Nitrogen Fertilizers Technologies for Corn in Two Yield Environments in South Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sites and Soils
2.2. Experimental Design, Treatments, and Crop Management
2.3. Capture and Determination of Ammonia Volatilization
2.4. Characterization of Nitrogen Fertilizers
2.5. Evaluation of Nutrient Concentration, Morphological, and Yield Status
2.6. Statistical Analysis
3. Results
3.1. Scanning Electron Microscopy and X-ray Diffraction
3.2. N Losses through Ammonia Volatilization
3.3. Ammonia Volatilization in Granules with and without Nitrification Inhibitor
3.4. Leaf Macronutrient Content in Corn
3.5. Leaf Micronutrient Content and SPAD Index
3.6. Yield and Height of Corn Plants
4. Discussion
4.1. X-ray Diffraction and SEM of N Fertilizers
4.2. Ammonia Volatilization of N Sources in Clayey and Sandy Soil
4.3. Nitrification Inhibitor Increases Losses Due to Ammonia Volatilization
4.4. Nitrogen Sources and Nutrient Concentration of Corn—Macronutrients
4.5. Nitrogen Sources and Nutrient Concentration of Corn—Micronutrients
4.6. Clay Soils Are More Responsive to Nitrogen Fertilization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA World Agricultural Production. Circ. Ser. 2021, 2, 1–41.
- Hubert, B.; Rosegrant, M.; van Boekel, M.A.J.S.; Ortiz, R. The Future of Food: Scenarios for 2050. Crop Sci. 2010, 50, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2017; ISBN 978-85-8271-367-9. [Google Scholar]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G. de B. Agronomic Efficiency of NBPT as a Urease Inhibitor: A Review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- IFA—International Fertilizer Association. Executive Summary Fertilizer Outlook 2019–2023. In Proceedings of the IFA Annual Conference, Montreal, QC, Canada, 11–13 June 2019; pp. 1–11. [Google Scholar]
- Woodley, A.L.; Drury, C.F.; Yang, X.Y.; Phillips, L.A.; Reynolds, D.W.; Calder, W.; Oloya, T.O. Ammonia Volatilization, Nitrous Oxide Emissions, and Corn Yields as Influenced by Nitrogen Placement and Enhanced Efficiency Fertilizers. Soil Sci. Soc. Am. J. 2020, 84, 1327–1341. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia Volatilization from Synthetic Fertilizers and Its Mitigation Strategies: A Global Synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Tasca, F.A.; Ernani, P.R.; Rogeri, D.A.; Gatiboni, L.C.; Cassol, P.C. Volatilização de Amônia do Solo Após a Aplicação de Ureia Convencional Ou Com Inibidor de Urease. Rev. Bras. Ciência Solo 2011, 35, 493–509. [Google Scholar] [CrossRef] [Green Version]
- Cassim, B.M.A.R.; Kachinski, W.D.; Besen, M.R.; Coneglian, C.F.; Macon, C.R.; Paschoeto, G.F.; Inoue, T.T.; Batista, M.A. Duromide Increase NBPT Efficiency in Reducing Ammonia Volatilization Loss from Urea. Rev. Bras. Cienc. Solo 2021, 45, e0210017. [Google Scholar] [CrossRef]
- Sunderlage, B.; Cook, R.L. Soil Property and Fertilizer Additive Effects on Ammonia Volatilization from Urea. Soil Sci. Soc. Am. J. 2018, 82, 253–259. [Google Scholar] [CrossRef]
- Zheng, J.; Kilasara, M.M.; Mmari, W.N.; Funakawa, S. Ammonia Volatilization Following Urea Application at Maize Fields in the East African Highlands with Different Soil Properties. Biol. Fertil. Soils 2018, 54, 411–422. [Google Scholar] [CrossRef]
- Dick, W.A. Influence of Long-Term Tillage and Crop Rotation Combinations on Soil Enzyme Activities. Soil Sci. Soc. Am. J. 1984, 48, 569–574. [Google Scholar] [CrossRef]
- Minato, E.A.; Cassim, B.M.A.R.; Besen, M.R.; Mazzi, F.L.; Inoue, T.T.; Batista, M.A. Controlled-Release Nitrogen Fertilizers: Characterization, Ammonia Volatilization, and Effects on Second-Season Corn. Rev. Bras. Ciência Solo 2020, 44, e0190108. [Google Scholar] [CrossRef]
- Corrêa, D.C.C.; Cardoso, A.S.; Ferreira, M.R.; Siniscalchi, D.; Gonçalves, P.H.A.; Lumasini, R.N.; Reis, R.A.; Ruggieri, A.C. Ammonia Volatilization, Forage Accumulation, and Nutritive Value of Marandu Palisade Grass Pastures in Different n Sources and Doses. Atmosphere 2021, 12, 1179. [Google Scholar] [CrossRef]
- Awale, R.; Chatterjee, A. Enhanced Efficiency Nitrogen Products Influence Ammonia Volatilization and Nitrous Oxide Emission from Two Contrasting Soils. Agron. J. 2017, 109, 47–57. [Google Scholar] [CrossRef]
- Gorh, D.; Baruah, K.K. Estimation of Methane and Nitrous Oxide Emission from Wetland Rice Paddies with Reference to Global Warming Potential. Environ. Sci. Pollut. Res. 2019, 26, 16331–16344. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing Nature: A Tragedy of Excess in the Commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef] [PubMed]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-Analysis of the Effect of Urease and Nitrification Inhibitors on Crop Productivity and Nitrogen Use Efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced Nitrogen Deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Hill, J.; Goodkind, A.; Tessum, C.; Thakrar, S.; Tilman, D.; Polasky, S.; Smith, T.; Hunt, N.; Mullins, K.; Clark, M.; et al. Air-Quality-Related Health Damages of Maize. Nat. Sustain. 2019, 2, 397–403. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gasser, M.-O.; MacDonald, J.D.; Pelster, D.E.; Bertrand, N. Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? J. Environ. Qual. 2013, 42, 1635–1642. [Google Scholar] [CrossRef]
- Viero, F.; Menegati, G.B.; Carniel, E.; da Silva, P.R.F.; Bayer, C. Urease Inhibitor and Irrigation Management to Mitigate Ammonia Volatilization from Urea in No-till Corn. Rev. Bras. Cienc. Solo 2017, 41, e0160567. [Google Scholar] [CrossRef] [Green Version]
- FAO—Food and Agriculture Organization of the United Nations. Agricultura Irrigada Sustentável No Brasil: Identificação de Áreas Prioritárias; Borghetti, J.R., Silva, W.L.C., Nocko, H.R., Loyola, L.N., Chianca, G.K., Eds.; FAO: Brasília, Brazil, 2017; ISBN 9789257097544. [Google Scholar]
- Otto, R.; Zavaschi, E.; Netto, G.J.M.S.; Machado, B.A.; De Mira, A.B. Ammonia Volatilization from Nitrogen Fertilizers Applied to Sugarcane Straw. Rev. Ciência Agronômica 2017, 48, 413–418. [Google Scholar] [CrossRef]
- Trenkel, M. Slow and Controlled-Release and Stabilized Fertilizers: An Option For Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed.; IFA: Paris, France, 2010; ISBN 978-2-9523139-7-1. [Google Scholar]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease Inhibitor NBPT on Ammonia Volatilization and Crop Productivity: A Meta-Analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Z.; He, X.; Wang, X.; Shi, X.; Zou, C.; Chen, X. The Effects of Controlled Release Urea on Maize Productivity and Reactive Nitrogen Losses: A Meta-Analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Ruser, R.; Schulz, R. The Effect of Nitrification Inhibitors on the Nitrous Oxide (N2O) Release from Agricultural Soils-a Review. J. Plant Nutr. Soil Sci. 2015, 178, 171–188. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U.; Otto, R.; Motavalli, P.; Ferraz-Almeida, R.; Meinl Schmiedt Sattolo, T.; Cantarella, H.; Vitti, G.C. Performance of Nitrification Inhibitors with Different Nitrogen Fertilizers and Soil Textures. J. Plant Nutr. Soil Sci. 2019, 182, 694–700. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Dong, G.; Du, Z.; Wu, W.; Chadwick, D.; Bol, R. The Importance of Ammonia Volatilization in Estimating the Efficacy of Nitrification Inhibitors to Reduce N2O Emissions: A Global Meta-Analysis. Environ. Pollut. 2021, 271, 116365. [Google Scholar] [CrossRef]
- Lam, S.K.; Suter, H.; Mosier, A.R.; Chen, D. Using Nitrification Inhibitors to Mitigate Agricultural N2O Emission: A Double-Edged Sword? Glob. Chang. Biol. 2017, 23, 485–489. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.; Jacomine, P.K.; Dos Anjos, L.H.; De Oliveira, V.; Lumbreras, J.; Coelho, M.; De Almeida, J.; Filho, J.C.; De Oliveira, J.; Cunha, T.J. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa Solos: Brasília, Brazil, 2018; ISBN 978-85-7035-800-4. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 2014; Volume 12, ISBN 016085427X.
- SBCS/NEPAR. Manual de Adubação e Calagem Para o Estado do Paraná; Pauletti, V., Motta, A.C.V., Eds.; SBCS/NEPAR; Sociedade Brasileira de Ciência do Solo: Curitiba, Brazil, 2019; ISBN 978-85-69146-07-0. [Google Scholar]
- Jantalia, C.P.; Halvorson, A.D.; Follett, R.F.; Alves, B.J.R.; Polidoro, J.C.; Urquiaga, S. Nitrogen Source Effects on Ammonia Volatilization as Measured with Semi-Static Chambers. Agron. J. 2012, 104, 1595–1603. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, M. Método de Captação da Amônia Volatilizada do Solo; Instituto Agronômico do Paraná: Londrina, Brazil, 2007.
- Malavolta, E.; Vitti, G.C.; De Oliveira, S.A. Avaliação Do Estado Nutricional Das Plantas Princípios e Aplicações; Associação Brasileira para Pesquisa da Potassa e do Fosfato: Piracicaba, Brazil, 1997. [Google Scholar]
- Banzatto, D.A.; Kronka, S.N. Experimentação Agrícola, 4th ed.; Funep: Jaboticabal, Brazil, 2015; ISBN 85-87632-71-X. [Google Scholar]
- Pimentel-Gomes, F.; Garcia, C.H. Estatística Aplicada a Experimentos Agronômicos e Florestais, 11th ed.; Fealq: Piracicaba, Brazil, 2002; ISBN 857133014X. [Google Scholar]
- Cruz, C.D. GENES—A Software Package for Analysis in Experimental Statistics and Quantitative Genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Seber, G.A.F.; Wild, C.J. Nonlinear Regression; Wiley-interscience: Hoboken, NJ, USA, 2003; ISBN 978-0-471-47135-6. [Google Scholar]
- Barth, G.; Francisco, E.; Suyama, J.T.; Garcia, F. Nutrient Uptake Illustrated for Modern, High-Yielding Soybean. Better Crop Plant Food 2018, 102, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Redemann, C.E.; Riesenfeld, F.C.; La Viola, F.S. Formation of Biuret from Urea. Ind. Eng. Chem. 1958, 50, 633–636. [Google Scholar] [CrossRef]
- Mapa—Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa N° 39, de 8 de Agosto de 2018. Available online: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/36278414/do1-2018-08-10-instrucao-normativa-n-39-de-8-de-agosto-de-2018-36278366 (accessed on 10 December 2021).
- Mikkelsen, R.L. Biuret in Urea Fertilizer. Fertil. Res. 1990, 26, 311–318. [Google Scholar] [CrossRef]
- Ochiai, K.; Uesugi, A.; Masuda, Y.; Nishii, M.; Matoh, T. Overexpression of Exogenous Biuret Hydrolase in Rice Plants Confers Tolerance to Biuret Toxicity. Plant Direct 2020, 4, e00290. [Google Scholar] [CrossRef]
- Poplawski, D.; Hoffmann, J.; Hoffmann, K. Effect of Carbonate Minerals on the Thermal Stability of Fertilisers Containing Ammonium Nitrate. J. Therm. Anal. Calorim. 2016, 124, 1561–1574. [Google Scholar] [CrossRef] [Green Version]
- NFPA—National Fire Protection Association. Code for the Storage of Ammonium Nitrate; NFPA: Quincy, MA, USA, 2002; pp. 1–14. [Google Scholar]
- Chaturvedi, S.; Dave, P.N. Review on Thermal Decomposition of Ammonium Nitrate. J. Energ. Mater. 2013, 31, 1–26. [Google Scholar] [CrossRef]
- Laboureur, D.M.; Han, Z.; Harding, B.Z.; Pineda, A.; Pittman, W.C.; Rosas, C.; Jiang, J.; Mannan, M.S. Case Study and Lessons Learned from the Ammonium Nitrate Explosion at the West Fertilizer Facility. J. Hazard. Mater. 2016, 308, 164–172. [Google Scholar] [CrossRef]
- Alexander, A.; Helm, H. Ureaform as a Slow Release Fertilizer: A Review. Z. Pflanz. Bodenkd 1990, 153, 249–255. [Google Scholar] [CrossRef]
- Guelfi, D. Fertilizantes Nitrogenados Estabilizados, de Liberação Lenta ou Controlada. Inf. Agronômicas 2017, 157, 1–32. [Google Scholar]
- Cassim, B.M.A.R.; Machado, A.P.M.; Fortune, D.; Moreira, F.R.; Zampar, É.J.D.O.; Batista, M.A. Effects of Foliar Application of Urea and Urea-Formaldehyde/Triazone on Soybean and Corn Crops. Agronomy 2020, 10, 1549. [Google Scholar] [CrossRef]
- Helvaci, C. Stratigraphy, Mineralogy, and Genesis of the Bigadic Borate Deposits, Western Turkey. Econ. Geol. 1995, 90, 1237–1260. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Effects of Temperature and Moisture on Urease Activity in Semi-Arid Tropical Soils. Plant Soil 1984, 8, 401–408. [Google Scholar] [CrossRef]
- Vale, M.L.C.; Sousa, R.O.; Scivittaro, W.B. Evaluation of Ammonia Volatilization Losses by Adjusted Parameters of a Logistic Function. Rev. Bras. Ciência Solo 2014, 38, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Cantarella, H. Nitrogênio. In Fertilidade do Solo; Novais, R.F., Alvarez, V.H., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Neves, J.C.L., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2007; pp. 375–470. ISBN 9788586504082. [Google Scholar]
- Rochette, P.; MacDonald, J.D.; Angers, D.A.; Chantigny, M.H.; Gasser, M.O.; Bertrand, N. Banding of Urea Increased Ammonia Volatilization in a Dry Acidic Soil. J. Environ. Qual. 2009, 38, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Azeem, B.; Kushaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on Materials & Methods to Produce Controlled Release Coated Urea Fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, J.J.; Wei, Z.; Dodla, S.K.; Fultz, L.M.; Gaston, L.A.; Xiao, R.; Park, J.H.; Scaglia, G. Nitrification Inhibitors Reduce Nitrogen Losses and Improve Soil Health in a Subtropical Pastureland. Geoderma 2021, 388, 114947. [Google Scholar] [CrossRef]
- Lasisi, A.A.; Akinremi, O.; Kumaragamage, D. Nitrification Inhibitor Reduces the Inhibitory Effect of N-(n-Butyl) Thiophosphoric Triamide (NBPT) on the Hydrolysis of Urea. Soil Sci. Soc. Am. J. 2020, 84, 1782–1794. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, L.; Hu, S.; Compton, J.E.; Greaver, T.L.; Li, Q. How Inhibiting Nitrification Affects Nitrogen Cycle and Reduces Environmental Impacts of Anthropogenic Nitrogen Input. Glob. Change Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
- Hinsinger, P.; Plassard, C.; Tang, C.; Jaillard, B. Origins of Root-Mediated pH Changes in the Rhizosphere and Their Responses to Environmental Constraints: A Review. Plant Soil 2003, 248, 43–59. [Google Scholar] [CrossRef]
- Kim, D.G.; Saggar, S.; Roudier, P. The Effect of Nitrification Inhibitors on Soil Ammonia Emissions in Nitrogen Managed Soils: A Meta-Analysis. Nutr. Cycl. Agroecosystems 2012, 93, 51–64. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen Losses from the Soil/Plant System: A Review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Al-Kanani, T.; MacKenzie, A.F.; Barthakur, N.N. Soil Water and Ammonia Volatilization Relationships with Surface-Applied Nitrogen Fertilizer Solutions. Soil Sci. Soc. Am. J. 1991, 55, 1761–1766. [Google Scholar] [CrossRef]
- Shi, X.; Hu, K.; Batchelor, W.D.; Liang, H.; Wu, Y.; Wang, Q.; Fu, J.; Cui, X.; Zhou, F. Exploring Optimal Nitrogen Management Strategies to Mitigate Nitrogen Losses from Paddy Soil in the Middle Reaches of the Yangtze River. Agric. Water Manag. 2020, 228, 105877. [Google Scholar] [CrossRef]
- Oliveira, S.M.; De Almeida, R.E.M.; Ciampitti, I.A.; Junior, C.P.; Lago, B.C.; Trivelin, P.C.O.; Favarin, J.L. Understanding N Timing in Corn Yield and Fertilizer N Recovery: An Insight from an Isotopic Labeled-N Determination. PLoS ONE 2018, 13, e0192776. [Google Scholar] [CrossRef] [Green Version]
- Kramer, D.M.; Evans, J.R. The Importance of Energy Balance in Improving Photosynthetic Productivity. Plant Physiol. 2011, 155, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Bucher, C.A.; Bucher, C.P.C.; Araujo, A.P.; Sperandio, M.V.L. Fósforo. In Nutrição Mineral de Plantas; Fernandes, M.S., Souza, S.R., Santos, L.A., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2018; pp. 401–427. ISBN 978-85-86504-23-5. [Google Scholar]
- Meurer, E.J.; Tiecher, T.; Mattiello, L. Potássio. In Nutrição Mineral de Plantas; Fernandes, M.S., Souza, S.R., Santos, L.A., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2018; p. 670. ISBN 978-85-86504-23-5. [Google Scholar]
- Aulakh, M.S.; Malhi, S.S. Interactions of Nitrogen with Other Nutrients and Water: Effect on Crop Yield and Quality, Nutrient Use Efficiency, Carbon Sequestration, and Environmental Pollution. Adv. Agron. 2005, 86, 341–409. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef] [Green Version]
- Alleoni, L.R.F.; Iglesias, C.S.M.; Mello, S.D.C.; de Camargo, O.A.; Casagrande, J.C.; Lavorenti, N.A. Atributos do Solo Relacionados à Adsorção de Cádmio e Cobre em Solos Tropicais. Acta Sci. Agron. 2005, 27, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.; Vitti, G.C.; Santos, L.A.; Cicarone, F. Cálcio e Magnésio. In Nutrição Mineral de Plantas; Fernandes, M.S., Souza, S.R., Santos, L.A., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2018; pp. 465–490. ISBN 978-85-86504-23-5. [Google Scholar]
- Hoopen, F.T.; Cuin, T.A.; Pedas, P.; Hegelund, J.N.; Shabala, S.; Schjoerring, J.K.; Jahn, T.P. Competition between Uptake of Ammonium and Potassium in Barley and Arabidopsis Roots: Molecular Mechanisms and Physiological Consequences. J. Exp. Bot. 2010, 61, 2303–2315. [Google Scholar] [CrossRef] [Green Version]
- Rayar, A.J.; Hai, T.V. Effect of Ammonium on Uptake of Phosphorus, Potassium, Calcium and Magnesium by Intact Soybean Plants. Plant Soil 1977, 48, 81–87. [Google Scholar] [CrossRef]
- Weil, S.; Barker, A.V.; Zandvakili, O.R.; Etemadi, F. Plant Growth and Calcium and Potassium Accumulation in Lettuce under Different Nitrogen Regimes of Ammonium and Nitrate Nutrition. J. Plant Nutr. 2020, 44, 270–281. [Google Scholar] [CrossRef]
- Soratto, R.P.; Crusciol, C.A.C. Dolomite and Phosphogypsum Surface Application Effects on Annual Crops Nutrition and Yield. Agron. J. 2008, 100, 261–270. [Google Scholar] [CrossRef]
- Silberbush, M.; Lips, S.H. Potassium, Nitrogen, Ammonium/Nitrate Ratio, and Sodium Chloride Effects on Wheat Growth. J. Plant Nutr. 1991, 14, 765–773. [Google Scholar] [CrossRef]
- Vitti, G.C.; Otto, R.; Savieto, J.; Lima, E.; Santos, L.A. Enxofre. In Nutrição Mineral de Plantas; Fernandes, M.S., Souza, S.R., Santos, L.A., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2018; pp. 337–400. ISBN 978-85-86504-23-5. [Google Scholar]
- Lara Cabezas, W.A.R.; Rodrigues, C.R.; de Oliveira, S.M.; Borges, E.N. Utilização de Ureia Em Misturas Com Sulfato de Amônio ou Com Gesso na Cultura de Milho. Rev. Bras. Ciência Solo 2008, 32, 2343–2353. [Google Scholar] [CrossRef] [Green Version]
- Biondi, C.M.; Nascimento, C.W.A.; Neta, A.B.F.; Ribeiro, M.R. Teores de Fe, Mn, Zn, Cu, Ni E Co Em Solos de Referência de Pernambuco. Rev. Bras. Ciência Solo 2011, 35, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human, 6th ed.; Springer: Berlin, Germany, 2007; ISBN 978-3-540-32713-4. [Google Scholar]
- Costa, A.C.S.; Junior, I.G.S.; Canton, L.C.; Gil, L.G.; Figueiredo, R. Contribution of the Chemical and Mineralogical Properties of Sandy-Loam Tropical Soils to the Cation Exchange Capacity. Rev. Bras. Cienc. Solo 2020, 44, e0200019. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of Nitrogen Fertilizer on the Acidification of Two Typical Acid Soils in South China. J. Soils Sediments 2014, 14, 415–422. [Google Scholar] [CrossRef]
- Zhao, W.; Cai, Z.C.; Xu, Z.H. Does Ammonium-Based N Addition Influence Nitrification and Acidification in Humid Subtropical Soils of China? Plant Soil 2007, 297, 213–221. [Google Scholar] [CrossRef]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic Loss of Inorganic Carbon by Nitrogen-Induced Soil Acidification in Chinese Croplands. Glob. Change Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef]
- Ulrich, B. Natural and Anthropogenic Components of Soil Acidification. Z. Pflanz. Bodenkd. 1986, 149, 702–717. [Google Scholar] [CrossRef]
- Abreu, C.A.; Lopes, A.S.; Gabrielli, G.C. Micronutrientes. In Fertilidade do Solo; Novais, R.F., Alvarez, V.H., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Neves, C.L.N., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2007; pp. 645–736. ISBN 978-85-86504-08-2. [Google Scholar]
- Abat, M.; Degryse, F.; Baird, R.; McLaughlin, M.J. Boron Phosphates (BPO4) as a Seedling-Safe Boron Fertilizer Source. Plant Soil 2015, 391, 153–160. [Google Scholar] [CrossRef]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn Response to Nitrogen Is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef] [Green Version]
- Hassink, J. The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Ros, G.H.; Hanegraaf, M.C.; Hoffland, E.; van Riemsdijk, W.H. Predicting Soil N Mineralization: Relevance of Organic Matter Fractions and Soil Properties. Soil Biol. Biochem. 2011, 43, 1714–1722. [Google Scholar] [CrossRef]
- Ping, J.L.; Ferguson, R.B.; Dobermann, A. Site-Specific Nitrogen and Plant Density Management in Irrigated Maize. Agron. J. 2008, 100, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.L.S.; Sano, E.E.; Bolfe, É.L.; Santos, J.R.N.; dos Santos, J.S.; Silva, F.B. Spatiotemporal Dynamics of Soybean Crop in the Matopiba Region, Brazil (1990–2015). Land Use policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- Dionizio, E.A.; Costa, M.H. Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. Agriculture 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Malavolta, E.; Moraes, M.F. Fundamentos do Nitrogênio e do Enxofre na Nutrição Mineral das Plantas Cultivadas. In Nitrogênio e Enxofre na Agricultura Brasileira; Yamada, T., Abdalla, S.R.S., Vitti, G.C., Eds.; International Plant Nutrition Institute: Piracicaba, Brazil, 2007; pp. 189–238. ISBN 978-85-98519-03-6. [Google Scholar]
- Tabatabaei, S.J.; Fatemi, L.S.; Fallahi, E. Effect of Ammonium: Nitrate Ratio on Yield, Calcium Concentration, and Photosynthesis Rate in Strawberry. J. Plant Nutr. 2006, 29, 1273–1285. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Li, S.X.; Wang, Z.H.; Stewart, B.A. Responses of Crop Plants to Ammonium and Nitrate N. Adv. Agron. 2013, 118, 205–397. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Ruffo, M.L.; Below, F.E. Nutrient Uptake, Partitioning, and Remobilization in Modern, Transgenic Insect-Protected Maize Hybrids. Agron. J. 2013, 105, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Fancelli, A.L. Ecofisiologia, Fenologia e Implicações Básicas de Manejo. In Milho do Plantio à Colheita; Galvão, J.C.C., Borém, A., Pimentel, M.A., Eds.; UFV: Viçosa, Brazil, 2017; pp. 49–75. ISBN 978-85-7269-583-1. [Google Scholar]
Soil Properties | Clayey Soil 1 | Sand Soil 2 | Soil Attribute |
---|---|---|---|
0.00–0.20 m | 0.00–0.20 m | Interpretation 3 | |
pH CaCl2 | 4.50 | 5.70 | Medium 1/High 2 |
H + Al (cmolc dm−3) | 6.49 | 1.90 | - |
Al3+ (cmolc dm−3) | 0.15 | 0.00 | Very low 1,2 |
Ca2+ (cmolc dm−3) | 3.31 | 1.68 | High1/Medium 2 |
Mg2+ (cmolc dm−3) | 1.09 | 0.52 | Medium 1,2 |
K+ (cmolc dm−3) | 0.17 | 0.09 | Medium 1/Low 2 |
SB (cmolc dm−3) | 4.57 | 2.29 | - |
CECpH7 (cmolc dm−3) | 11.06 | 4.19 | Medium1/Very low 2 |
ECEC (cmolc dm−3) | 4.72 | 2.29 | High1/Medium 2 |
BS (%) | 42 | 55 | Medium1/High 2 |
P (mg dm−3) | 16.15 | 56.61 | Very high 1,2 |
S (mg dm−3) | 2.96 | 0.95 | Medium 1/Very low 2 |
B (mg dm−3) | 0.40 | 0.12 | High 1/Low 2 |
Zn (mg dm−3) | 5.70 | 12.96 | High 1/Very high 2 |
Cu (mg dm−3) | 10.32 | 5.04 | Very high 1,2 |
Fe (mg dm−3) | 49.14 | 25.86 | - |
Mn (mg dm−3) | 142.26 | 47.28 | Vey high 1/high 2 |
OC (g dm−3) | 16.73 | 8.26 | High 1/Medium 2 |
OM (%) | 2.89 | 1.42 | High 1/Low 2 |
Sand (%) | 8 | 89 | - |
Silt (%) | 14 | 1 | - |
Clay (%) | 78 | 10 | - |
Treatments | Soil and Rate at Topdressing | Parameters | MDL | Reduction of Losses of NH3-N in Relation to Urea (%) | |||
---|---|---|---|---|---|---|---|
α | γ | β | R2 | kg ha−1 day−1 NH3-N | |||
kg ha−1 NH3-N | day | ||||||
Urea | 41.0 | 3.3 | 8.4 | 0.98 | 3.10 | - | |
Amm. sulfate | 8.5 | 3.8 | 8.3 | 0.97 | 0.56 | 79.3 | |
Amm. nitrate + Cal. sulfate | Clayey | 10.7 | 5.0 | 7.3 | 0.96 | 0.54 | 73.9 |
Ur-NBPT + Duromide | (200 kg ha−1) | 33.4 | 3.1 | 8.5 | 0.98 | 2.69 | 18.5 |
Ur-formaldehyde | 18.3 | 3.2 | 6.0 | 0.96 | 1.43 | 55.4 | |
PCU + Ur-NBPT + NI | 40.1 | 5.5 | 11.1 | 0.96 | 1.82 | 2.2 | |
Urea | 69.2 | 2.5 | 1.2 | 0.97 | 6.92 | - | |
Amm. sulfate | 11.0 | 5.8 | 7.1 | 0.98 | 0.47 | 84.1 | |
Amm. nitrate + Cal. sulfate | Sandy | 13.6 | 5.3 | 3.5 | 0.95 | 0.64 | 80.3 |
Ur-NBPT + Duromide | (150 kg ha−1) | 44.5 | 1.8 | 3.6 | 0.97 | 6.18 | 35.7 |
Ur-formaldehyde | 30.5 | 2.7 | 1.6 | 0.97 | 2.82 | 55.9 | |
PCU + Ur-NBPT + NI | 62.5 | 4.7 | 2.2 | 0.93 | 3.32 | 9.7 |
Treatments | Soil and Rate at Topdressing | Parameters | MDL | Increased of Losses of NH3-N in Relation to Urea (%) | |||
---|---|---|---|---|---|---|---|
α | γ | β | R2 | kg ha−1 day−1 NH3-N | |||
kg ha-1 NH3-N | day | ||||||
PCU | Clayey | 40.3 | 11.3 | 30.6 | 0.98 | 0.89 | - |
Ur-NBPT + NI | (200 kg ha−1) | 44.6 | 3.8 | 9.0 | 0.98 | 2.93 | 8.8 |
PCU | Sandy | 44.9 | 11.5 | 12.6 | 0.97 | 0.98 | - |
Ur-NBPT + NI | (150 kg ha−1) | 85.3 | 2.5 | 0.7 | 0.97 | 8.53 | 23.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassim, B.M.A.R.; Besen, M.R.; Kachinski, W.D.; Macon, C.R.; de Almeida Junior, J.H.V.; Sakurada, R.; Inoue, T.T.; Batista, M.A. Nitrogen Fertilizers Technologies for Corn in Two Yield Environments in South Brazil. Plants 2022, 11, 1890. https://doi.org/10.3390/plants11141890
Cassim BMAR, Besen MR, Kachinski WD, Macon CR, de Almeida Junior JHV, Sakurada R, Inoue TT, Batista MA. Nitrogen Fertilizers Technologies for Corn in Two Yield Environments in South Brazil. Plants. 2022; 11(14):1890. https://doi.org/10.3390/plants11141890
Chicago/Turabian StyleCassim, Bruno Maia Abdo Rahmen, Marcos Renan Besen, Wagner Deckij Kachinski, Celso Rafael Macon, João Henrique Vieira de Almeida Junior, Rodrigo Sakurada, Tadeu Takeyoshi Inoue, and Marcelo Augusto Batista. 2022. "Nitrogen Fertilizers Technologies for Corn in Two Yield Environments in South Brazil" Plants 11, no. 14: 1890. https://doi.org/10.3390/plants11141890
APA StyleCassim, B. M. A. R., Besen, M. R., Kachinski, W. D., Macon, C. R., de Almeida Junior, J. H. V., Sakurada, R., Inoue, T. T., & Batista, M. A. (2022). Nitrogen Fertilizers Technologies for Corn in Two Yield Environments in South Brazil. Plants, 11(14), 1890. https://doi.org/10.3390/plants11141890