Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species
Abstract
:1. Introduction
2. Results
2.1. Effects on the Composition of the Arthropod Fauna
2.2. Effects on Diversity of Arthropods
2.2.1. Structure
2.2.2. Species Richness
2.3. Effects on Functional Species Pools
2.3.1. Phytophagous Group
2.3.2. Natural Enemies
3. Discussion
4. Materials and Methods
4.1. Location
4.2. Experimental Units
4.3. Insecticide Treatments
4.4. Sampling Methodology
4.4.1. Pitfall Trapping
4.4.2. Plant Sampling
4.4.3. Pan Trapping
4.5. Sample Processing
4.5.1. Sample Washing
4.5.2. Morphological Identification
4.5.3. Molecular Identification
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.E.; Bazile, D.; Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Cruces, L.; Callohuari, Y.; Carrera, C. Quinua Manejo Integrado de Plagas. Estrategias en El Cultivo de La Quinua Para Fortalecer El Sistema Agroalimentario en La Zona Andina; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Santiago, Chile, 2016; pp. 1–189. [Google Scholar]
- Bedoya-Perales, N.S.; Pumi, G.; Mujica, A.; Talamini, E.; Domingos Padula, A. Quinoa expansion in Peru and its implications for land use management. Sustainability 2018, 10, 532. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa, L.; Leguizamo, A.; Carpio, C.; Muñoz, D.; Mestanza, C.; Ochoa, J.; Castillo, C.; Murillo, A.; Villacréz, E.; Monar, C.; et al. Quinoa in Ecuador: Recent advances under global expansion. Plants 2021, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Cruces, L.; de la Peña, E.; De Clercq, P. Seasonal phenology of the major insect pests of quinoa (Chenopodium quinoa Willd.) and their natural enemies in a traditional zone and two new production zones of Peru. Agriculture 2020, 10, 644. [Google Scholar] [CrossRef]
- Saravia, R.; Plata, G.; Gandarillas, A. Plagas y Enfermedades del Cultivo de Quinua; Fundación PROINPA: Cochabamba, Bolivia, 2014; pp. 1–82. [Google Scholar]
- Gamboa, C.; Van den Broeck, G.; Maertens, M. Smallholders’ preferences for improved quinoa varieties in the Peruvian Andes. Sustainability 2018, 10, 3735. [Google Scholar] [CrossRef] [Green Version]
- Bazile, D.; Bertero, H.; Nieto, C. Estado del Arte de La Quinua en El Mundo en 2013; FAO: Santiago, Chile; CIRAD: Montpellier, France, 2014; pp. 1–724. [Google Scholar]
- Bocchi, S.; Cinquanta, D.; Negri, M.; Dioli, P.; Limonta, L. Nysius cymoides (Spinola) on Chenopodium quinoa Willd. cultivated in Italy. J. Entomol. Acarol. Res. 2016, 48, 332–334. [Google Scholar] [CrossRef] [Green Version]
- Latorre, J. Is Quinoa Cultivation on the Coastal Desert of Peru Sustainable? A Case Study from Majes, Arequipa. Master’s Thesis, Aarhus University, Aarhus, Denmark, 2017. [Google Scholar]
- Cruces, L.; de la Peña, E.; De Clercq, P. Insect diversity associated with quinoa (Chenopodium quinoa Willd.) in three altitudinal production zones of Peru. Int. J. Trop. Insect Sci. 2020, 40, 955–968. [Google Scholar] [CrossRef]
- Jacobsen, S. The scope for adaptation of quinoa in northern latitudes of Europe. J. Agron. Crop Sci. 2017, 203, 603–613. [Google Scholar] [CrossRef]
- Torres, J.B.; Bueno, A.D. Conservation biological control using selective insecticides–a valuable tool for IPM. Biol. Control 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Naumann, K. Synthetic Pyrethroid Insecticides: Chemistry and Patents; Springer: Heidelberg, Germany, 2012; pp. 1–390. [Google Scholar]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Stanley, J.; Preetha, G. Pesticide Toxicity to Non-Target Organisms: Exposure, Toxicity and Risk Assessment Methodologies; Springer: Berlin, Germany, 2016; pp. 1–502. [Google Scholar]
- Zhu, Y.C.; Yao, J.; Adamczyk, J.; Luttrell, R. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS ONE 2017, 12, e0178421. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Yao, J.; Adamczyk, J.; Luttrell, R. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE 2017, 12, e0176837. [Google Scholar] [CrossRef]
- Dadther-Huaman, H.; Machaca-Paccara, A.; Quispe-Castro, R. Eficacia de nueve métodos de control de Oregmopyga peruviana (Granara de Willink & Diaz) (Hemiptera: Coccoidea: Eriococcidae) en Vitis vinifera L.’Negra Criolla’ y ’Quebranta’. Sci. Agropecu. 2020, 11, 95–103. [Google Scholar]
- Cáceres-del Carpio, C.; Alexandra, F.; Iannacone, J. Evaluación del riesgo ambiental por los insecticidas fipronil e imidacloprid en el camarón de río (Cryphiops caementarius). La Granja. Rev. Cienc. Vida 2021, 33, 104–114. [Google Scholar]
- Jeschke, P.; Moriya, K. Five-membered Neonicotinoids: Imidacloprid and Thiacloprid. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH: Weinheim, Germany, 2019; Volume 3, pp. 1293–1308. [Google Scholar]
- Prabhaker, N.; Castle, S.J.; Naranjo, S.E.; Toscano, N.C.; Morse, J.G. Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural pests. J. Econ. Entomol. 2011, 104, 773–781. [Google Scholar] [CrossRef]
- El-Naggar, J.B.; Zidan, N.E. Field evaluation of imidacloprid and thiamethoxam against sucking insects and their side effects on soil fauna. J. Plant Prot. Res. 2013, 53, 375–387. [Google Scholar] [CrossRef]
- Douglas, M.R.; Tooker, J.F. Meta-Analysis reveals that seed-applied neonicotinoids and pyrethroids have similar negative effects on abundance of arthropod natural enemies. PeerJ 2016, 4, e2776. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Agudo, M.; González-Cabrera, J.; Picó, Y.; Calatayud-Vernich, P.; Urbaneja, A.; Dicke, M.; Tena, A. Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc. Natl. Acad. Sci. USA 2019, 116, 16817–16822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricupero, M.; Desneux, N.; Zappalà, L.; Biondi, A. Target and non-target impact of systemic insecticides on a polyphagous aphid pest and its parasitoid. Chemosphere 2020, 247, 125728. [Google Scholar] [CrossRef]
- Motaung, T.E. Chloronicotinyl insecticide imidacloprid: Agricultural relevance, pitfalls and emerging opportunities. Crop Prot. 2020, 131, 105097. [Google Scholar] [CrossRef]
- Gasparic, H.V.; Grubelic, M.; Uzelac, V.D.; Bazok, R.; Cacija, M.; Drmic, Z.; Lemic, D. Neonicotinoid residues in sugar beet plants and soil under different agro-climatic conditions. Agriculture 2020, 10, 484. [Google Scholar] [CrossRef]
- Jeschke, P.; Witschel, M.; Krämer, W.; Schirmer, U. Modern Crop Protection Compounds; Wiley-VCH: Weinheim, Germany, 2019; Volume 3, pp. 989–1642. [Google Scholar]
- El-Wakeil, N.; Gaafar, N.; Sallam, A.; Volkmar, C. Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In Insecticides-Development of Safer and More Effective Technologies; Trdan, S., Ed.; InTech: Rijeka, Croatia, 2013; pp. 4–56. [Google Scholar]
- Spomer, N.; Sheets, J. Chitin biosynthesis and inhibitors. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH: Weinheim, Germany, 2019; Volume 3, pp. 1067–1084. [Google Scholar]
- Ishaaya, I.; Degheele, D. Insecticides with Novel Modes of Action: Mechanisms and Application; Springer: Heidelberg, Germany, 1998; pp. 1–289. [Google Scholar]
- European Food Safety Authority. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Emamectin. EFSA J. 2012, 10, 1–89. [Google Scholar]
- Jansson, R.K.; Dybas, R.A. Avermectins: Biochemical mode of action, biological activity and agricultural importance. In Insecticides with Novel Modes of Action: Mechanisms and Application; Ishaaya, I., Degheele, D., Eds.; Springer: Berlin, Germany, 1998; pp. 152–170. [Google Scholar]
- Ishaaya, I.; Barazani, A.; Kontsedalov, S.; Horowitz, A.R. Insecticides with novel modes of action: Mechanism, selectivity and cros-resistance. Entomol. Res. 2007, 37, 148–152. [Google Scholar] [CrossRef]
- Pitterna, T. Glutamate-gated chloride channel allosteric modulators: Avermectins and milbemycins. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley-VCH: Weinheim, Germany, 2019; Volume 3, pp. 1478–1501. [Google Scholar]
- Brown, M.W.; Adler, C.R. Community Structure of phytophagous arthropods on apple. Environ. Entomol. 1989, 18, 600–607. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Letourneau, D.K.; Goldstein, B. Pest damage and arthropod community structure in organic vs. conventional tomato production in California. J. Appl. Ecol. 2001, 38, 557–570. [Google Scholar] [CrossRef]
- Suttman, C.E.; Barrett, G.W. Effects of sevin on arthropods an agricultural and old-field plant community. Ecology 1979, 60, 628–641. [Google Scholar] [CrossRef]
- Crowder, D.W.; Jabbour, R. Relationships between biodiversity and biological control in agroecosystems: Current status and future challenges. Biol. Control 2014, 75, 8–17. [Google Scholar] [CrossRef]
- Montoya, J.M.; Pimm, S.L.; Solé, R. Ecological networks and their fragility. Nature 2006, 442, 259–264. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Tscharntke, T.; Lewis, O.T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 2007, 455, 202–205. [Google Scholar] [CrossRef]
- Youming, H.; Xiongfei, P.; Guangwen, L.; Minsheng, Y. Effect of chemical insecticides on the diversity of arthropods in vegetable fields. Acta Ecol. Sin. 2001, 21, 1262–1268. [Google Scholar]
- Clarke-Harris, D.; Fleischer, S.J.; Fuller, C.; Bolton, J. Evaluation of the efficacy of new chemistries for controlling major Lepidoptera pests on vegetable amaranth in Jamaica. CARDI Rev. 2004, 4, 12–19. [Google Scholar]
- Shivankar, S.B.; Magar, S.B.; Shinde, V.D.; Yadav, R.G.; Patil, A.S. Field bio-efficacy of chemical, botanical and bio-pesticides against Spodoptera litura Fab. in sugar beet. Ann. Plant Prot. Sci. 2008, 16, 312–315. [Google Scholar]
- Manjula, K.N.; Kotikal, Y.K. Evaluation of insecticides against Agrotis segetum (Denis and Schiffermuller) and Spoladea recurvalis (Fabricius) on fenugreek, Trigoniella foenumgraecum L. J. Entomol. Zool. Stud. 2018, 6, 1177–1182. [Google Scholar]
- Mead, H.M.; Khedr, M.M. Role of teflubenzuron as a chitin synthesis inhibitor against Spodoptera littoralis larvae. Egypt Acad. J. Biol. Sci. 2018, 10, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Muralikrishna, P.; Mathew, T.B.; Paul, A.; Nithya, P.R. Evaluation of bio-efficacy of new generation insecticides, botanicals and microbial insecticides on leaf webber of amaranth. J. Entomol. Zool. Stud. 2019, 7, 516–520. [Google Scholar]
- Ishaaya, I.; Navon, A.; Gurevitz, E. Comparative toxicity of chlorfluazuron (IKI-7899) and cypermethrin to Spodoptera littoralis, Lobesia botrana and Drosophila melanogaster. Crop. Prot. 1986, 5, 385–388. [Google Scholar] [CrossRef]
- Neuen, R. Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic. Sci. 1995, 44, 145–153. [Google Scholar] [CrossRef]
- Devine, G.J.; Harling, Z.K.; Scarr, A.W.; Devonshire, A.L. Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotianae and Myzus persicae. Pestic. Sci. 1996, 48, 57–62. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Desneux, N.; Fan, Y.; Han, P.; Ali, A.; Song, D.; Gao, X. Impact of imidacloprid and natural enemies on cereal aphids: Integration or ecosystem service disruption? Entomol. Gen. 2018, 37, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Elbert, A.; Nauen, R.; Leicht, W. Imidacloprid, a novel chloronicotinyl insecticide: Biological activity and agricultural importance. In Insecticides with Novel Modes of Action: Mechanisms and Application; Ishaaya, I., Degheele, D., Eds.; Springer: Heidelberg, Germany, 1998; pp. 50–73. [Google Scholar]
- Sánchez-Bayo, F.; Tennekes, H.A.; Goka, K. Impact of systemic insecticides on organisms and ecosystems. In Insecticides-Development of Safer and More Effective Technologies; Trdan, S., Ed.; InTech: Rijeka, Croatia, 2013; pp. 365–414. [Google Scholar]
- Chakraborty, S.; Chatterjee, M.L. Effect of four benzophenylureas on population of safflower aphid, Dactynotus carthami HRL. and lady bird predators, Coccinella Septumpunctata L. and Coccinella sp. Indian J. Exp. Biol. 1999, 37, 374–378. [Google Scholar]
- Jain, P.; Singh, S.B.; Borban, K.; Badaya, A.K. Bio-efficacy of novel insecticides against chilli aphid, Aphis gossypii Glover and thrips, Scirtothrips dorsalis Hood in Malwa Region of Madhya Pradesh. Ann. Plant Soil. Res. 2018, 20, 172–177. [Google Scholar]
- Pons, X.; Albajes, R. Density of epigeal predators on maize plants untreated and treated with imidacloprid. IOBC WPRS Bull. 2001, 24, 73–78. [Google Scholar]
- Mills, N. Interspecific competition among natural enemies and single versus multiple introductions in biological control. In Trophic and Guild in Biological Interactions Control; Brodeur, J., Boivin, G., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 191–220. [Google Scholar]
- Varenhorst, A.J.; O’Neal, M.E. The response of natural enemies to selective insecticides applied to soybean. Environ. Entomol. 2012, 41, 1565–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roubos, C.R.; Rodriguez-Saona, C.; Holdcraft, R.; Mason, K.S.; Isaacs, R. Relative toxicity and residual activity of insecticides used in blueberry pest management: Mortality of natural enemies. J. Econ. Entomol. 2014, 107, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Guidelines on Efficacy Evaluation for the Registration of Plant Protection Products; FAO Publications: Rome, Italy, 2006; pp. 1–61. [Google Scholar]
- Hassan, S.A. Standard Methods to Test the Side-effects of Pesticides on Natural Enemies of Insects and Mites Developed by the IOBC/WPRS Working Group ‘Pesticides and Beneficial Organisms’. Eppo Bull. 1985, 15, 214–255. [Google Scholar] [CrossRef]
- Soca, N. Fluctuación Poblacional de Insectos Fitófagos Asociados al Cultivo de Quinua (Chenopodium quinoa Willd.) En La Molina. Master’s Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 2021. [Google Scholar]
- Gómez, L.; Aguilar, E. Guía de Cultivo de La Quinua; Organización de las Naciones Unidas para la Alimentación y la Agricultura, Universidad Nacional Agraria La Molina: Lima, Peru, 2016. [Google Scholar]
- Oliver, I.; Beattie, A.J. A possible method for the rapid assessment of biodiversity. Conserv. Biol. 1993, 7, 562–568. [Google Scholar] [CrossRef]
- Oliver, I.; Beattie, A.J. Invertebrate morphospecies as surrogates for species: A case study. Conserv. Biol. 1996, 10, 99–109. [Google Scholar] [CrossRef]
- Triplehorn, C.A.; Johnson, N.F. Borror and DeLong’s Introduction to the Study of Insects; Thompson Brooks/Cole: Belmont, CA, USA, 2005; pp. 1–864. [Google Scholar]
- Moret, P. Contribution à la connaissance du genre néotropical Blennidus Motschulsky, 1865. Bull. Soc. Entomol. Fr. 1995, 100, 489–500. [Google Scholar]
- Moret, P. Clave de identificación para los géneros de Carabidae (Coleoptera) presentes en Los Páramos del Ecuador y del sur de Colombia. Rev. Colomb. Entomol. 2003, 29, 185–190. [Google Scholar]
- Göllner-Scheiding, U. Revision der gattung Liorhyssus Stål, 1870 (Heteroptera, Rhopalidae). Dtsch. Entomol. Z. 1976, 23, 181–206. [Google Scholar] [CrossRef]
- Pall, J.P.; Kihn, R.G.; Diez, F.; Coscaron, M. A review of genus Nysius Dallas in Argentina (Hemiptera: Heteroptera: Orsillidae). Zootaxa 2016, 4132, 221–234. [Google Scholar] [CrossRef]
- Korytkowski, C. Contribución al conocimiento de los Agromyzidae (Diptera: Muscomorpha) en el Perú. Rev. Entomol. 2014, 49, 1–106. [Google Scholar]
- Spencer, K.A. Agromyzidae (Diptera) of Economic Importance.; Springer Science & Business Media: Dordrecht, The Netherlands, 1973; pp. 1–418. [Google Scholar]
- Hernández, L.M.; Henry, T.J. The Plant Bugs, or Miridae (Hemiptera: Heteroptera), of Cuba; Pensoft: Sofia, Bulgaria, 2010; pp. 1–212. [Google Scholar]
- Gross, G. The Stilt-Bugs (Heteroptera-Neididae) of the Australian and New Zealand Regions. Rec. South Aust. Mus. 1950, 9, l3–l326. [Google Scholar]
- Henry, T.; Dellapé, P.; de Paula, A. The Big-Eyed Bugs, Chinch Bugs, and Seed Bugs (Lygaeoidea). In True Bugs (Heteroptera) of the Neotropics; Panizzi, A.R., Grazia, J., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 459–514. [Google Scholar]
- Kerzhner, I.M.; Henry, T.J. Three new species, notes and new records of poorly known species, and an updated checklist for the North American Nabidae (Hemiptera: Heteroptera). Proc. Entomol. Soc. Wash. 2008, 110, 988–1011. [Google Scholar] [CrossRef]
- Cornelis, M.; Coscarón, M.C. The Nabidae (Insecta, Hemiptera, Heteroptera) of Argentina. ZooKeys 2013, 333, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M. Biodiversidad de Nabidae (Insecta: Heteroptera): Revisión Taxonómica y Análisis Cladístico del Género Nabis Latreille, 1802. Ph.D.Thesis, Universidad Nacional de La Plata, La Plata, Argentina, 2015. [Google Scholar]
- Solis, M.A. Key to Selected Pyraloidea (Lepidoptera) Larvae Intercepted at US Ports of Entry: Revision of Pyraloidea in “Keys to Some Frequently Intercepted Lepidopterous Larvae” by Weisman 1986. USDA Systematic Entomology Laboratory 2006. Available online: https://digitalcommons.unl.edu/systentomologyusda/1/ (accessed on 1 January 2020).
- Shufran, K.A.; Puterka, G.J. DNA Barcoding to identify all life stages of holocyclic cereal aphids (Hemiptera: Aphididae) on wheat and other poaceae. Ann. Entomol. Soc. Am. 2011, 104, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Masuda, T.; Mochizuki, A.; Konishi, K.; Tokumaru, S.; Ueno, K.; Yamaguchi, T. Primer design for identifying economically important Liriomyza species (Diptera: Agromyzidae) by multiplex PCR. Mol. Ecol. Resour. 2013, 13, 96–102. [Google Scholar] [CrossRef]
- Harbhajan, K.; Kaur, S. DNA barcoding of six species of family Rhopalidae (Insecta: Hemiptera: Heteroptera) from India. Int. J. Life Sci. 2017, 5, 517–526. [Google Scholar]
- Ding, T.; Chi, H.; Gökçe, A.; Gao, Y.; Zhang, B. Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Sci. Rep. 2018, 8, 3346. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Jonckheere, W.; Nguyen, D.T.; de Moraes, G.J.; Van Leeuwen, T.; De Clercq, P. Phytoseiid mites prey effectively on thrips eggs: Evidence from Predation trials and molecular analyses. Biol. Control 2019, 137, 104012. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 30 June 2020).
Diversity Index | Treatments | F Value | p-Value | ||||
---|---|---|---|---|---|---|---|
Teflubenzuron | Emamectin Benzoate | Imidacloprid | Cypermethrin | Control | |||
Pitfall trapping | |||||||
Shannon | 1.92 ± 0.11 a | 1.80 ± 0.01 a | 1.44 ± 0.11 b | 1.73 ± 0.17 a | 1.87 ± 0.25 a | 4.11 | 0.042 |
Simpson’s dominance | 0.77 ± 0.03 a | 0.75 ± 0.05 a | 0.60 ± 0.05 b | 0.73 ± 0.09 a | 0.76 ± 0.09 a | 4.04 | 0.038 |
Margalef | 3.06 ± 0.16 a | 2.85 ± 0.09 ab | 2.48 ± 0.12 c | 2.68 ± 0.21 bc | 2.78 ± 0.16 ab | 5.55 | 0.019 |
Plant sampling | |||||||
Shannon | 0.99 ± 0.08 a | 0.84 ± 0.15 a | 0.94 ± 0.18 a | 0.82 ± 0.13 a | 1.13 ± 0.06 a | 2.57 | 0.119 |
Simpson’s dominance | 0.49 ± 0.06 a | 0.43 ± 0.09 a | 0.52 ± 0.10 a | 0.40 ± 0.08 a | 0.55 ± 0.02 a | 1.81 | 0.220 |
Margalef * | 1.71 ± 0.13 a | 1.71 ± 0.26 a | 1.09 ± 0.27 b | 1.78 ± 0.06 a | 1.97 ± 0.52 a | 4.76 | 0.029 |
Pan trapping | |||||||
Shannon | 1.11 ± 0.14 | 1.13 ± 0.19 | 1.09 ± 0.01 | 1.18 ± 0.10 | 1.13 ± 0.05 | 0.34 | 0.841 |
Simpson’s dominance | 0.40 ± 0.06 | 0.43 ± 0.08 | 0.04 ± 0.01 | 0.44 ± 0.04 | 0.42 ± 0.04 | 0.45 | 0.771 |
Margalef * | 3.52 ± 0.29 | 3.40 ± 0.08 | 3.50 ± 0.20 | 3.61 ± 0.15 | 3.61 ± 0.23 | 0.49 | 0.747 |
Taxa | Treatments | F Value | p-Value | ||||
---|---|---|---|---|---|---|---|
Teflubenzuron | Emamectin Benzoate | Imidacloprid | Cypermethrin | Control | |||
Spoladea recurvalis | |||||||
1DBA | 2.4 ± 1.39 | 2.8 ± 0.51 | 2.7 ± 0.33 | 3.2 ± 1.64 | 2.4 ± 1.02 | 0.15 | 0.956 |
1st application | |||||||
* 6DAA | 0.4 ± 0.77 b | 0.1 ± 0.19 b | 0 ± 0.0 b | 0.1 ± 0.19 b | 2.0 ± 0.88 a | 7.73 | 0.007 |
2nd application | |||||||
6DAA | 0 | 0 | 0 | 0 | 0.67 ± 0.67 | N.A. | N.A. |
69DAA | 0 | 0 | 0 | 0 | 0 | N.A. | N.A. |
Macrosiphum euphorbiae | |||||||
1DBA | 11.4 ± 4.33 | 15.7 ± 9.17 | 13.1 ± 4.19 | 20.4 ± 10.49 | 12.3 ± 4.26 | 1.33 | 0.338 |
1st application | |||||||
** 6DAA | 11.6 ± 4.74 b | 7.8 ± 0.77 b | 1.8 ± 2.04 c | 2.9 ± 2.99 c | 27.4 ± 10.83 a | 28.73 | <0.001 |
2nd application | |||||||
6DAA | 6.9 ± 4.44 a | 11.2 ± 3.56 a | 0.2 ± 0.19 b | 0.3 ± 0.33 b | 6.6 ± 3.89 a | 7.32 | 0.008 |
*** 69DAA | 145 ± 40.19 ab | 250 ± 104.46 a | 36.2 ± 1.67 c | 113.8 ± 25.06 b | 86.1 ± 27.48 bc | 7.80 | 0.007 |
Frankliniella occidentalis | |||||||
1DBA | 2.2 ± 1.26 | 2.4 ± 1.26 | 2.9 ± 0.84 | 4.3 ± 0.58 | 1.8 ± 0.68 | 2.62 | 0.115 |
1st application | |||||||
6DAA | 5.3 ± 1.20 a | 4.7 ± 1.15 a | 2.3 ± 0.33 b | 1.4 ± 0.38 b | 5.4 ± 1.17 a | 9.47 | 0.004 |
2nd application | |||||||
*** 6DAA | 5.1 ± 0.84 b | 4.3 ± 1.15 b | 2.1 ± 0.51 c | 0.6 ± 0.19 c | 9.89 ± 2.46 a | 171.17 | <0.001 |
69DAA | 26.3 ± 11.1b | 62.1 ± 6.50 a | 7.2 ± 1.89 d | 15.1 ± 5.42 bc | 20.3 ± 11.98 bc | 46.76 | <0.001 |
Nysius simulans | |||||||
* 1DBA | 0.1 ± 0.19 | 0.2 ± 0.19 | 0.1 ± 0.19 | 0.3 ± 0.33 | 0.8 ± 0.84 | 0.82 | 0.549 |
1st application | |||||||
6DAA | 0 ± 0 | 0 ± 0 | 0.2 ± 0.19 | 0.1 ± 0.19 | 0.1 ± 0.19 | 1.75 | 0.232 |
2nd application | |||||||
* 6DAA | 0.6 ± 0.38 | 0.6 ± 0.69 | 0.3 ± 0.33 | 0.1 ± 0.19 | 0 ± 0 | 1.62 | 0.261 |
69DAA | 5.0 ± 0.67 a | 3.6 ± 0.19 b | 1.0 ± 0.67 d | 2.0 ± 0.33 c | 2.9 ± 0.19 bc | 25.87 | <0.001 |
Taxa | Treatments | F Value | p-Value | ||||
---|---|---|---|---|---|---|---|
Teflubenzuron | Emamectin Benzoate | Imidacloprid | Cypermethrin | Control | |||
Pitfall trapping | |||||||
Nysius simulans | 181.3 ± 82.6 | 214.0 ± 83.5 | 301.3 ± 49.9 | 241.0 ± 113.9 | 169.0 ± 89.9 | 1.62 | 0.261 |
Laminacauda sp. | 80.0 ± 30.3 | 115.3 ± 9.9 | 67.3 ± 11.8 | 135.7 ± 55.4 | 90.7 ± 26.7 | 2.21 | 0.159 |
Blennidus peruvianus | 68.7 ± 28.0 | 79.7 ± 38.4 | 52.0 ± 3.46 | 65.3 ± 30.6 | 68.3 ± 4.6 | 0.61 | 0.669 |
Trimorus sp. | 33.7 ± 16.3 | 33.3 ± 7.5 | 19.7 ± 4.7 | 35.7 ± 17.9 | 28.0 ± 10.6 | 0.78 | 0.568 |
Pan traps | |||||||
Nysius simulans | 36.7 ± 4.73 | 29.0 ± 10.5 | 38.7 ± 12.3 | 36.3 ± 10.7 | 32.3 ± 11.6 | 0.42 | 0.792 |
Frankliniella occidentalis | 2634.0 ± 188.9 a | 2559.3 ± 84.1 ab | 2276.3 ± 205.0 b | 1892.0 ± 54.7 c | 2311.0 ± 59.6 b | 11.18 | 0.002 |
Dolichopodidae | 100.0 ± 38.2 | 179.7 ± 121.3 | 124.3 ± 34.7 | 53.3 ± 42.3 | 138.7 ± 125.7 | 1.14 | 0.403 |
Syrphidae | 25.3 ± 2.1 | 19.3 ± 4.7 | 11.7 ± 3.8 | 18.3 ± 8.4 | 15.0 ± 2.64 | 3.33 | 0.069 |
Aphidiinae * | 33.3 ± 13.0 ab | 51.0 ± 25.2 a | 18.0 ± 8.7 c | 20.7 ± 5.5 bc | 27.0 ± 7.0 abc | 5.33 | 0.022 |
Taxa | Treatments | F Value | p-Value | ||||
---|---|---|---|---|---|---|---|
Teflubenzuron | Emamectin Benzoate | Imidacloprid | Cypermethrin | Control | |||
Aphidiinae wasps | |||||||
1DBA | 1.66 ± 1.53 | 1.67 ± 0.88 | 2.22 ± 1.35 | 1.44 ± 0.84 | 1.00 ± 0.67 | 0.96 | 0.481 |
1st application | |||||||
* 6DAA | 0.22 ± 0.19 | 0.56 ± 0.19 | 0.11 ± 0.19 | 0.22 ± 0.39 | 3.44 ± 4.28 | 2.66 | 0.111 |
2nd application | |||||||
* 6DAA | 0.33 ± 0.0 | 0.55 ± 0.69 | 0.0 ± 0.0 | 0.11 ± 0.19 | 0.11 ± 0.19 | 2.12 | 0.169 |
** 69DAA | 0.22 ± 0.19 ab | 0.11 ± 0.19 b | 0.0 ± 0.0 b | 0.22 ± 0.19 ab | 0.56 ± 0.20 a | 4.07 | 0.043 |
Predatory true bugs | |||||||
1DBA | 0.0 ± 0.0 | 0.2 ± 0.17 | 0.23 ± 0.40 | 0.33 ± 0.35 | 0.0 ± 0.0 | N.A. | N.A. |
1st application | |||||||
* 6DAA | 0.10 ± 0.10 | 0.03 ± 0.06 | 0.03 ± 0.06 | 0.0 ± 0.0 | 0.0 ± 0.0 | N.A. | N.A. |
2nd application | |||||||
6DAA | 0.22 ± 0.39 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.22 ± 0.19 | N.A. | N.A. |
69DAA | 1.67 ± 0.67 a | 1.78 ± 1.01 a | 0.11 ± 0.19 b | 0.22 ± 0.39 b | 1.89 ± 0.69 a | 5.48 | 0.020 |
Syrphid larvae | |||||||
1DBA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
1st application | |||||||
* 6DAA | 0.23 ± 0.40 | 0.33 ± 0.58 | 0.0 ± 0.0 | 0.10 ± 0.17 | 1.57 ± 1.25 | 3.09 | 0.082 |
2nd application | |||||||
* 6DAA | 0.0 ± 0.0 b | 0.67 ± 1.15 ab | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.56 ± 0.19 a | 5.39 | 0.021 |
1DBA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
Chrysopid larvae | |||||||
1DBA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
2nd application | |||||||
6DAA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
69DAA | 1.0 ± 0.0 ab | 0.53 ± 0.69 bc | 0.0 ± 0.0 c | 0.56 ± 0.51 bc | 1.56 ± 0.51 a | 4.35 | 0.037 |
Specifications | Dates | |
---|---|---|
Sowing | drilling sowing method | 19 July 2017 |
Harvest | threshing | 12 December 2017 |
Irrigation | surface irrigation | (20 July 2017; 17 August 2017; 7 September 2017; 28 September 2017; 25 October 2017; 9 November 2017) |
Fertilisation doses (NKP) | 160–80–160 | 19 July 2017 |
Soil type | clay loam | |
Neighbouring crops | Quinoa (Chenopodium quinoa), Wheat (Triticum spp.) Corn (Zea mays) Kiwicha (Amaranthus caudatus) | |
Fungicides | 1° benzomyl 2° metalaxyl + mancozeb 3° dimetomorph | (24 July 2017) (7 August 2017) (25 August 2017) |
Weed management | Manual control | (25 July 2017, 11 August 2017; 19 November 2017) |
Previous crop | Fallow period of 4 months |
Insecticide | Label Field Rate (g a.i. ha−1) * | Chemical Group | Commercial Name | Company |
---|---|---|---|---|
Cypermethrin | 75 | Pyrethroid | Cypmor 25 EC | Jebsen and Jessen Peru S.A.C. |
Teflubenzuron | 33.75 | Benzoylphenylurea | Mercury 150 SG | Point Andina S.A. |
Emamectin benzoate | 10 | Avermectin | Olimpo 5% SG | Sharda Peru S.A.C. |
Imidacloprid | 131.25 | Neonicotinoid | Phantom | Jebsen and Jessen Peru S.A.C. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruces, L.; de la Peña, E.; De Clercq, P. Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species. Plants 2021, 10, 1788. https://doi.org/10.3390/plants10091788
Cruces L, de la Peña E, De Clercq P. Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species. Plants. 2021; 10(9):1788. https://doi.org/10.3390/plants10091788
Chicago/Turabian StyleCruces, Luis, Eduardo de la Peña, and Patrick De Clercq. 2021. "Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species" Plants 10, no. 9: 1788. https://doi.org/10.3390/plants10091788
APA StyleCruces, L., de la Peña, E., & De Clercq, P. (2021). Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species. Plants, 10(9), 1788. https://doi.org/10.3390/plants10091788