Plastome Diversity and Phylogenomic Relationships in Asteraceae
Abstract
:1. Introduction
2. Results
2.1. Plastome Reconstruction in Asteraceae
2.2. Phylogenetic Analysis
2.3. Structural Comparison of Plastomes
2.4. Characterization of Sequence Divergence, Repeats and SSRs
3. Discussion
3.1. Structural and Nucleotide Diversity of Asteraceae Plastomes
3.2. Asteraceae Plyogenomics Based on Plastid DNA
4. Materials and Methods
4.1. Taxon Sampling
4.2. DNA Preparation and Sequencing
4.3. Genome Assembly and Annotation
4.4. Plastome Phylogenetic Analyses
4.5. Plastome Diversity Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funk, V.A.; Anderberg, A.A.; Baldwin, B.G.; Bayer, R.J.; Bonifacino, J.M.; Breitwieser, I.; Brouillet, L.; Carbajal, R.; Chan, R.; Coutinho, A.X.P.; et al. Compositae metatrees: The next generation. In Systematics, Evolution and Biogeography of Compositae; Funk, V.A., Susanna, A., Stuessy, T.F., Bayer, R.J., Eds.; International Association for Plant Taxonomy: Bratislava, Slovakia, 2009; pp. 747–777. [Google Scholar]
- Kadereit, J.W.; Jeffrey, C. Flowering plants. Eudicots Asterales. In The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; p. 635. [Google Scholar]
- Stuessy, T.F.; Spooner, D.M.; Evans, K.A. Adaptive significance of ray corollas in Helianthus grosseserratus (Compositae). Am. Midl. Nat. 1986, 115, 191–197. [Google Scholar] [CrossRef]
- Anderberg, A.A.; Baldwin, B.G.; Bayer, R.G.; Breitwieser, J.; Jeffrey, C.; Dillon, M.O.; Eldenäs, P.; Funk, V.; Garcia-Jacas, N.; Hind, D.J.N.; et al. Compositae. In Flowering Plants, Eudicots: Asterales. The Families and Genera of Vascular Plants; Kubitzki, K., Kadereit, J.W., Jeffrey, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume VIII. [Google Scholar]
- Semple, J.C.; Watanabe, K. A review of chromosome numbers in Asteraceae with hypotheses on chromosomal base number evolution. In Systematics, Evolution and Biogeography of Compositae; Funk, V.A., Susanna, A., Stuessy, T.F., Bayer, R.J., Eds.; International Association for Plant Taxonomy: Bratislava, Slovakia, 2009; pp. 61–72. [Google Scholar]
- Barker, M.S.; Li, Z.; Kiddler, T.I.; Reardon, C.R.; Lai, Z.; Oliveira, L.O.; Scacitelli, M.; Rieseberg, L.H. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. Am. J. Bot. 2016, 103, 1203–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, J.C.; Finch, C.C.; Francisco-Ortega, J.; Santos-Guerra, A.; Jansen, R.K. Hybridization in Macaronesian Sideritis (Lamiaceae): Evidence from incongruence of multiple independent nuclear and chloroplast sequence datasets. Taxon 2007, 56, 74–88. [Google Scholar]
- Jones, K.E.; Reyes-Betancort, J.A.; Hiscock, S.J.; Carine, M.A. Allopatric diversification, multiple habitat shifts, and hybridization in the evolution of Pericallis (Asteraceae), A Macaronesian endemic genus. Am. J. Bot. 2014, 101, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Panero, J.L.; Siroky, J.; Kovarik, A. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol. 2010, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Panero, J.L.; Francisco-Ortega, J.; Jansen, R.K.; Santos-Guerra, A. Molecular evidence for multiple origins of woodiness and a New World biogeographic connection of the Macaronesian Island endemic Pericalis (Asteraceae: Senecioneae). Proc. Natl. Acad. Sci. USA 1999, 96, 13886–13891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabaily, R.S.; Shepherd, K.A.; Gardner, A.G.; Gustafsson, M.H.; Howarth, D.G.; Motley, T.J. Historical biogeography of the predominantly Australian plant family Goodeniaceae. J. Biogeogr. 2014, 41, 2057–2067. [Google Scholar] [CrossRef]
- Denham, S.S.; Zavala-Gallo, L.; Johnson, L.A.; Pozner, R.E. Insights into the phylogeny and evolutionary history of Calyceraceae. Taxon 2016, 65, 1328–1344. [Google Scholar] [CrossRef]
- Kim, K.J.; Jansen, R.K.; Wallace, R.S.; Michaels, H.J.; Palmer, J.D. Phylogenetic implications of rbcL sequence variation in the Asteraceae. Ann. Mo. Bot. Gard. 1992, 79, 428–445. [Google Scholar] [CrossRef]
- Kim, K.J.; Choi, K.S.; Jansen, R.K. Two chloroplast DNA inversion originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol. Biol. Evol. 2005, 22, 1783–1792. [Google Scholar] [CrossRef]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Panero, J.L.; Crozier, B.S. Macroevolutionary dynamics in the early diversification of Asteraceae. Mol. Phylogenetics Evol. 2016, 99, 116–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandel, J.R.; Dikow, R.B.; Siniscalchi, C.M.; Thapa, R.; Watson, L.E.; Funk, V.A. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. USA 2019, 116, 14038–14088. [Google Scholar] [CrossRef] [Green Version]
- Mower, J.P.; Vickrey, T.L. Structural diversity among plastid genomes of land plants. In Advances in Botanical Research; Chaw, S.M., Jansen, R.K., Eds.; Elsevier, Ltd.: Amsterdam, The Netherlands, 2018; pp. 263–292. [Google Scholar]
- Loeuille, B.; Thode, V.; Siniscalchi, C.; Andrade, S.; Rossi, M.; Pirani, J.R. Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera. PeerJ 2021, 9, e10886. [Google Scholar] [CrossRef]
- Ruhlman, T.A.; Jansen, R.K. Aberration or analogy? The atypical plastomes of Geraniaceae. In Advances in Botanical Research; Chaw, S.M., Jansen, R.K., Eds.; Elsevier, Ltd.: Amsterdam, The Netherlands, 2018; pp. 223–262. [Google Scholar]
- Lee, Y.S.; Park, J.Y.; Kim, J.K.; Lee, H.O.; Park, H.S.; Lee, S.C.; Kang, J.H.; Lee, T.J.; Hung, S.H.; Yang, T.J. The complete chloroplast genome sequences of Artemisia gmelinii and Artemisia capillaris (Asteraceae). Mitochondrial DNA Part B 2021, 1, 410–411. [Google Scholar] [CrossRef] [PubMed]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [PubMed] [Green Version]
- Luo, R.; Liu, B.; Xie, Y.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; Tang, J.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H. New supertribes Helianthodae and Senecionodae, for the subfamily Asteroideae (Asteraceae). Phytologia 2004, 86, 116–120. [Google Scholar] [CrossRef]
- Xiao-Ming, Z.; Junrui, W.; Li, F.; Sha, L.; Hongbo, P.; Lan, Q.; Jing, L.; Yan, S.; Weihua, Q.; Lifang, Z.; et al. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci. Rep.-UK 2017, 7, 1555. [Google Scholar] [CrossRef]
- Palmer, J.D.; Stein, D.B. Conservation of chloroplast genome structure among vascular plants. Curr. Genet. 1986, 10, 823–833. [Google Scholar] [CrossRef]
- Wang, W.; Lanfear, R. Long-reads reveal that the chloroplast genome exists in two distinct versions in most plants. Genome Biol. Evol. 2019, 11, 3372–3381. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.F.; Zanis, M.J.; Emery, N.C. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Am. J. Bot. 2014, 101, 722–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Cui, L.; Feng, K.; Deng, P.; Du, X.; Wan, F.; Weining, S.; Nie, X. Comparative analysis of Asteraceae chloroplast genomes: Structural organization, RNA editing and evolution. Plant Mol. Biol. Rep. 2015, 33, 1526–1538. [Google Scholar] [CrossRef]
- Jansen, R.K.; Palmer, J.D. A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 1987, 84, 5818–5822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.J.; Cheng, C.L.; Chang, C.C.; Wu, C.L.; Su, T.M.; Chaw, S.M. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genome of monocots. BMC Evol. Biol. 2008, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, L.; Zhao, Z.; Xu, H.; Chen, S.; Dorje, G. Chloroplast genome structures in Gentiana (Gentianaceae), based on three medicinal alpine plants used in Tibetan herbal medicine. Curr. Genet. 2017, 63, 241–252. [Google Scholar] [CrossRef]
- Ma, Q.; Li, S.; Bi, C.; Hao, Z.; Sun, C.; Ye, N. Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae). Curr. Genet. 2017, 63, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wu, M.; Liao, B.; Liu, Z.; Bai, R.; Xiao, S.; Li, X.; Zhang, B.; Xu, J.; Chen, S. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 2017, 22, 1330. [Google Scholar] [CrossRef] [PubMed]
- Nevill, P.G.; Zhong, X.; Tonti-Filippini, J.; Byrne, M.; Hislop, M.; Thiele, K.; van Leeuwen, S.; Boykin, L.M.; Small, I. Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics. BMC Plant Methods 2020, 16, 1. [Google Scholar] [CrossRef]
- Belser, C.; Istace, B.; Denis, E.; Dubarry, M.; Baurens, F.C.; Falentin, C.; Genete, M.; Berrabah, W.; Chèvre, A.M.; Delourme, R.; et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 2018, 4, 879–887. [Google Scholar] [CrossRef]
- Small, R.L.; Ryburn, J.A.; Cronn, R.C.; Seelanan, T.; Wendel, J.F. The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am. J. Bot. 1998, 85, 1301–1315. [Google Scholar] [CrossRef] [Green Version]
- Asaf, S.; Khan, A.L.; Khan, A.R.; Waqas, M.; Kang, S.M.; Khan, M.A.; Lee, S.M.; Lee, I.J. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front. Plant Sci. 2016, 7, 843. [Google Scholar] [CrossRef] [Green Version]
- Gichira, A.W.; Avoga, S.; Li, Z.; Hu, G.; Wang, Q.; Chen, J. Comparative genomics of 11 complete chloroplast genomes of Senecioneae (Asteraceae) species: DNA barcodes and phylogenetics. Bot. Stud. 2019, 60, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, X.; Moore, M.J.; Landrein, S.; Liu, B.; Zhu, Z.X.; Wang, H.F. Plastic phylogenomic insights into the evolution of the Caprifoliaceae sl (Dipsacales). Mol. Phylogenetics Evol. 2020, 142, 106641. [Google Scholar] [CrossRef]
- Fang, J.; Lin, A.; Yuan, X.; Chen, Y.; He, W.; Huang, J.; Zhang, X.; Lin, G.; Zhang, J.; Xue, T. The complete chloroplast genome of Isochrysis galbana and comparison with related haptophyte species. Algal Res. 2020, 50, 101989. [Google Scholar] [CrossRef]
- Koch, M.; Haubold, B.; Mitchell-Olds, T. Molecular systematics of the Brassicaceae: Evidence from coding plastidic matK and nuclear Chs sequences. Am. J. Bot. 2001, 88, 534–554. [Google Scholar] [CrossRef]
- Bogler, D.J.; Pires, J.C.; Francisco-Ortega, J. Phylogeny of Agavaceae based on ndhF, rbcL and ITS sequences. Aliso A J. Syst. Evol. Bot. 2006, 22, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Milligan, B.G.; Hampton, J.N.; Palmer, J.D. Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 1989, 6, 355–368. [Google Scholar] [PubMed] [Green Version]
- Sun, J.; Wang, Y.; Liu, Y.; Xu, C.; Yuan, Q.; Guo, L.; Huang, L. Evolutionary and phylogenetic aspects of the chloroplast genome of Chaenomeles species. Sci. Rep.-UK 2020, 10, 11466. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Abe, J.; Gai, J.; Shimamoto, Y. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: Evidence for multiple origins of cultivated soybean. Theor. Appl. Genet. 2002, 105, 645–653. [Google Scholar] [CrossRef]
- Mariotti, R.; Cultrera, N.G.; Díez, C.M.; Baldoni, L.; Rubini, A. Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC Plant Biol. 2010, 10, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.Y.; Pak, J.H.; Kim, S.C. The complete plastome sequence of Rubus takesimensis endemic to Ulleung Island, Korea: Insights into molecular evolution of anagenetically derived species in Rubus (Rosaceae). Gene 2018, 668, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, C.H.; Liu, M.; Hu, Y.; Panero, J.L.; Luebert, F.; Gao, T.; Ma, H. Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. J. Integr. Plant Biol. 2021, 63, 1273–1293. [Google Scholar] [CrossRef]
- Gruenstaeudl, M.; Jenke, N. PACVr: Plastome assembly coverage visualitzation in R. BMC Bioinform. 2020, 21, 207. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Guo, S.; Yin, Y.; Zhang, J.; Yin, X.; Liang, C.; Wang, Z.; Huang, B.; Liu, Y.; Xiao, S.; et al. Complete chloroplast genome sequence and phylogenetic analysis of Aster tataricus. Molecules 2018, 23, 2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hereward, J.P.; Werth, J.A.; Thornby, D.F.; Keenan, M.; Chauhan, B.S.; Walter, G.H. Complete chloroplast genome of glyphosate resistant Conyza bonariensis (L.) Cronquist from Australia. Mitochondrial DNA Part B 2017, 2, 444–445. [Google Scholar] [CrossRef]
- Timme, R.E.; Kuehl, J.V.; Boore, J.L. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 2007, 94, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Kanamoto, H.; Yamashita, A.; Okumura, S.; Hattori, M.; Tomizawa, K.I. The complete genome sequence of the Lactuca sativa (lettuce) chloroplast. Plant Cell Physiol. 2004, 45, S39. [Google Scholar]
- Doyle, I.J.; Doyle, J.L. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Gatew. Comput. Environ. Work GCE. 2010. Available online: https://www.gateway.co.jp/ (accessed on 5 November 2021).
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. MAUVE: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DNASP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Soltis, D.E.; Soltis, P.S.; Zhu, X.; Burleigh, J.G.; Chen, Z. Deep phylogenetic incongruence in the angiosperms clade Rosidae. Mol. Phylogenetics Evol. 2015, 83, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem Repeat Finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Family/Tribe | SRA/GenBank | Min | Max | X | SD | Ns | Ns (%) | Genome Size (bp) | GC (%) | LSC Length (bp) | SSC Length (bp) | IRA-B Length (bp) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Achillea millefolium | Anthemideae | SRR17032110 | 10 | 176 | 92.9 | 29.5 | 5519 | 3.70 | 149,113 | 37.9 | 82,450 | 18,406 | 24,126–24,131 |
Anacyclus radiatus | Anthemideae | SRR9822607 | 10 | 96 | 54 | 10.2 | 1247 | 0.83 | 149,866 | 37.5 | 82,481 | 18,427 | 24,479–24,479 |
Argyranthemum foeniculaceum | Anthemideae | SRR17032109 | 10 | 235 | 124.2 | 37.5 | 5698 | 3.80 | 149,841 | 37.9 | 82,471 | 18,396 | 24,487–24,487 |
Artemisia tridentata | Anthemideae | SRR17032104 | 10 | 248 | 11.4 | 11.7 | 10 | 0.01 | 151,143 | 37.4 | 82,916 | 18,295 | 24,966–24,966 |
Santolina chamaecyparissus | Anthemideae | SRR17032107 | 10 | 170 | 760 | 25 | 91 | 0.06 | 149,733 | 37.4 | 82,463 | 18,304 | 24,483–24,483 |
Tanacetum cinerariifolium | Anthemideae | DRR180629 | 36 | 281 | 183.6 | 30.4 | 0 | 0.00 | 150,139 | 37.4 | 82,723 | 18,442 | 24,487–24,487 |
Centipeda minima | Anthemideae | SRR8666707 | 10 | 154 | 83.1 | 15.7 | 3 | 0.00 | 152,432 | 37.5 | 84,125 | 18,367 | 24,970–24,970 |
Aster tataricus | Astereae | NC042913 | GenBank | 152,992 | 37.3 | 84,702 | 18,244 | 25,023–25,023 | |||||
Conyza bonariensis | Astereae | MF276802 | GenBank | 153,014 | 37.2 | 84,655 | 18,358 | 24,998–25,003 | |||||
Bahia ambrosioides | Bahieae | SRR17032103 | 10 | 424 | 252.1 | 62 | 845 | 0.56 | 151,377 | 37.6 | 83,539 | 17,866 | 25,028–24,944 |
Fulcaldea stuessyi | Barnadesieae | SRR2154060 | 10 | 234 | 123 | 33.1 | 2 | 0.00 | 152,890 | 37.8 | 83,894 | 18,664 | 25,191–25,141 |
Archidasphyllum excelsum | Barnadesieae | MH298332 | GenBank | 151,880 | 37.8 | 83,219 | 185,94 | 25,030–25,037 | |||||
Doniophyton anomalum | Barnadesieae | MH899017 | GenBank | 150,547 | 38.0 | 82,297 | 18,785 | 24,743–24,722 | |||||
Calendula arvensis | Calenduleae | SRR17032101 | 10 | 706.5 | 1630 | 155.8 | 1062 | 0.71 | 150,451 | 37.7 | 83,118 | 17,859 | 24,737–24,737 |
Lactuca sativa | Cichorieae | NC007578 | GenBank | 152,765 | 37.5 | 84,103 | 18,502 | 25,032–25,128 | |||||
Sonchus oleraceus | Cichorieae | SRR8666672 | 110 | 577 | 424.1 | 61.5 | 0 | 0.00 | 151,807 | 37.6 | 84,170 | 18,115 | 24,717–24,805 |
Tragopogon porrifolius | Cichorieae | SRS10264650 | 81 | 2422 | 1441.7 | 167.9 | 0 | 0.00 | 153,047 | 37.7 | 84,292 | 18,347 | 25,245–25,163 |
Bidens subalternans | Coreopsideae | SRR17032102 | 10 | 688 | 392.3 | 79.4 | 287 | 0.19 | 151,433 | 37.5 | 83,947 | 18,151 | 24,678–24,657 |
Coreopsis gigantea | Coreopsideae | SRR17032100 | 10 | 811 | 329.4 | 91.7 | 1381 | 0.91 | 151,745 | 37.5 | 83,776 | 18,131 | 24,925–24,913 |
Carthamus tinctorius | Cardueae | NC030783 | GenBank | 153,205 | 37.8 | 94,217 | 18,610 | 25,189–25,189 | |||||
Ageratum houstonianum | Eupatorieae | SRR7121578 | 199 | 541 | 373.7 | 49.5 | 0 | 0.00 | 151,541 | 37.4 | 83,367 | 18,388 | 24,893–24,893 |
Eupatorium cannabinum | Eupatorieae | SRR17032099 | 10 | 442 | 315 | 52.2 | 0 | 0.00 | 151,384 | 37.6 | 83,102 | 18,316 | 24,983–24,983 |
Helichrysum splendidum | Gnaphalieae | SRR17032098 | 14 | 350 | 184.4 | 42.6 | 0 | 0.00 | 153,491 | 37.0 | 85,228 | 18,525 | 24,839–24,839 |
Phagnalon saxatile | Gnaphalieae | SRR17032108 | 30 | 383 | 242.6 | 52.5 | 0 | 0.00 | 152,680 | 37.5 | 84,180 | 18,495 | 25,013–24,992 |
Arnica montana | Madieae | SRR17032105 | 10 | 274 | 127.7 | 28.9 | 2124 | 1.40 | 151,998 | 37.6 | 83,839 | 18,309 | 24,925–24,925 |
Helianthus annuus | Heliantheae | NC007977 | GenBank | 151,104 | 37.6 | 83,612 | 18,326 | 24,583–24,583 | |||||
Pterocaulon sphaeranthoides | Inuleae | SRR8666812 | 10 | 124 | 65.7 | 15 | 1 | 0.00 | 152,219 | 37.6 | 84,069 | 18,168 | 24,991–24,991 |
Streptoglossa adscendens | Inuleae | SRR8666220 | 10 | 172 | 79.7 | 22.1 | 18 | 0.01 | 152,290 | 37.5 | 84,126 | 18,176 | 24,994–24,994 |
Melampodium linerarilobum | Millerieae | ERR3909555 | 10 | 408 | 179.6 | 30.8 | 77 | 0.05 | 153,872 | 37.6 | 85,083 | 18,786 | 25,035–24,968 |
Sigesbeckia orientalis | Millerieae | SRR8666701 | 38 | 211 | 131.7 | 22.5 | 0 | 0.00 | 151,797 | 37.6 | 83,624 | 18,215 | 24,979–24,979 |
Gerbera hybrida | Mutisieae | SRR2154064 | 10 | 1296 | 513.1 | 147.3 | 4 | 0.00 | 154,946 | 37.7 | 83,462 | 18,217 | 25,151–25,116 |
Senecio vulgaris | Senecioneae | SRR2155042 | 88 | 1040 | 646.6 | 158.9 | 0 | 0.00 | 150,802 | 37.3 | 82,890 | 18,212 | 24,818–24,882 |
Tussilago farfara | Senecioneae | SRR17032106 | 10 | 606 | 265.2 | 83.6 | 4986 | 3.32 | 150,314 | 37.2 | 82,503 | 18,187 | 24,800–24,824 |
Flaveria trinervia | Tageteae | SRR8666717 | 10 | 80 | 39.1 | 9.5 | 3 | 0.00 | 152,410 | 37.6 | 83,997 | 18,419 | 24,997–24,997 |
Acilepis saligna | Vernonieae | SRR7121903 | 10 | 296 | 207 | 22.9 | 0 | 0.00 | 152,918 | 37.7 | 84,093 | 18,756 | 25,088–24,981 |
Pleurocarpaea gracilis | Vernonieae | SRR8666739 | 10 | 77 | 40.6 | 8.4 | 122 | 0.08 | 152,432 | 37.7 | 83,569 | 18,531 | 25,172–25,160 |
Nastanthus patagonicus | Fam. Calyceraceae | SRR2153911 | 124 | 6021 | 2326.8 | 1175.8 | 0 | 0.00 | 152,554 | 38.1 | 83,772 | 18,658 | 25,119–25,005 |
Species | Collection Date | Geographic Locality |
---|---|---|
Achillea millefolium | 06 October 2018 | Catalonia, Girona, Llinars |
Argyranthemum foeniculaceum | 27 September 2019 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Arnica montana | 23 September 2018 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Artemisia tridentata | 27 September 2019 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Bahia ambrosioides | 27 September 2019 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Bidens subalternans | 13 September 2018 | Catalonia, Barcelona, Caldes de Montbui |
Calendula arvensis | 06 October 2018 | Catalonia, Barcelona, Caldes de Montbui |
Coreopsis gigantea | 27 September 2019 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Eupatorium cannabinum | 23 September 2018 | Catalonia, Girona, Setcases |
Helichrysum splendidum | 27 September 2019 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Phagnalon saxatile | 27 September 2019 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Santolina chamaecyparissus | 27 September 2019 | Catalonia, Barcelona, Botanical Garden of Barcelona |
Tussilago farfara | 23 September 2018 | Catalonia, Girona, Setcases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascual-Díaz, J.P.; Garcia, S.; Vitales, D. Plastome Diversity and Phylogenomic Relationships in Asteraceae. Plants 2021, 10, 2699. https://doi.org/10.3390/plants10122699
Pascual-Díaz JP, Garcia S, Vitales D. Plastome Diversity and Phylogenomic Relationships in Asteraceae. Plants. 2021; 10(12):2699. https://doi.org/10.3390/plants10122699
Chicago/Turabian StylePascual-Díaz, Joan Pere, Sònia Garcia, and Daniel Vitales. 2021. "Plastome Diversity and Phylogenomic Relationships in Asteraceae" Plants 10, no. 12: 2699. https://doi.org/10.3390/plants10122699