Dual-Purpose of the Winged Bean (Psophocarpus tetragonolobus (L.) DC.), the Neglected Tropical Legume, Based on Pod and Tuber Yields
Abstract
:1. Introduction
2. Results
2.1. Genotype Response and Environment
2.2. Potential of Pod-Related Traits and Tuber Yield Production of the Winged Bean
2.3. Proximate Analysis of Nutrients and Minerals of Winged Bean Tuber
3. Discussion
3.1. Genotype Response and Environment
3.2. Potential of Pod-Related Traits and Tuber Yield Production of the Winged Bean
3.3. Proximate Analysis of Nutrients and Minerals of Winged Bean Tuber
4. Materials and Methods
4.1. Plant Material
4.2. Field Experiment
4.3. Data Collection
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harder, D.K. Chromosome Counts in Psophocarpus. Kew Bull. 1992, 47, 529–534. [Google Scholar] [CrossRef]
- Kuswanto, A.N.; Saptadi, D.; Waluyo, B. Evaluation and Selection on Local Strains of Winged Bean in Brawijaya University Indonesia. Trans. Persat. Genet. Malays. 2016, 3, 51–55. [Google Scholar]
- NAS. Underexploited Tropical Plants with Promising Economic Value; Board of Science and Technology for International Development; National Academy of Sciences: Washington, DC, USA, 1975; pp. 56–63. [Google Scholar]
- Lepcha, P.; Egan, A.N.; Doyle, J.J.; Sathyanarayana, N. A Review on Current Status and Future Prospects of Winged Bean (Psophocarpus tetragonolobus) in Tropical Agriculture. Plant Foods Hum. Nutr. 2017, 72, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, C.S.; Verma, S.; Singh, V.; Khan, S.; Gaur, P.; Gupta, P.; Nizar, M.A.; Dikshit, N.; Pattanayak, R.; Shukla, A.; et al. Characterization of winged bean (Psophocarpus tetragonolobus (L.) DC.) based on molecular, chemical, and physiological parameters. Am. J. Mol. Biol. 2013, 3, 187–197. [Google Scholar] [CrossRef] [Green Version]
- NAS. The Winged Bean: High-Protein Crop for the Humid Tropics, 2nd ed.; National Academy Press: Washington, DC, USA, 1981; p. 41. [Google Scholar]
- Amoo, I.A.; Adebayo, O.T.; Oyeleye, A.O. Chemical evaluation of Winged beans (Psophocarpus tetragonolobus), pitanga cherries (Eugenia uniflora) and orchid fruit (Orchidfruit myristica). Afr. J. Food Agric. Nutr. Dev. 2006, 6, 1–12. [Google Scholar]
- Kadam, S.S.; Salunkhe, D.K.; Luh, B.S. Winged bean in human nutrition. Crit. Rev. Food Sci. Nutr. 1984, 21, 1–40. [Google Scholar] [CrossRef]
- Prakash, D.; Misra, P.N.; Misra, P.S. Amino acid profile of winged bean (Psophocarpus tetragonolobus (L.) DC): A rich source of vegetable protein. Plant Foods Hum. Nutr. 1987, 37, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Adegboyega, T.T.; Abberton, M.T.; AbdelGadir, A.A.H.; Dianda, M.; Maziya-Dixon, B.; Oyatomi, O.A.; Ofodile, S.; Babalola, O.O. Nutrient and antinutrient composition of winged bean (Psophocarpus tetragonolobus (L.) DC.) seeds and tubers. J. Food Qual. 2019, 2019, e3075208. [Google Scholar] [CrossRef] [Green Version]
- Mahto, C.S.; Dua, R.P. Genetic Divergence for Yield Contributing Traits in Winged Bean. Indian J. Plant Genet. Resour. 2009, 22, 239–242. [Google Scholar]
- Laosatit, K.; Amkul, K.; Chankaew, S.; Somta, P. Molecular genetic diversity of winged bean (Psophocarpus tetragonolobus (L.) DC.) gene pool in Thailand assessed by SSR markers. Hort. Plant J. 2021. [Google Scholar] [CrossRef]
- Eagleton, G.E. Winged bean (Psophocarpus tetragonolobus) cropping systems. Biodiversitas 2020, 21, 5927–5946. [Google Scholar] [CrossRef]
- Hildebrand, D.F.; Chaven, C.; Hymowitz, T.; Bryan, H.H. Variation in storage root protein content in winged beans, Psophocarpus tetragonolobus (L.) DC. Trop. Agric. 1982, 59, 59–61. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050 the 2012 Revision; Food Agric. Organ UN: Rome, Italy, 2012; p. 146. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanapat, M. Potential uses of local feed resources for ruminants. Trop. Anim. Health Prod. 2009, 41, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Khan, T. Winged Bean Production in the Tropics; Food and Agriculture Organization of the United Nations: Rome, Italy, 1982; pp. 195–217. [Google Scholar]
- Stephenson, R.A.; Kesavan, V.; Claydon, A.; Bala, A.A.; Kaiulo, J.V. Studies on Tuber Production in Winged Bean (Psophocarpus tetragonolobus (L.) DC.). In Proceedings of the Fifth International Symposium on Tropical Root and Tuber Crops International Society of Tropical Root Crops, PCARR, Los Baños, Philippines, 17–21 September 1979. [Google Scholar]
- Reddy, P.P. Tropical Root and Tuber Crops: An Overview. In Plant Protection in Tropical Root and Tuber Crops; Springer: New Delhi, India, 2015; pp. 1–15. [Google Scholar] [CrossRef]
- Srinivasan, R. Insect and Mite Pests on Vegetable Legumes: A Field Guide for Identification and Management; AVRDC—The World Vegetable Center: Shanhua, Taiwan, 2014; 92p. [Google Scholar]
- Afun, J.V.K.; Jackai, L.E.N.; Hodgson, C.J. Calender and monitored insecticide application for the control of cowpea pests. Crop Prot. 1991, 10, 363–370. [Google Scholar] [CrossRef]
- Oparaeke, A.M. The sensitivity of flower bud thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae), on cowpea to three concentrations and spraying schedules of Piper guineense Schum. & Thonn. extracts. Plant Protect. Sci. 2006, 42, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Muthomi, J.W.; Otieno, P.E.; Cheminingwa, G.N.; Nderitu, J.H.; Wagacha, J.M. Effect of chemical spray on insect pests and yield quality of food grain legumes. J. Entomol. 2008, 3, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Regmi, R.; Tiwari, S.; Thapa, R.B.; Fashions, G.B.K.C. Ecofriendly management of spotted pod borer, Maruca vitrata on yardlong bean in Chitwan, Nepal. Inter. J. Res. 2014, 1, 386–394. [Google Scholar]
- Aktar, S.; Uddin, M.M.; Ahmed, K.S. Bioefficacy of some novel insecticides and biopesticides for managing bean pod borer, Maruca vitrata Geyer. J. Bangladesh Agril. Univ. 2020, 18, 183–188. [Google Scholar] [CrossRef]
- Ahmed, R.N.; Uddin, M.M.; Haque, M.A.; Ahmed, K.S. Field evaluation of microbial derivatives for management of legume pod borer, Maruca vitrata F. in yard long bean. J. Entomol. Zool. Stud. 2020, 8, 162–166. [Google Scholar] [CrossRef]
- Khan, T.N.; Bohn, J.C.; Stephenson, R.A. Winged beans: Cultivation in Papua New Guinea. World Crop. Livest. 1977, 29, 208–214. [Google Scholar]
- Khan, T.N.; Erskine, W. The adaptation of winged bean (Psophocarpus tetragonolobus (L.) DC.) in Papua New Guinea. Aust. J. Agric. Res. 1978, 29, 281–289. [Google Scholar] [CrossRef]
- Erskine, W.; Khan, T.N. Variation within and between land races of winged bean (Psophocarpus tetragonolobus (L.) DC.). Field Crops Res. 1980, 3, 359–364. [Google Scholar] [CrossRef]
- Shewry, R.P. Tuber Storage Proteins. Ann. Bot. 2003, 91, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Morgan, N.K.; Choct, M. Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; The Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 1991. [Google Scholar]
- Adamu, H.M.; Ushie, O.A.; Gwangwala, A.H.; Yadav, R.P.; Singh, A.; Bhardwaj, A.K.; Lone, P.A.; Dar, M.M.; Parray, J.A.; Shah, K.; et al. Estimation of Total Flavonoids and Tannins in the Stem Bark and Leaves of Anogeisus leiocarpus Plant plant. Int. J. Tradit. Nat. Med. 2013, 2, 141–148. [Google Scholar]
- Sigel, H. Metals in Biological Systems; Marcel Dekker: New York, NY, USA, 1978. [Google Scholar]
- Van Soest, P.J.; Robertson, J.D.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hseu, Z.Y. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour. Technol. 2004, 5, 53–59. [Google Scholar] [CrossRef]
- Rossete, A.L.R.M.; Bendassolli, J.A.; Trivelin, P.C.O. Organic sulfur oxidation to sulfate in soil samples for total sulfur determination by turbidimetry. Rev. Bras. Ciência Solo 2008, 32, 2547–2553. [Google Scholar] [CrossRef] [Green Version]
Source of Variation | df | Total Pod Weight | Number of Pods | 10-Pod Weight | Pod Length | Tuber Weight |
---|---|---|---|---|---|---|
(T/ha) | (Pod/ha) | (g) | (cm) | (T/ha) | ||
Year (Y) | 1 | 207.06 * | 8,162,282 * | 4.12 | 0.03 | 7.7 |
Rep. within Y | 4 | 18.55 | 863,650 | 1263.34 | 0.31 | 6.38 |
Genotypes (G) | 9 | 21.47 ** | 548,701 ** | 1101.94 | 1.33 ** | 12.68 |
Y × G | 9 | 8.95 * | 234,256 | 1239.4 | 0.35 | 15.56 * |
pool error | 36 | 3.49 | 137,609 | 1117.94 | 0.23 | 7.04 |
Grand Mean | 4.83 | 760.67 | 71.93 | 13.81 | 7.33 | |
CV(YearxRep) | 89.26 | 122.17 | 49.41 | 4.01 | 34.45 | |
CV(YearxRepxVariety) | 38.71 | 48.77 | 46.48 | 3.49 | 36.19 |
Accessions | Total Pod Weight (T/ha) | Number of Pods (Pod/ha) | 10-Pod Weight (g) | Pod Length (cm) | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
W001 | 10.94 b–d | 11.18 ab | 17,694 × 102 b–d | 14,280 × 102 ab | 61.84 | 77.16 | 14.11 a–c | 14.49 ab |
W005 | 7.22 cd | 3.96 c–e | 12,254 × 102 cd | 5493 × 102 c–e | 62.97 | 68.53 | 13.28 de | 13.18 cd |
W005 | 7.22 cd | 3.96 c–e | 12,254 × 102 cd | 5493 × 102 c–e | 62.97 | 68.53 | 13.28 de | 13.18 cd |
W007 | 5.58 d | 6.10 b–e | 8954 × 102 d | 7447 × 102 c–e | 61.76 | 62.79 | 13.93 a–d | 14.54 a |
W018 | 18.36 ab | 8.44 a–c | 32,186 × 102 ab | 11,367 × 102 a–c | 61.84 | 78.52 | 13.32 de | 13.85 a–d |
W031 | 12.72 d–d | 1.22 e | 20,500 × 102 d–d | 1867 × 102 e | 64.69 | 66.85 | 14.15 a–c | 13.19 cd |
W048 | 15.06 b | 2.46 de | 24,114 × 102 a–d | 3140 × 102 de | 65.37 | 69.92 | 14.51 a | 14.00 a–c |
W055 | 13.12 bc | 5.02 c–e | 22,686 × 102 a–d | 6107 × 102 c–e | 59.85 | 65.15 | 13.63 b–e | 13.90 a–d |
W061 | 15.82 b | 6.42 b–d | 28,406 × 102 a–c | 8833 × 102 b–d | 62.48 | 73.22 | 13.11 e | 13.06 d |
W099 | 23.64 a | 11.7 a | 39,354 × 102 a | 15,880 × 102 a | 67.43 | 76.68 | 14.40 ab | 14.46 ab |
W148 | 11.20 b–d | 2.86 de | 19,754 × 102 b–d | 3953 × 102 de | 62.13 | 77.89 | 13.46 c–e | 13.65 b–d |
Mean | 13.37 | 5.94 | 22,590 ×102 | 7837 × 102 | 63.03 | 71.67 | 13.79 | 13.89 |
F-test | ** | ** | * | ** | ns | ns | ** | ** |
CV (%) | 32.73 | 49.9 | 43.2 | 49.17 | 5.07 | 15.88 | 3.27 | 3.69 |
Accessions | Tuber Weight (T/ha) | |
---|---|---|
2019 Experiment | 2020 Experiment | |
W001 | 12.00 b–d | 10.20 a |
W005 | 13.54 b–d | 4.50 e |
W007 | 16.46 a–c | 6.80 cd |
W018 | 15.54 a–c | 10.23 a |
W031 | 12.2 b–d | 8.10 bc |
W048 | 23.00 a | 5.87 de |
W055 | 7.96 cd | 5.90 de |
W061 | 6.14 d | 8.13 bc |
W099 | 15.20 a–d | 9.07 ab |
W148 | 17.44 ab | 8.07 bc |
Mean | 14.00 | 7.69 |
F-test | * | ** |
CV (%) | 37.91 | 12.42 |
Accessions | EE (%) | CF (%) | NDF (%) | ADF (%) | GE (J/g) | Ash (%) | CP (%) |
---|---|---|---|---|---|---|---|
W001 | 0.29 ef | 3.20 c | 21.68 g | 6.24 e | 16,174 ab | 2.96 b | 21.66 c |
W005 | 0.33 d | 3.11 cd | 24.46 d | 5.77 g | 16,241 a | 2.48 e | 20.41 e |
W007 | 0.32 de | 3.57 b | 21.66 g | 6.54 d | 16,157 a–c | 2.85 c | 21.68 c |
W018 | 0.31 de | 4.07 a | 22.91 f | 8.98 a | 15,990 cd | 3.01 ab | 21.04 d |
W031 | 0.26 f | 2.99 d | 26.90 b | 7.11 c | 16,132 a–c | 2.98 ab | 22.11 b |
W048 | 0.85 b | 2.60 f | 26.21 c | 6.48 d | 15,869 de | 2.68 d | 21.48 c |
W055 | 0.88 b | 3.02 d | 16.62 h | 7.00 c | 15,845 de | 2.85 c | 20.71 de |
W061 | 0.63 c | 2.96 de | 32.38 a | 7.33 b | 16,264 a | 3.03 a | 25.59 a |
W099 | 1.13 a | 2.37 g | 24.20 e | 5.92 f | 15,810 e | 2.62 d | 20.92 d |
W148 | 1.16 a | 2.82 e | 15.29 i | 6.03 f | 16,050 bc | 2.62 d | 20.73 de |
F-test | ** | ** | ** | ** | ** | ** | ** |
CV (%) | 2.75 | 2.26 | 0.44 | 0.81 | 0.49 | 0.59 | 0.72 |
Accessions | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | S (%) | Fe (mg/kg) | Mn (mg/kg) | Zn (mg/kg) | Cu (mg/kg) | Ni (mg/kg) | Co (mg/kg) | B (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W001 | 2.93 b | 0.32 b | 0.56 c | 0.13 b | 0.29 b | 0.11 b | 105.19 a | 23.27 c | 20.58 e | 10.62 c | 2.06 c | 0.26 cd | 42.63 a |
W005 | 2.875 bc | 0.26 e | 0.53 d | 0.10 e | 0.21 g | 0.10 c | 77.85 d | 19.30 d | 22.78 cd | 5.06 e | 2.03 c | 0.22 ef | 29.74 d |
W007 | 2.915 b | 0.30 c | 0.53 de | 0.11 d | 0.25 de | 0.09 d | 102.52 a | 19.81 d | 28.25 b | 14.79 a | 2.13 c | 0.22 ef | 21.84 g |
W018 | 2.795 d | 0.29 d | 0.51 e | 0.12 b | 0.31 a | 0.11 b | 98.27 b | 24.08 c | 15.32 g | 5.50 e | 2.70 a | 0.35 a | 27.86 e |
W031 | 2.85 cd | 0.32 b | 0.59 b | 0.11 d | 0.27 c | 0.11 b | 72.22 e | 26.52 b | 18.28 f | 11.39 b | 2.36 b | 0.30 b | 37.88 b |
W048 | 2.625 e | 0.34 a | 0.62 a | 0.09 f | 0.20 h | 0.09 d | 64.54 f | 17.69 e | 18.46 f | 5.14 e | 1.88 d | 0.21 f | 36.46 c |
W055 | 2.885 bc | 0.32 b | 0.58 b | 0.12 c | 0.24 e | 0.10 c | 71.05 e | 20.25 d | 21.15 de | 10.60 c | 2.02 c | 0.33 a | 23.37 f |
W061 | 3.51 a | 0.32 b | 0.51 e | 0.16 a | 0.27 c | 0.12 a | 88.15 c | 32.03 a | 24.24 c | 9.73 d | 2.31 b | 0.30 b | 27.74 e |
W099 | 2.84 cd | 0.25 f | 0.51 e | 0.09 f | 0.22 f | 0.10 cd | 76.71 d | 24.18 c | 19.54 ef | 10.44 c | 2.02 c | 0.24 de | 24.67 f |
W148 | 2.475 f | 0.30 c | 0.53 d | 0.085 f | 0.24 d | 0.09 d | 87.48 c | 23.57 c | 47.36 a | 5.06 e | 2.34 b | 0.28 bc | 28.12 e |
F-test | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
CV (%) | 0.89 | 1.33 | 1.37 | 2.64 | 1.6 | 2.2 | 1.75 | 2.01 | 3.12 | 3.06 | 2.66 | 4.87 | 1.96 |
Accessions No | Accessions Code | Fresh Pod Characters | Original and Sources |
---|---|---|---|
1 | W001 | Green color, non-bitter, short, and soft | Japan: Gene bank of NIAS—Japan |
2 | W005 | Green color, non-bitter, short, and soft | Indonesia: Gene bank of NIAS—Japan |
3 | W007 | Green color, non-bitter, short, and soft | Indonesia: Gene bank of NIAS—Japan |
4 | W018 | Green color, non-bitter, short, and soft | Nigeria: Gene bank of NIAS—Japan |
5 | W031 | Green color, non-bitter, short, and soft | Nigeria: Gene bank of NIAS—Japan |
6 | W048 | Green color, non-bitter, short, and soft | Malaysia: Gene bank of NIAS—Japan |
7 | W055 | Green color, non-bitter, short, and soft | Khon Kaen, Thailand |
8 | W061 | Green color, non-bitter, short, and soft | Nakhon Si Thammarat, Thailand |
9 | W099 | Green color, non-bitter, short, and soft | Nan, Thailand |
10 | W148 | Green color, non-bitter, short, and soft | Trang, Thailand |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriwichai, S.; Monkham, T.; Sanitchon, J.; Jogloy, S.; Chankaew, S. Dual-Purpose of the Winged Bean (Psophocarpus tetragonolobus (L.) DC.), the Neglected Tropical Legume, Based on Pod and Tuber Yields. Plants 2021, 10, 1746. https://doi.org/10.3390/plants10081746
Sriwichai S, Monkham T, Sanitchon J, Jogloy S, Chankaew S. Dual-Purpose of the Winged Bean (Psophocarpus tetragonolobus (L.) DC.), the Neglected Tropical Legume, Based on Pod and Tuber Yields. Plants. 2021; 10(8):1746. https://doi.org/10.3390/plants10081746
Chicago/Turabian StyleSriwichai, Sasiprapa, Tidarat Monkham, Jirawat Sanitchon, Sanun Jogloy, and Sompong Chankaew. 2021. "Dual-Purpose of the Winged Bean (Psophocarpus tetragonolobus (L.) DC.), the Neglected Tropical Legume, Based on Pod and Tuber Yields" Plants 10, no. 8: 1746. https://doi.org/10.3390/plants10081746
APA StyleSriwichai, S., Monkham, T., Sanitchon, J., Jogloy, S., & Chankaew, S. (2021). Dual-Purpose of the Winged Bean (Psophocarpus tetragonolobus (L.) DC.), the Neglected Tropical Legume, Based on Pod and Tuber Yields. Plants, 10(8), 1746. https://doi.org/10.3390/plants10081746