117–130. [Google Scholar]
- Almeida, J.D.D.; Freitas, H. Exotic flora of continental portugal—A new assessment. Bocconea 2012, 24, 231–237. [Google Scholar]
- Decreto-Lei N.º 92/2019 de 10 de Julho da Presidência do Conselho de Ministros. Diário da República N.º 130/2019, Série I de 2019-07-10. Decreto-Lei N.º 92/2019|DRE. Available online: https://files.dre.pt/1s/2019/10/19500/0000200010.pdf (accessed on 1 December 2021).
- Tringali, C.; Oriente, G.; Piattelli, M.; Nicolosi, G. 2 minor dolabellane diterpenoid constituents from a dictyota species. J. Nat. Prod. 1985, 48, 484–485. [Google Scholar] [CrossRef]
- Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the Prevention and Management of the Introduction and Spread of Invasive Alien Species. EUR-Lex—32014R1143—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32014R1143 (accessed on 1 December 2021).
- Brink, P.T. The Economic Costs of Invasive Alien Species (Ias). Available online: https://www.iucn.org/sites/dev/files/import/downloads/ten_brink_economic_impacts_of_ias__ptb_of_ieep_at_the_iucn_ep_event_21_feb_2013_final.pdf (accessed on 1 December 2021).
- Weidlich, E.W.A.; Flórido, F.G.; Sorrini, T.B.; Brancalion, P.H.S.; Peralta, G. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 2020, 57, 1806–1817. [Google Scholar] [CrossRef]
- Maximo, P.; Ferreira, L.M.; Branco, P.; Lourenço, A. Invasive plants: Turning enemies into value. Molecules 2020, 25, 3529. [Google Scholar] [CrossRef]
- Fan, P.; Marston, A. How can phytochemists benefit from invasive plants? Nat. Prod. Commun. 2009, 4, 1407–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza-Alonso, P.; Rodríguez, J.; González, L.; Lorenzo, P. Here to stay. Recent advances and perspectives about Acacia invasion in mediterranean areas. Ann. For. Sci. 2017, 74, 55. [Google Scholar] [CrossRef] [Green Version]
- Kull, C.A.; Shackleton, C.M.; Cunningham, P.J.; Ducatillon, C.; Dufour-Dror, J.-M.; Esler, K.J.; Friday, J.B.; Gouveia, A.C.; Griffin, A.R.; Marchante, E.; et al. Adoption, use and perception of australian Acacias around the world. Divers. Distrib. 2011, 17, 822–836. [Google Scholar] [CrossRef] [Green Version]
- Vieites-Blanco, C.; González-Prieto, S.J. Invasiveness, ecological impacts and control of Acacias in southwestern europe—A review. Web Ecol. 2020, 20, 33–51. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.-J.; Holmes, P.M.; Pauchard, A.; O’farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J.; et al. Impacts of invasive australian Acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Wilson, J.R.U.; Gairifo, C.; Gibson, M.R.; Arianoutsou, M.; Bakar, B.B.; Baret, S.; Celesti-Grapow, L.; Ditomaso, J.M.; Dufour-Dror, J.-M.; Kueffer, C.; et al. Risk assessment, eradication, and biological control: Global efforts to limit australian Acacia invasions. Divers. Distrib. 2011, 17, 1030–1046. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Nunez, F.A.; Marchante, E.; Heleno, R.; Duarte, L.N.; Palhas, J.; Impson, F.; Freitas, H.; Marchante, H. Establishment, spread and early impacts of the first biocontrol agent against an invasive plant in continental europe. J. Environ. Manag. 2021, 290, 112545. [Google Scholar] [CrossRef]
- Portugal, P.I.E. Acacia melanoxylon. Available online: https://invasoras.pt/en/invasive-plant/acacia-melanoxylon (accessed on 1 December 2021).
- Falco, M.R.; Devries, J.X. Isolation of hyperoside ( quercetin-3-d-galactoside ) from flowers of Acacia melanoxylon. Naturwissenschaften 1964, 51, 462–463. [Google Scholar] [CrossRef]
- Foo, L.Y. Configuration and conformation of dihydroflavonols from Acacia melanoxylon. Phytochemistry 1987, 26, 813–817. [Google Scholar] [CrossRef]
- Hausen, B.M.; Bruhn, G.; Tilsley, D.A. Contact allergy to australian blackwood (Acacia melanoxylon R.Br.): Isolation and identification of new hydroxyflavan sensitizers. Contact Dermat. 1990, 23, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Foo, L.Y.; Wong, H. Diastereoisomeric leucoanthocyanidins from the heartwood of Acacia melanoxylon. Phytochemistry 1986, 25, 1961–1965. [Google Scholar] [CrossRef]
- King, F.E.; Bottomley, W. The chemistry of extractives from hardwoods.17. The occurrence of a flavan-3-4-diol (melacacidin) in Acacia melanoxylon. J. Chem. Soc. 1954, 1399–1403. [Google Scholar] [CrossRef]
- Tindale, M.D.; Roux, D.G. A phytochemical survey of the australian species of Acacia melanoxylon. Phytochemistry 1969, 8, 1713–1727. [Google Scholar] [CrossRef]
- Foo, L.Y. A novel pyrogallol a-ring proanthocyanidin dimer from Acacia melanoxylon. J. Chem. Soc.-Chem. Commun. 1986, 3, 236–237. [Google Scholar] [CrossRef]
- Foo, L.Y. Isolation of 4-o-4 -linked biflavanoids from Acacia melanoxylon-1st examples of a new class of single ether-linked proanthocyanidin dimers. J. Chem. Soc.-Chem. Commun. 1989, 20, 1505–1506. [Google Scholar] [CrossRef]
- Schmalle, H.W.; Hausen, B.M. Acamelin, a new sensitizing furano-quinone from Acacia melanoxylon R.Br. Tetrahedron Lett. 1980, 21, 149–152. [Google Scholar] [CrossRef]
- Freire, C.S.R.; Coelho, D.S.C.; Santos, N.M.; Silvestre, A.J.D.; Neto, C.P. Identification of delta(7) phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 2005, 40, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Demonstration of long-chainn-alkyl caffeates and δ7-steryl glucosides in the bark of Acacia species by gas chromatography–mass spectrometry. Phytochem. Anal. 2007, 18, 151–156. [Google Scholar] [CrossRef]
- Silva, E.; Fernandes, S.; Bacelar, E.; Sampaio, A. Antimicrobial activity of aqueous, ethanolic and methanolic leaf extracts from Acacia spp. And eucalyptus nicholii. Afr. J. Tradit. Complementary Altern. Med. 2016, 13, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, R.; Quintela, J.C.; Duarte, M.P.; Gonçalves, M. Insights for the valorization of biomass from portuguese invasive Acacia spp. In a biorefinery perspective. Forests 2020, 11, 1342. [Google Scholar] [CrossRef]
- Pereira Beserra, F.; Xue, M.; Maia, G.; Leite Rozza, A.; Helena Pellizzon, C.; Jackson, C. Lupeol, a pentacyclic triterpene, promotes migration, wound closure, and contractile effect in vitro: Possible involvement of pi3k/akt and p38/erk/mapk pathways. Molecules 2018, 23, 2819. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-I.; Kuo, Y.-H. Threee new lupane-type triterpenes from Diospyros maritima. Chem. Pharm. Bull. 1998, 46, 1627–1629. [Google Scholar] [CrossRef] [Green Version]
- Karalai, C.; Laphookhieo, S. Triterpenoid esters from bruguiera cylindrica. Aust. J. Chem. 2005, 58, 556–559. [Google Scholar] [CrossRef]
- Ali, M.; Heaton, A.; Leach, D. Triterpene esters from australian. Acacia J. Nat. Prod. 1997, 60, 1150–1151. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Chang, C.I.; Li, S.Y.; Chou, C.J.; Chen, C.F.; Kuo, Y.H.; Lee, K.H. Cytotoxic constituents from the stems of diospyros maritima. Planta Med. 1997, 63, 363–365. [Google Scholar] [CrossRef]
- Nyasse, B.; Ngantchou, I.; Tchana, E.M.; Sonke, B.; Denier, C.; Fontaine, C. Inhibition of both trypanosoma brucei bloodstream form and related glycolytic enzymes by a new kolavic acid derivative isolated from entada abyssinica. Pharmazie 2004, 59, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Tchinda, A.T.; Fuendjiepa, V.; Mekonnenb, Y.; Ngoa, B.B.; Dagne, E. A bioactive diterpene from entada abyssinica. Nat. Prod. Comm. 2007, 2, 9–12. [Google Scholar] [CrossRef]
- Vargas, F.D.S.; Almeida, P.D.O.D.; Aranha, E.S.P.; Boleti, A.P.D.A.; Newton, P.; Vasconcellos, M.C.D.; Junior, V.F.V.; Lima, E.S. Biological activities and cytotoxicity of diterpenes from copaifera spp. Oleoresins. Molecules 2015, 20, 6194–6210. [Google Scholar] [CrossRef] [Green Version]
- González, A.G.; Guillermo, J.A.; Ravelo, A.G.; Jimenez, I.A.; Gupta, M.P. 4,5-dihydroblumenol a, a new nor-isoprenoid from perrottetia multiflora. J. Nat. Prod. 1994, 57, 400–402. [Google Scholar] [CrossRef]
- Xiao, W.-L.; Chen, W.-H.; Zhang, J.-Y.; Song, X.-P.; Chen, G.-Y.; Han, C.-R. Ionone-type sesquiterpenoids from the stems of ficus pumila. Chem. Nat. Compd. 2016, 52, 531–533. [Google Scholar] [CrossRef]
- Liu, X.; Tian, F.; Zhang, H.-B.; Pilarinou, E.; Mclaughlin, J.L. Biologically active blumenol a from the leaves ofannona glabra. Nat. Prod. Lett. 1999, 14, 77–81. [Google Scholar] [CrossRef]
- Dat, N.T.; Jin, X.; Hong, Y.-S.; Lee, J.J. An isoaurone and other constituents from trichosanthes kirilowii seeds inhibit hypoxia-inducible factor-1 and nuclear factor-kb. J. Nat. Prod. 2010, 73, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.; Saito, Y.; Fukuyoshi, S.; Miyake, K.; Goto, M.; Chen, C.H.; Alam, G.; Lee, K.H.; Nakagawa-Goto, K. Paliasanines a-e, 3,4-methylenedioxyquinoline alkaloids fused with a phenyl-14-oxabicyclo[3.2.1]octane unit from melochia umbellata var. Deglabrata. J. Nat. Prod. 2020, 83, 2931–2939. [Google Scholar] [CrossRef]
- Yang, J.M.; Liu, Y.Y.; Yang, W.C.; Ma, X.X.; Nie, Y.Y.; Glukhov, E.; Gerwick, L.; Gerwick, W.H.; Lei, X.L.; Zhang, Y. An anti-inflammatory isoflavone from soybean inoculated with a marine fungus aspergillus terreus c23-3. Biosci. Biotechnol. Biochem. 2020, 84, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Mclean, S.; Reynold, W.F.; Yang, J.-P.; Jacobs, H.; Jean-Pierre, L.L. Total assignment of the 1h and 13C chemical shifts for a mixture of cis- and trans-p-hydroxycinnamoyl esters of taraxerol with the aid of high-resolution, 13C-detected, 13C-1h shift correlation spectra. Magn. Reson. Chem. 1994, 32, 422–428. [Google Scholar] [CrossRef]
- Stahl, E. Thin-Layer Chromatography a Laboratory Handbook, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar]
- Neiva, D.M.; Luís, Â.; Gominho, J.; Domingues, F.; Duarte, A.P.; Pereira, H. Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Sci. Technol. 2020, 54, 559–585. [Google Scholar] [CrossRef]
1H (δ ppm) | 13C (δ ppm) * | |
---|---|---|
Me-23 | 0.89 | 28.0 |
Me-24 | 0.92 | 16.6 |
Me-25 | 0.88 | 16.2 |
Me-26 | 1.03 | 15.9 |
Me-27 | 0.95 | 14.5 |
Me-28 | 0.79 | 18.0 |
1H | 13C | 1H | 13C | ||
---|---|---|---|---|---|
1 | 16.8 | 11 | 36.2 | ||
2 | 24.4 | 12 | 34.4 | ||
3 | 6.80 t 3.8 | 142.2 | 13 | 161.5 | |
4 | 137.5 | 14 | 5.68 d 1.0 | 114.9 | |
5 | 36.3 | 15 | 167.3 | ||
6 | 36.8 | 16 | 2.18 d 1.2 | 19.2 | |
7 | 28.6 | 17 | 0.77 d 6.9 | 15.9 | |
8 | 37.8 | 18 | 172.7 | ||
9 | 40.3 | 19 | 1.24 s | 33.4 | |
10 | 45.4 | 20 | 0.78 s | 18.0 | |
COOMe | 3.69 s | 50.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, D.; Duarte, S.; Arsénio, P.; Gonçalves, J.; Rodrigues, C.M.P.; Lourenço, A.; Máximo, P. Exploring the Phytochemicals of Acacia melanoxylon R. Br. Plants 2021, 10, 2698. https://doi.org/10.3390/plants10122698
Alves D, Duarte S, Arsénio P, Gonçalves J, Rodrigues CMP, Lourenço A, Máximo P. Exploring the Phytochemicals of Acacia melanoxylon R. Br. Plants. 2021; 10(12):2698. https://doi.org/10.3390/plants10122698
Chicago/Turabian StyleAlves, Diana, Sidónio Duarte, Pedro Arsénio, Joana Gonçalves, Cecília M. P. Rodrigues, Ana Lourenço, and Patrícia Máximo. 2021. "Exploring the Phytochemicals of Acacia melanoxylon R. Br." Plants 10, no. 12: 2698. https://doi.org/10.3390/plants10122698