In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield
2.2. Antibacterial Susceptibility Testing
2.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.4. Antiradical Efficiency of Pomegranate Extracts
2.5. In Vitro Antiproliferative Assay
2.6. The Erythrocytes Hemolytic Assay
2.7. Determination of Total Phenolic Content
2.8. GC–MS Analysis of Pomegranate Peel Extracts
2.9. HPLC Analysis of Pomegranate Peel Extracts
3. Discussion
4. Materials and Methods
4.1. Preparation of Plant Extracts
4.2. Preparation of Microbial Suspension
4.3. Antibacterial Susceptibility Testing
4.4. Determination of Minimum Inhibitory Concentration
4.5. Determination of Minimum Bactericidal Concentration
4.6. Antioxidant Activity
4.7. Cytotoxicity Assay (MTT)
4.8. In Vitro Hemolytic Activity
4.9. Determination of Total Phenolic Content
4.10. Gas Chromatography–Mass Spectrometry
4.11. Determination of Phenolic Constituents Using HPLC
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [Green Version]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef] [Green Version]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529. [Google Scholar] [CrossRef]
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozajda, A.; Jeżak, K.; Kapsa, A. Airborne Staphylococcus aureus in different environments—A review. Environ. Sci. Pollut. Res. 2019, 26, 34741–34753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourama, H. Foodborne Pathogens Food Safety Engineering (pp. 25–49); Food Engineering Series; Springer Publishing: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Al-Seghayer, M.S.; Al-Sarraj, F.M. The Outbreak of Foodborne Disease by Pathogenic Enterobacteriaceae Antimicrobial Resistance—A Review. Asian Food Sci. J. 2021, 91–99. [Google Scholar] [CrossRef]
- Lim, J.Y.; Yoon, J.W.; Hovde, C.J. A brief overview of Escherichia coli O157: H7 and its plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadi, Z.R.; Salehi, T.Z.; Tamai, I.A.; Foroushani, A.R.; Sillanpaa, M.; Dallal, M.M.S. Evaluation of antibiotic resistance and prevalence of common Salmonella enterica serovars isolated from foodborne outbreaks. Microchem 2020, 155, 104660. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Twinomuhwezi, H.; Igwe, V.S.; Amagwula, I.O. Food Additives and Food Preservatives for Domestic and Industrial Food Applications. J. Anim. Health 2020, 2, 1–16. [Google Scholar]
- Bearth, A.; Cousin, M.-E.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Fokou, P.V.T.; Azzini, E.; Peluso, I.; et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Pratap, V.; Nigam, A.K.; Sinha, B.K.; Kumar, M.; Singh, J.K.G. Plants as a Source of Potential Antioxidants and Their Effective Nanoformulations. J. Sci. Res. 2021, 65. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017, 4, 127–129. [Google Scholar] [CrossRef]
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017, 50, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: Epidemiology and etiology. Cell Biochem. Biophys. 2015, 72, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Madu, C.O.; Lu, Y. Phytochemicals in Chemoprevention: A Cost-Effective Complementary Approach. J. Cancer 2021, 12, 3686. [Google Scholar] [CrossRef] [PubMed]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.B.; Gupta, M.K.; Pathak, R.K. Natural Products in Cancer Chemoprevention and Chemotherapy. Front. Nat. Prod. Chem. 2020, 6, 151–182. [Google Scholar]
- Coronado-Reyes, J.A.; Cortés-Penagos, C.d.J.; González-Hernández, J.C. Chemical composition and great applications to the fruit of the pomegranate (Punica granatum): A review. Food Sci. Technol. 2021, 1–8. [Google Scholar] [CrossRef]
- Di Sotto, A.; Locatelli, M.; Macone, A.; Toniolo, C.; Cesa, S.; Carradori, S.; Eufemi, M.; Mazzanti, G.; Di Giacomo, S. Hypoglycemic, antiglycation, and cytoprotective properties of a phenol-rich extract from waste peel of Punica granatum L. var. Dente di Cavallo DC2. Molecules 2019, 24, 3103. [Google Scholar] [CrossRef] [Green Version]
- Masci, A.; Coccia, A.; Lendaro, E.; Mosca, L.; Paolicelli, P.; Cesa, S. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chem. 2016, 202, 59–69. [Google Scholar] [CrossRef]
- Vučić, V.; Grabež, M.; Trchounian, A.; Arsić, A. Composition and potential health benefits of pomegranate: A review. Curr. Pharm. Des. 2019, 25, 1817–1827. [Google Scholar] [CrossRef]
- Modaeinama, S.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti tumoral properties of Punica granatum (Pomegranate) peel extract on different human cancer cells. Asian Pac. J. Cancer Prev. 2015, 16, 5697–5701. [Google Scholar] [CrossRef] [Green Version]
- Eroglu Ozkan, E.; Seyhan, M.F.; Kurt Sirin, O.; Yilmaz-Ozden, T.; Ersoy, E.; Hatipoglu Cakmar, S.D.; Goren, A.C.; Aydogan, H.Y.; Ozturk, O. Antiproliferative effects of Turkish pomegranate (Punica granatum L.) extracts on MCF-7 human breast cancer cell lines with focus on antioxidant potential and bioactive compounds analyzed by LC-MS/MS. J. Food Biochem. 2021, 45, e13904. [Google Scholar] [CrossRef]
- Ismail, T.; Akhtar, S.; Sestili, P.; Riaz, M.; Ismail, A.; Labbe, R.G. Antioxidant, antimicrobial and urease inhibitory activities of phenolics rich pomegranate peel hydro-alcoholic extracts. J. Food Biochem. 2016, 40, 550–558. [Google Scholar] [CrossRef]
- Naziri, Z.; Rajaian, H.; Firouzi, R. Antibacterial effects of Iranian native sour and sweet pomegranate (Punica granatum) peel extracts against various pathogenic bacteria. Iran. J. Vet. Res. 2012, 13, 282–288. [Google Scholar]
- Rosas-Burgos, E.C.; Burgos-Hernández, A.; Noguera-Artiaga, L.; Kačániová, M.; Hernández-García, F.; Cárdenas-López, J.L.; Carbonell-Barrachina, Á.A. Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J. Sci. Food Agric. 2017, 97, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Kupnik, K.; Primožič, M.; Vasić, K.; Knez, Ž.; Leitgeb, M. A Comprehensive Study of the Antibacterial Activity of Bioactive Juice and Extracts from Pomegranate (Punica granatum L.) Peels and Seeds. Plants 2021, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Nozohour, Y.; Golmohammadi, R.; Mirnejad, R.; Fartashvand, M. Antibacterial activity of pomegranate (Punica granatum L.) seed and peel alcoholic extracts on Staphylococcus aureus and Pseudomonas aeruginosa isolated from health centers. Appl. Biotechnol. Rep. 2018, 5, 32–36. [Google Scholar] [CrossRef]
- Hajifattahi, F.; Moravej-Salehi, E.; Taheri, M.; Mahboubi, A.; Kamalinejad, M. Antibacterial effect of hydroalcoholic extract of Punica granatum Linn. Petal on common oral microorganisms. Int. J. Biomater. 2016, 2016, 8098943. [Google Scholar] [CrossRef] [Green Version]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int. J. Food Sci. Technol. 2010, 45, 216–222. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Singh, V.; Singh, J.; Kushwaha, R.; Singh, M.; Kumar, S.; Rai, A.K. Assessment of antioxidant activity, minerals and chemical constituents of edible mahua (Madhuca longifolia) flower and fruit of using principal component analysis. Nutr. Food Sci. 2020, 387–411. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Kaurinovic, B.; Vastag, D. Flavonoids and Phenolic Acids as Potential Natural Antioxidants Antioxidants (pp. 1–20); IntechOpen: London, UK, 2019. [Google Scholar]
- Laouicha, S.; Senator, A.; Kherbache, A.; Bouriche, H. Total phenolic contents and antioxidant properties of algerian Arbutus unedo L. extracts. J. Drug Deliv. Ther. 2020, 10, 159–168. [Google Scholar] [CrossRef]
- Keta, O.D.; Deljanin, M.; Petković, V.; Zdunić, G.; Janković, T.; Živković, J.; Ristić-Fira, A.; Petrović, I.M.; Šavikin, K. Pomegranate (Punica granatum L.) Peel Extract: Potential cytotoxic agent against different cancer cell lines. Rec. Nat. Prod. 2020, 14, 326–339. [Google Scholar] [CrossRef]
- Malik, A.; Afaq, F.; Sarfaraz, S.; Adhami, V.M.; Syed, D.N.; Mukhtar, H. Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 14813–14818. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Afaq, F.; Kweon, M.-H.; Kim, K.; Mukhtar, H. Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Res. 2007, 67, 3475–3482. [Google Scholar] [CrossRef] [Green Version]
- Hanafy, S.M.; Abd El-Shafea, Y.M.; Saleh, W.D.; Fathy, H.M. Chemical profiling, in vitro antimicrobial and antioxidant activities of pomegranate, orange and banana peel-extracts against pathogenic microorganisms. J. Genet. Eng. Biotechnol. 2021, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Safdar, M.; Naqvi, S.A.; Anjum, F.; Pasha, I.; Shahid, M.; Jaskani, M.J.; Khan, I.A.; Aadil, R.M. Microbial biofilm inhibition, antioxidants and chemical fingerprints of Afghani pomegranate peel extract documented by GC-MS and FTIR. J. Food Process. Preserv. 2021, e15657. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Caputo, L.; De Martino, L.; Sakr, S.H.; De Feo, V.; Camele, I. Study of bio-pharmaceutical and antimicrobial properties of pomegranate (Punica granatum L.) leathery exocarp extract. Plants 2021, 10, 153. [Google Scholar] [CrossRef]
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.-M.; Liu, X.; Hu, Y.-H.; Feng, H.-L.; Jia, Y.-L.; Guo, Y.-J.; Zhou, H.T.; Chen, Q.-X. Antityrosinase and antimicrobial activities of furfuryl alcohol, furfural and furoic acid. Int. J. Biol. Macromol. 2013, 57, 151–155. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Ramanathan, T. Antiquorum sensing and biofilm potential of 5-Hydroxymethylfurfural against Gram positive pathogens. Microb. Pathog. 2018, 125, 48–50. [Google Scholar] [CrossRef]
- Pu, Z.-H.; Zhang, Y.-Q.; Yin, Z.-Q.; Jiao, X.; Jia, R.-Y.; Yang, L.; Fan, Y. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3, 4-diyl ester from neem oil. Agric. Sci. China 2010, 9, 1236–1240. [Google Scholar] [CrossRef]
- Khaleel, A.; Sijam, K.; Rashid, T. Determination of antibacterial compounds of Punica Granatum peel extract by tlc direct bio-autography and GCMS analysis. Biochem. Cell. Arch. 2018, 18, 379–384. [Google Scholar]
- Tanveer, A.; Farooq, U.; Akram, K.; Hayat, Z.; Shafi, A.; Nazar, H.; Ahmad, Z. Pomegranate extracts: A natural preventive measure against spoilage and pathogenic microorganisms. Food Rev. Int. 2015, 31, 29–51. [Google Scholar] [CrossRef]
- Ko, K.; Dadmohammadi, Y.; Abbaspourrad, A. Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. Foods 2021, 10, 657. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci. 2021, 286, 120046. [Google Scholar] [CrossRef]
- Amaechi, N.C.; Okonkwo, U. Identification of compounds in Garcinia kola (Heckel) fruit pulp using gas chromatography-mass spectrometry. Arch. Curr. Res. Int. 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Ismail, B.A.; Nassar, D.A.; Abd El–Wahab, Z.H.; Ali, O.A. Synthesis, characterization, thermal, DFT computational studies and anticancer activity of furfural-type schiff base complexes. J. Mol. Struct. 2021, 1227, 129393. [Google Scholar] [CrossRef]
- Isbilen, O.; Rizaner, N.; Volkan, E. Anti-proliferative and cytotoxic activities of Allium autumnale PH Davis (Amaryllidaceae) on human breast cancer cell lines MCF-7 and MDA-MB-231. BMC Complement. Altern. Med. 2018, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Velderrain-Rodríguez, G.; Torres-Moreno, H.; Villegas-Ochoa, M.A.; Ayala-Zavala, J.F.; Robles-Zepeda, R.E.; Wall-Medrano, A.; González-Aguilar, G.A. Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘Ataulfo’mango peel on LS180 cells. Molecules 2018, 23, 695. [Google Scholar] [CrossRef] [Green Version]
- Adaramoye, O.; Erguen, B.; Nitzsche, B.; Höpfner, M.; Jung, K.; Rabien, A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chem.-Biol. Interact. 2017, 274, 100–106. [Google Scholar] [CrossRef] [PubMed]
- El-Hamamsy, S.; El-khamissi, H. Phytochemicals, Antioxidant Activity and Identification of Phenolic Compounds by HPLC of Pomegranate (Punica granatum L.) Peel Extracts. J. Agr. Chem. Biotechnol. 2020, 11, 79–84. [Google Scholar] [CrossRef]
- Almeer, R.S.; Aref, A.M.; Hussein, R.A.; Othman, M.S.; Abdel Moneim, A.E. Antitumor potential of berberine and cinnamic acid against solid ehrlich carcinoma in mice. Anticancer. Agents Med. Chem. 2019, 19, 356–364. [Google Scholar] [CrossRef]
- Boz, H. p-Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015, 50, 2323–2328. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, C.; Wu, Q.; Zheng, Z.; Liu, P.; Li, G.; Peng, X.; Xia, X. Antimicrobial activity of punicalagin against Staphylococcus aureus and its effect on biofilm formation. Foodborne Pathog. Dis. 2017, 14, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Liu, L.; Liu, M.; Wu, X.; Li, J. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control 2018, 94, 147–154. [Google Scholar] [CrossRef]
- Dey, D.; Ray, R.; Hazra, B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae. Pharm. Biol. 2015, 53, 1474–1480. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard M2-A8; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2003. [Google Scholar]
- Njume, C.; Afolayan, A.; Green, E.; Ndip, R. Volatile compounds in the stem bark of Sclerocarya birrea (Anacardiaceae) possess antimicrobial activity against drug-resistant strains of Helicobacter pylori. Int. J. Antimicrob. Agents 2011, 38, 319–324. [Google Scholar] [CrossRef]
- Popovici, V.; Bucur, L.; Popescu, A.; Schröder, V.; Costache, T.; Rambu, D.; Cucolea, I.E.; Gîrd, C.E.; Caraiane, A.; Gherghel, D.; et al. Antioxidant and Cytotoxic Activities of Usnea barbata (L.) FH Wigg. Dry Extracts in Different Solvents. Plants 2021, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Sepehr, K.S.; Baradaran, B.; Mazandarani, M.; Yousefi, B.; Alitappeh, M.A.; Khori, V. Growth-inhibitory and apoptosis-inducing effects of Punica Granatum, L. var. spinosa (apple punice) on fibrosarcoma cell lines. Adv. Pharm. Bull. 2014, 4, 583. [Google Scholar]
- Grbović, F.; Stanković, M.S.; Ćurčić, M.; Đorđević, N.; Šeklić, D.; Topuzović, M.; Marković, S. In vitro cytotoxic activity of Origanum vulgare L. on HCT-116 and MDA-MB-231 cell lines. Plants 2013, 2, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.; Rasool, N.; Bukhari, I.H.; Shahid, M.; Zubair, M.; Rizwan, K.; Rashid, U. In vitro antimicrobial, antioxidant, cytotoxicity and GC-MS analysis of Mazus goodenifolius. Molecules 2012, 17, 14275–14287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gad, H.A.; Mamadalieva, N.Z.; Böhmdorfer, S.; Rosenau, T.; Zengin, G.; Mamadalieva, R.Z.; Musayeib, N.M.; Ashour, M.L. GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants 2021, 10, 124. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strains | Methanolic Extract of Pomegranate Peels (mg/mL) | |
---|---|---|
MIC | MBC | |
S. aureus | 0.125 | 0.250 |
MRSA | 0.250 | 0.500 |
E. coli | 0.500 | 1.000 |
S. typhimurium | 0.500 | 2.000 |
Compounds | Chemical Formula | Mol. Weight | RT | % of Total |
---|---|---|---|---|
Glycerin | C3H8O3 | 92.09 | 5.623 | 7.74 |
Furfural | C5H4O2 | 96.08 | 5.717 | 14.62 |
Cyclobutylamine | C4H7NH2 | 71.12 | 7.615 | 1.58 |
4H-Pyran-4-one, 3,5-dihydroxy-2-methyl | C6H8O4 | 144.12 | 9.487 | 1.14 |
Pyrazole[4,5-b]imidazole, 1-formyl-3-ethyl-6-β-d-ribofuranosyl | C12H16N4O5 | 296.28 | 10.672 | 2.39 |
L-Glucose | C6H12O6 | 180.16 | 14.926 | 1.07 |
Palmitic acid | C16H32O2 | 256.42 | 15.236 | 1.18 |
5-Hydroxymethylfurfural | C6H6O3 | 126.11 | 17.374 | 37.55 |
Heptasiloxane, hexadecamethyl- | C6H16O2Si | 148.28 | 19.066 | 3.14 |
Octadecanoic acid | C18H36O2 | 284.48 | 22.165 | 16.89 |
γ-Sitosterol | C29H50O | 414.71 | 25.982 | 9.23 |
Lanosterol | C30H50O | 426.72 | 31.365 | 1.82 |
Cycloartenol acetate | C32H52O2 | 468.76 | 34.182 | 1.64 |
Compounds | Chemical Formula | Mol. Weight | RT | % of Total |
---|---|---|---|---|
Furfural | C5H4O2 | 96.08 | 4.793 | 11.29 |
2-ethyl-1,3-dimethyl-benzene | C10H14 | 134.21 | 4.927 | 4.25 |
Hexadecanoic acid, methyl ester | C17H34O2 | 270.45 | 5.783 | 1.89 |
α-Cubebene | C15H24 | 204.35 | 7.187 | 1.06 |
4H-Pyran-4-one, 3,5-dihydroxy-2-methyl, | C6H8O4 | 144.12 | 9.163 | 3.67 |
2,5-Furandione, 3-methyl | C5H4O3 | 112.08 | 9.817 | 7.12 |
2-Furancarboxaldehyde, 5-methyl | C6H6O2 | 110.11 | 11.284 | 9.58 |
D-Arabinose | C5H10O5 | 150.13 | 12.456 | 5.78 |
4-Methyl itaconate | C6H8O4 | 144.12 | 15.358 | 2.45 |
5-hydroxymethylfurfural | C6H6O3 | 126.11 | 17.236 | 28.84 |
n-Hexadecanoic acid | C16H32O2 | 256.43 | 17.897 | 6.85 |
N-phenyl-2-naphthalenamine | C16H13N | 219.28 | 19.681 | 8.47 |
Squalene | C30H50 | 410.70 | 21.578 | 4.29 |
Eicosane | C20H42 | 282.55 | 24.185 | 1.56 |
Lanosterol | C30H50O | 426.71 | 29.257 | 2.89 |
Compounds | Chemical Formula | Mol. Weight | RT | % of Total |
---|---|---|---|---|
Aminopropionic acid | C3H7NO2 | 89.09 | 3.634 | 19.46 |
Dicholoroacetamide | C2H3Cl2NO | 127.95 | 4.146 | 11.23 |
Benzeneacetic acid | C8H8O2 | 136.15 | 4.935 | 1.28 |
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | C6H8O4 | 144.12 | 6.357 | 1.98 |
2,6-Di-tert-butylphenol | C14H22O | 206.32 | 8.439 | 8.12 |
Trioxsalen | C14H12O3 | 228.24 | 9.637 | 6.78 |
Octadecenoate | C18H33O2 | 281.50 | 12.842 | 2.78 |
2,6-Dimethyl-3,4-bis(trimethylsilyloxymethyl)pyridine | C15H29NO2Si2 | 311.57 | 16.751 | 5.23 |
Octadecanoic acid, 2-propenyl ester | C21H40O2 | 324.50 | 18.265 | 4.85 |
Hexasiloxan, tetradecamethy | C14H42O5Si6 | 458.99 | 26.483 | 38.28 |
Compounds | Chemical Formula | Retention Time (min.) | Concentration (mg/mL) |
---|---|---|---|
Protocatechuic acid | C7H6O4 | 7.98 | 10.78 |
p-coumaric acid | C9H8O3 | 12.32 | 19.85 |
Punicalagin | C48H28O30 | 13.62 | 9.12 |
Gallic acid | C7H6O5 | 14.94 | 7.89 |
Cinnamic acid | C9H8O2 | 16.21 | 31.69 |
Quercetin | C15H10O7 | 20.32 | 20.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yassin, M.T.; Mostafa, A.A.-F.; Al Askar, A.A. In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels. Plants 2021, 10, 2742. https://doi.org/10.3390/plants10122742
Yassin MT, Mostafa AA-F, Al Askar AA. In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels. Plants. 2021; 10(12):2742. https://doi.org/10.3390/plants10122742
Chicago/Turabian StyleYassin, Mohamed Taha, Ashraf Abdel-Fattah Mostafa, and Abdulaziz Abdulrahman Al Askar. 2021. "In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels" Plants 10, no. 12: 2742. https://doi.org/10.3390/plants10122742
APA StyleYassin, M. T., Mostafa, A. A. -F., & Al Askar, A. A. (2021). In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels. Plants, 10(12), 2742. https://doi.org/10.3390/plants10122742