Leaf Removal at Véraison and Foliar K+ Application to Beibinghong Vines Improved Berry Quality under Cold-Climate Conditions
Abstract
:1. Introduction
2. Results
2.1. Berry Weight, Physicochemical Parameters, and Phenolic Content
2.2. Principal Component Analysis (PCA)
2.3. Correlation Matrix
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material
5.2. Treatments
5.3. Harvest and Berry Determinations
5.4. Determination of Berry Polyphenols
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez-Gamboa, G.; Liu, S.Y.; Sun, X.Y.; Fang, Y. Oenological Potential and Health Benefits of Chinese Non-Vitis vinifera Species: An Opportunity to the Revalorization and to Breed New Varieties. Food Res. Int. 2020, 137, 109443. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Diao, L.; Song, H.; Zhu, X. Vitis Amurensis Rupr: A Review of Chemistry and Pharmacology. Phytomedicine 2018, 49, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-T.; Fan, S.-T.; Song, R.-G.; Lu, W.-P. “Beibinghong”: A New Grape Cultivar for Brewing Ice Red Wine. Vitis 2014, 53, 115. [Google Scholar] [CrossRef]
- Liu, L.; Li, H. Review: Research Progress in Amur Grape, Vitis Amurensis Rupr. Can. J. Plant Sci. 2013, 93, 565–575. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Hu, X.; Wu, X.; Liu, Y.; Yang, Y.; Zang, Y.; Tang, H.; Wang, C.; Xu, J. Quality Characteristics and Anthocyanin Profiles of Different Vitis Amurensis Grape Cultivars and Hybrids from Chinese Germplasm. Molecules 2021, 26, 6696. [Google Scholar] [CrossRef]
- Li, J.C.; Li, S.Y.; He, F.; Yuan, Z.Y.; Liu, T.; Reeves, M.J.; Duan, C.Q. Phenolic and Chromatic Properties of Beibinghong Red Ice Wine during and after Vinification. Molecules 2016, 21, 431. [Google Scholar] [CrossRef]
- He, Y.; Wen, L.; Liu, J.; Li, Y.; Zheng, F.; Min, W.; Yue, H.; Pan, P. Optimisation of Pulsed Electric Fields Extraction of Anthocyanin from Beibinghong Vitis Amurensis Rupr. Nat. Prod. Res. 2017, 32, 23–29. [Google Scholar] [CrossRef]
- Lan, Y.B.; Qian, X.; Yang, Z.J.; Xiang, X.F.; Yang, W.X.; Liu, T.; Zhu, B.Q.; Pan, Q.H.; Duan, C.Q. Striking Changes in Volatile Profiles at Sub-Zero Temperatures during over-Ripening of ‘Beibinghong’ Grapes in Northeastern China. Food Chem. 2016, 212, 172–182. [Google Scholar] [CrossRef]
- Liu, L.; Nan, L.; Zhao, X.; Wang, Z.; Nan, H.; Li, H. Effects of Two Training Systems on Sugar Metabolism and Related Enzymes in Cv. Beibinghong (Vitis Amurensis Rupr.). Can. J. Plant Sci. 2015, 95, 987–998. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf Area/Crop Weight Ratios of Grapevines: Influence on Fruit Composition and Wine Quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar]
- Gutiérrez-Gamboa, G.; Díaz-Galvéz, I.; Verdugo-Vásquez, N.; Moreno-Simunovic, Y. Leaf-to-Fruit Ratios in Vitis vinifera L. Cv. “Sauvignon Blanc”, “Carmenère”, “Cabernet Sauvignon”, and “Syrah” Growing in Maule Valley (Chile): Influence on Yield and Fruit Composition. Agriculture 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Shahood, R.; Torregrosa, L.; Savoi, S.; Romieu, C. First Quantitative Assessment of Growth, Sugar Accumulation and Malate Breakdown in a Single Ripening Berry. OENO One 2020, 54, 1077–1092. [Google Scholar] [CrossRef]
- Antalick, G.; Šuklje, K.; Blackman, J.W.; Schmidtke, L.M.; Deloire, A. Performing Sequential Harvests Based on Berry Sugar Accumulation (Mg/Berry) to Obtain Specific Wine Sensory Profiles. OENO One 2021, 55, 131–146. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Kurtural, S.K. Same Season and Carry-over Effects of Source-Sink Adjustments on Grapevine Yields and Non-Structural Carbohydrates. Front. Plant Sci. 2021, 12, 1203. [Google Scholar] [CrossRef] [PubMed]
- Tardaguila, J.; Diago, M.P.; Martinez de Toda, F.; Poni, S.; Vilanova, M. Effects of Timing of Leaf Removal on Yield, Berry Maturity, Wine Composition and Sensory Properties of Cv. Grenache Grown under Non Irrigated Conditions. OENO One 2008, 42, 221–229. [Google Scholar] [CrossRef]
- Riesterer-Loper, J.; Workmaster, B.A.; Atucha, A. Impact of Fruit Zone Sunlight Exposure on Ripening Profiles of Cold Climate Interspecific Hybrid Winegrapes. Am. J. Enol. Vitic. 2019, 70, 286–296. [Google Scholar] [CrossRef]
- Caccavello, G.; Giaccone, M.; Scognamiglio, P.; Forlani, M.; Basile, B. Influence of Intensity of Post-Veraison Defoliation or Shoot Trimming on Vine Physiology, Yield Components, Berry and Wine Composition in Aglianico Grapevines. Aust. J. Grape Wine Res. 2017, 23, 226–239. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G.B. Effects of Defoliation at Fruit Set on Vine Physiology and Berry Composition in Cabernet Sauvignon Grapevines. Plants 2021, 10, 1183. [Google Scholar] [CrossRef]
- Stefanovic, D.; Nikolic, N.; Kostic, L.; Todic, S.; Nikolic, M. Early Leaf Removal Increases Berry and Wine Phenolics in Cabernet Sauvignon Grown in Eastern Serbia. Agronomy 2021, 11, 238. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Keller, M.; Holzapfel, B.P.; Virgona, J.M. Accumulation of Potassium and Calcium by Ripening Berries on Field Vines of Vitis vinifera (L) Cv. Shiraz. Aust. J. Grape Wine Res. 2000, 6, 240–243. [Google Scholar] [CrossRef]
- Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A Review of Potassium Nutrition in Grapevines with Special Emphasis on Berry Accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Zhang, C.-X.; Yang, T.-Y.; Luo, J.; Wang, X.-L.; Jiang, A.-L.; Ye, Z.-W. Effects of Different Fertilizers and Application Methods on Photosynthetic Characteristics and Quality of Kyoho Grape. Southwest China J. Agric. Sci. 2010, 23, 440–443. [Google Scholar]
- Villette, J.; Cuéllar, T.; Verdeil, J.L.; Delrot, S.; Gaillard, I. Grapevine Potassium Nutrition and Fruit Quality in the Context of Climate Change. Front. Plant Sci. 2020, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Delgado, R.; Martín, P.; del Álamo, M.; González, M.R. Changes in the Phenolic Composition of Grape Berries during Ripening in Relation to Vineyard Nitrogen and Potassium Fertilisation Rates. J. Sci. Food Agric. 2004, 84, 623–630. [Google Scholar] [CrossRef]
- Diez-Zamudio, F.; Laytte, R.; Grallert, C.; Ivit, N.N.; Gutiérrez-Gamboa, G. Viticultural Performance of Hybrids and Vitis vinifera Varieties Established in Annapolis Valley (Nova Scotia). Horticulturae 2021, 7, 291. [Google Scholar] [CrossRef]
- Diez-Zamudio, F.; Laytte, R.; Grallert, C.; Gutiérrez-Gamboa, G. Nutritional Status Differentially Affect Yield and Must Composition of Hybrids and V. Vinifera Varieties Established under Cold Climate Conditions. Ciência E Técnica Vitivinícola 2021, 36, 89–103. [Google Scholar] [CrossRef]
- Amiri, M.E.; Fallahi, E. Influence of Mineral Nutrients on Growth, Yield, Berry Quality, and Petiole Mineral Nutrient Concentrations of Table Grape. J. Plant Nutr. 2007, 30, 463–470. [Google Scholar] [CrossRef]
- O’brien, P.; Collins, C.; de Bei, R. Leaf Removal Applied to a Sprawling Canopy to Regulate Fruit Ripening in Cabernet Sauvignon. Plants 2021, 10, 1017. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic Effects of Elevated Temperature on Organic Acid Degradation in Ripening Vitis vinifera Fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Poni, S.; Quartieri, M.; Tagliavini, M. Potassium Nutrition of Cabernet Sauvignon Grapevines (Vitis vinifera L.) as Affected by Shoot Trimming. Plant Soil 2003, 253, 341–351. [Google Scholar] [CrossRef]
- Petrie, P.R.; Trought, M.C.T.; Howell, G.S.; Buchan, G.D. The Effect of Leaf Removal and Canopy Height on Whole-Vine Gas Exchange and Fruit Development of Vitis vinifera L. Sauvignon Blanc. Funct. Plant Biol. 2003, 30, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Frioni, T.; Zhuang, S.; Palliotti, A.; Sivilotti, P.; Falchi, R.; Sabbatini, P. Leaf Removal and Cluster Thinning Efficiencies Are Highly Modulated by Environmental Conditions in Cool Climate Viticulture. Am. J. Enol. Vitic. 2017, 68, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Pérez-Álvarez, E.P.; Moreno-Simunovic, Y. Characterization of Phenolic Composition in Carignan Noir Grapes (Vitis vinifera L.) from Six Wine-Growing Sites in Maule Valley, Chile. J. Sci. Food Agric. 2018, 98, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Kroon, P.; Cassidy, A.; Kay, C. Anthocyanin Stability and Recovery: Implications for the Analysis of Clinical and Experimental Samples. J. Agric. Food Chem. 2009, 57, 5271–5278. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.M.; Visser, R.G.F.; Bovy, A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front. Chem. 2018, 6, 52. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Analysis of Wines and Musts; OIV: Paris, France, 2003.
- Kupe, M.; Karatas, N.; Unal, M.S.; Ercisli, S.; Baron, M.; Sochor, J. Phenolic Composition and Antioxidant Activity of Peel, Pulp and Seed Extracts of Different Clones of the Turkish Grape Cultivar ‘Karaerik’. Plants 2021, 10, 2154. [Google Scholar] [CrossRef]
- Mitsunaga, T.; Doi, T.; Kondo, Y.; Abe, I. Color Development of Proanthocyanidins in Vanillin-Hydrochloric Acid Reaction. J. Wood Sci. 1998, 44, 125–130. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Feduraev, P.; Skrypnik, L.; Nebreeva, S.; Dzhobadze, G.; Vatagina, A.; Kalinina, E.; Pungin, A.; Maslennikov, P.; Riabova, A.; Krol, O.; et al. Variability of Phenolic Compound Accumulation and Antioxidant Activity in Wild Plants of Some Rumex Species (Polygonaceae). Antioxidants 2022, 11, 311. [Google Scholar] [CrossRef]
- Iland, P.G.; Cynkar, W.; Francis, I.L.; Williams, P.J.; Coombe, B.C. Optimisation of Methods for the Determination of Total and Red-Free Glycosyl Glucose in Black Grape Berries of Vitis vinifera. Aust. J. Grape Wine Res. 1996, 2, 171–178. [Google Scholar] [CrossRef]
Control | Leaf Removal | K+ Application | Leaf Removal + K+ Application | |
---|---|---|---|---|
Berry weight (g) | 59.36 ± 10.39 ab | 57.79 ± 5.89 ab | 63.62 ± 6.84 b | 55.34 ± 9.01 a |
Total soluble solids (°Brix) | 20.48 ± 1.42 a | 20.16 ± 0.92 a | 19.63 ± 0.10 a | 20.17 ± 1.10 a |
pH | 3.06 ± 0.06 a | 3.12 ± 0.07 a | 3.09 ± 0.07 a | 3.13 ± 0.08 a |
Titratable acidity (g L−1) * | 12.88 ± 0.99 b | 11.96 ± 1.53 ab | 11.92 ± 0.99 ab | 11.28 ± 0.80 a |
Total phenols (mg g−1) | 12.95 ± 2.38 a | 14.61 ± 3.21 ab | 14.49 ± 2.38 ab | 16.39 ± 1.96 b |
Total phenolic acids (mg g−1) | 2.07 ± 0.59 a | 3.94 ± 1.02 b | 3.69 ± 0.96 b | 4.06 ± 0.81 b |
Total proanthocyanidins (mg g−1) | 4.25 ± 1.27 a | 4.46 ± 1.12 a | 4.62 ± 1.05 a | 4.83 ± 0.95 a |
Total flavonoids (mg g−1) | 9.14 ± 1.96 a | 10.18 ± 2.58 a | 8.84 ± 1.98 a | 10.22 ± 1.40 a |
Total anthocyanins (mg g−1) | 1.02 ± 0.27 a | 1.07 ± 0.29 a | 1.08 ± 0.25 a | 1.11 ± 0.20 a |
Berry Weight | °Brix | pH | Titratable Acidity | Total Phenols | Total Phenolic Acids | Total Proanthocyanidins | Total Flavonoids | Total Anthocyanins | |
---|---|---|---|---|---|---|---|---|---|
Berry weight | 1 | ||||||||
°Brix | −0.64 | 1 | |||||||
pH | −0.58 | −0.23 | 1 | ||||||
Titratable acidity | 0.39 | 0.46 | −0.91 | 1 | |||||
Total phenols | −0.52 | −0.30 | 0.91 | −0.98 * | 1 | ||||
Total phenolic acids | −0.23 | −0.58 | 0.92 | −0.92 | 0.85 | 1 | |||
Total proanthocyanidins | −0.27 | −0.51 | 0.77 | −0.96 * | 0.95 * | 0.82 | 1 | ||
Total flavonoids | −0.90 | 0.34 | 0.83 | −0.59 | 0.66 | 0.57 | 0.40 | 1 | |
Total anthocyanins | −0.29 | −0.53 | 0.86 | −0.99 ** | 0.97 * | 0.91 | 0.98 * | 0.49 | 1 |
2021 | |
Growing Season (from April to September) | |
Precipitation (mm) | 1097 |
ET0 (mm) | 554 |
Minimum temperature (°C) | −2.7 |
Average temperature (°C) | 19.6 |
Maximum temperature (°C) | 34.3 |
Relative humidity (%) | 0.7 |
Accumulated radiation (MJ m2) | 5166.7 |
Warmest Month (July) | |
ET0 (mm) | 114.4 |
Average radiation (MJ m2) | 17.74 |
Annual | |
Precipitation (mm) | 1342 |
ET0 (mm) | 676.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, Z.; Zheng, W.; Dong, M.; Cai, M.; Gutiérrez-Gamboa, G.; Sun, B. Leaf Removal at Véraison and Foliar K+ Application to Beibinghong Vines Improved Berry Quality under Cold-Climate Conditions. Plants 2022, 11, 2361. https://doi.org/10.3390/plants11182361
Le Z, Zheng W, Dong M, Cai M, Gutiérrez-Gamboa G, Sun B. Leaf Removal at Véraison and Foliar K+ Application to Beibinghong Vines Improved Berry Quality under Cold-Climate Conditions. Plants. 2022; 11(18):2361. https://doi.org/10.3390/plants11182361
Chicago/Turabian StyleLe, Zhao, Wei Zheng, Mengde Dong, Ming Cai, Gastón Gutiérrez-Gamboa, and Baoshan Sun. 2022. "Leaf Removal at Véraison and Foliar K+ Application to Beibinghong Vines Improved Berry Quality under Cold-Climate Conditions" Plants 11, no. 18: 2361. https://doi.org/10.3390/plants11182361
APA StyleLe, Z., Zheng, W., Dong, M., Cai, M., Gutiérrez-Gamboa, G., & Sun, B. (2022). Leaf Removal at Véraison and Foliar K+ Application to Beibinghong Vines Improved Berry Quality under Cold-Climate Conditions. Plants, 11(18), 2361. https://doi.org/10.3390/plants11182361