Hypericum Genus as a Natural Source for Biologically Active Compounds
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Hypericum Genus Plants Isolated Compounds with In Vivo/In Vitro Activities
4.1. Class Compounds of Isolated Metabolites
4.2. Class Compounds and Biological Activities
5. Comments
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crockett, S.; Robson, N. Taxonomy and Chemotaxonomy of the Genus Hypericum. Med. Aromat. Plant Sci. Biotechnol. 2011, 5, 1–13. [Google Scholar] [PubMed]
- Beck, L. Pedanius Dioscorides of Anazarbus-De Materia Medica; Olms: Weidman, Germany, 2005; p. 540. [Google Scholar]
- Zhang, R.; Ji, Y.; Zhang, X.; Kennelly, E.J.; Long, C. Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2020, 254, 112686. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Statti, G.; Conforti, F. Hypericum spp.: An Update on the Biological Activities and Metabolic Profiles. Mini-Rev. Med. Chem. 2020, 20, 66–87. [Google Scholar] [CrossRef]
- Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=116180 (accessed on 11 December 2021).
- Menezes de Sequeira, M.; Espírito-Santo, D.; Aguiar, C.; Capelo, J.; Honrado, J. (Eds.) Checklist da Flora de Portugal (Continental, Açores e Madeira); Associação Lusitana de Fitossociologia: Lisboa, Portugal, 2012; p. 74. [Google Scholar]
- Valentao, P.; Dias, A.; Ferreira, M.; Silva, B.; Andrade, P.B.; Bastos, M.L.; Seabra, R.M. Variability in phenolic composition of Hypericum androsaemum. Nat. Prod. Res. 2003, 17, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Proenca, C.; Serralheiro, M.L.; Araujo, M.E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
- Rainha, N.; Lima, E.; Baptista, J.; Rodrigues, C. Antioxidant properties, total phenolic, total carotenoid and chlorophyll content of anatomical parts of Hypericum foliosum. J. Med. Plants Res. 2011, 5, 1930–1940. [Google Scholar]
- Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 2017, 200, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Nierenberg, A.A.; Schweitzer, I.; Alpert, J.E.; Rosenbaum, J.F.; Iovieno, N.; Covino, J.; Fava, M.; Mischoulon, D. Conditional probability of response or nonresponse of placebo compared with antidepressants or St John’s Wort in major depressive disorder. J. Clin. Psychopharmacol. 2013, 33, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Statti, G.; Conforti, F.; Menichini, F. New potential pharmaceutical applications of Hypericum species. Mini-Rev. Med. Chem. 2016, 16, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Agency, E.M. Community Herbal Monograph on Hypericum perforatum L., Herba (Well-Established Medicinal Use); Committee on Herbal Medicinal Products: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Avato, P. A Survey on the Hypericum genus: Secondary metabolites and bioactivity. Stud. Nat. Prod. Chem. 2005, 30, 603–634. [Google Scholar]
- Verjee, S.; Weston, A.; Kolb, C.; Kalbhenn-Aziz, H.; Butterweck, V. Hyperforin and Miquelianin from St. John’s Wort Attenuate Gene Expression in Neuronal Cells After Dexamethasone-Induced Stress. Planta Med. 2018, 84, 696–703. [Google Scholar]
- Zhai, X.J.; Chen, F.; Chen, C.; Zhu, C.R.; Lu, Y.N. LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model. J. Ethnopharmacol. 2015, 169, 363–369. [Google Scholar] [CrossRef]
- Cervo, L.; Mennini, T.; Rozio, M.; Ekalle-Soppo, C.B.; Canetta, A.; Burbassi, S.; Guiso, G.; Pirona, L.; Riva, A.; Morazzoni, P.; et al. Potential antidepressant properties of IDN 5491 (hyperforin-trimethoxybenzoate), a semisynthetic ester of hyperforin. Eur. Neuropsychopharmacol. 2005, 15, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Schempp, C.M.; Pelz, K.; Wittmer, A.; Schöpf, E.; Simon, J.C. Antibacterial activity of hyperforin from St John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet 1999, 353, 2129. [Google Scholar] [CrossRef]
- Imreova, P.; Feruszova, J.; Kyzek, S.; Bodnarova, K.; Zduriencikova, M.; Kozics, K.; Mucaji, P.; Galova, E.; Sevcovicova, A.; Miadokova, E.; et al. Hyperforin Exhibits Antigenotoxic Activity on Human and Bacterial Cells. Molecules 2017, 22, 167. [Google Scholar] [CrossRef] [PubMed]
- Mirmalek, S.A.; Azizi, M.A.; Jangholi, E.; Yadollah-Damavandi, S.; Javidi, M.A.; Parsa, Y.; Parsa, T.; Salimi-Tabatabaee, S.A.; Ghasemzadeh Kolagar, H.; Alizadeh-Navaei, R. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line. Cancer Cell Int. 2015, 16, 3. [Google Scholar] [CrossRef]
- Yi, J.; Yang, X.; Zheng, L.; Yang, G.; Sun, L.; Bao, Y.; Wu, Y.; Huang, Y.; Yu, C.; Yang, S.N.; et al. Photoactivation of hypericin decreases the viability of RINm5F insulinoma cells through reduction in JNK/ERK phosphorylation and elevation of caspase-9/caspase-3 cleavage and Bax-to-Bcl-2 ratio. Biosci. Rep. 2015, 35, e00195. [Google Scholar] [CrossRef]
- Zaher, M.; Tang, R.; Bombarda, I.; Merhi, F.; Bauvois, B.; Billard, C. Hyperforin induces apoptosis of chronic lymphocytic leukemia cells through upregulation of the BH3-only protein Noxa. Int J. Oncol. 2012, 40, 269–276. [Google Scholar]
- Sharma, K.V.; Davids, L.M. Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment. Cell Biol. Int. 2012, 36, 1261–1266. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Liu, Z.; Wang, D.-M.; Li, M.-M.; Wang, S.-X.; Wang, R.; Chen, J.-P.; Wang, Y.-F.; Yang, D.-P. Induction of apoptosis in K562 cells by dicyclohexylammonium salt of hyperforin through a mitochondrial-related pathway. Chem. Biol. Interact. 2011, 190, 91–101. [Google Scholar] [CrossRef]
- Berlanda, J.; Kiesslich, T.; Engelhardt, V.; Krammer, B.; Plaetzer, K. Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J. Photochem. Photobiol. B 2010, 100, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Nahrstedt, A.; Butterweck, V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 1997, 30 (Suppl. S2), 129–134. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, J.; Rosenson, J. Chemistry of St. John’s Wort Hypericin and Hyperforin. J. Chem. Educ. 2004, 81, 1450–1456. [Google Scholar] [CrossRef]
- Sashidhara, K.; Rosaiah, J. Various dereplication strategies using LC-MS for rapid natural product lead identification and drug discovery. Nat. Prod. Commun. 2006, 2, 193–202. [Google Scholar] [CrossRef]
- Es-Safi, N.; Essassi, E.M.; Banoub, J. Mass Spectrometry as a Powerful Analytical Technique for the Structural Characterization of Synthesized and Natural Products. In Detection of Biological Agents for the Prevention of Bioterrorism; Chemistry and Biology; NATO: Washington, DC, USA, 2010; pp. 319–360. [Google Scholar]
- Tanaka, N.; Kashiwada, Y. Characteristic metabolites of Hypericum plants: Their chemical structures and biological activities. J. Nat. Med. 2021, 75, 423–433. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, W.; Wang, J.C. Recent advances regarding constituents and bioactivities of plants from the genus Hypericum. Chem. Biodivers. 2015, 12, 309–349. [Google Scholar] [CrossRef]
- Available online: www.theplantlist.org (accessed on 30 April 2022).
- Wang, J.; Shi, M.J.; Wang, J.J.; Li, J.; Ji, T.F. Polycyclic Polyprenylated Acylphloroglucinol Derivatives from Hypericum acmosepalum. Molecules 2019, 24, 50. [Google Scholar] [CrossRef]
- Wang, X.; Shi, M.; Wang, J.; Suo, X.; Sun, H.; Zhen, B.; Sun, H.; Li, J.; Ji, T. Hyperacmosins E–G, three new homoadamantane-type polyprenylated acylphloroglucinols from Hypericum acmosepalum. Fitoterapia 2020, 142, 104535. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.J.; Suo, X.Y.; Sun, H.R.; Zhen, B.; Sun, H.; Li, J.G.; Ji, T.F. Hyperacmosins H–J, three new polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum acmosepalum. J. Asian Nat. Prod. Res. 2020, 22, 521–530. [Google Scholar] [CrossRef]
- Suo, X.Y.; Shi, M.J.; Dang, J.; Yue, H.L.; Tao, Y.D.; Zhen, B.; Wang, J.J.; Wang, X.; Sun, H.R.; Sun, H.; et al. Two new polycyclic polyprenylated acylphloroglucinols derivatives from Hypericum acmosepalum. J. Asian Nat. Prod. Res. 2021, 23, 1068–1076. [Google Scholar] [CrossRef]
- Nedialkov, P.T.; Ilieva, Y.; Momekov, G.; Kokanova-Nedialkova, Z. Cytotoxic prenylated acylphloroglucinols from Hypericum annulatum. Fitoterapia 2018, 127, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Ccana-Ccapatinta, G.V.; Stolz, E.D.; da Costa, P.F.; Rates, S.M.; von Poser, G.L. Acylphloroglucinol derivatives from Hypericum andinum: Antidepressant-like activity of andinin A. J. Nat. Prod. 2014, 77, 2321–2325. [Google Scholar] [CrossRef] [PubMed]
- Zhen, B.; Hu, J.-W.; Wang, J.-J.; Shi, M.-J.; Li, L.; Ci, R.; Jiang, J.-D.; Ji, T.-F. Hyperascyrins L–N, rare methylated polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum ascyron. J. Asian Nat. Prod. Res. 2019, 21, 409–418. [Google Scholar] [CrossRef]
- Niwa, K.; Tanaka, N.; Tatano, Y.; Yagi, H.; Kashiwada, Y. Hypascyrins A–E, Prenylated Acylphloroglucinols from Hypericum ascyron. J. Nat. Prod. 2019, 82, 2754–2760. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.L.; Hu, K.; Kong, L.M.; Xia, F.; Yang, X.W.; Xu, G. Norascyronones A and B, 2,3,4- nor-Polycyclic Polyprenylated Acylphloroglucinols from Hypericum ascyron. Org. Lett. 2019, 21, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-W.; Shi, M.-J.; Wang, J.-J.; Li, L.; Jiang, J.-D.; Ji, T.-F. Methylated Polycyclic Polyprenylated Acylphloroglucinol Derivatives from Hypericum ascyron. J. Nat. Prod. 2018, 81, 2348–2356. [Google Scholar] [CrossRef]
- Li, D.Y.; Xue, Y.B.; Zhu, H.C.; Li, Y.; Sun, B.; Liu, J.J.; Yao, G.M.; Zhang, J.W.; Du, G.; Zhang, Y.H. Hyperattenins A–I, bioactive polyprenylated acylphloroglucinols from Hypericum attenuatum Choisy. Rsc. Adv. 2015, 5, 5277–5287. [Google Scholar] [CrossRef]
- Xu, W.-J.; Tang, P.-F.; Lu, W.-J.; Zhang, Y.-Q.; Wang, X.-B.; Zhang, H.; Luo, J.; Kong, L.-Y. Hyperberins A and B, Type B Polycyclic Polyprenylated Acylphloroglucinols with Bicyclo[5.3.1]hendecane Core from Hypericum beanii. Org. Lett. 2019, 21, 8558–8562. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Li, Y.; Li, K.-Z.; Peng, L.-Y.; He, J.; Wang, K.; Pan, Z.-H.; Cheng, X.; Li, M.-M.; Zhao, Q.-S.; et al. Spirocyclic acylphloroglucinol derivatives from Hypericum beanii. Chem. Pharm. Bull. 2011, 59, 1250–1253. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, W.; Li, Y.; Zhang, M.; Tang, P.; Lu, W.; Li, Q.; Zhang, H.; Luo, J.; Kong, L. Anti-Inflammatory, Antioxidant, and Anti-Nonalcoholic Steatohepatitis Acylphloroglucinol Meroterpenoids from Hypericum bellum Flowers. J. Agric. Food Chem. 2021, 69, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Franca, H.S.; Rocha, L.; Fernande, C.P.; Ruiz, A.L.T.G.; de Carvalho, J.E. Antiproliferative activity of the hexanic extract and phloroglucinols from Hypericum brasiliense. Rev. Bras. Farmacogn. 2013, 23, 844–847. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhang, X.; Jiang, K.; Qu, S.J.; Meng, L.H.; Lu, Q.; Tan, C.H. Polycyclic polyprenylated acylphloroglucinols from Hypericum choisianum. Nat. Prod. Res. 2021, 35, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, X.W.; Chen, C.Q.; Wu, C.Y.; Zhang, J.J.; Ma, J.Z.; Wang, H.; Yang, L.X.; Xu, G. Bioactive polyprenylated acylphloroglucinol derivatives from Hypericum cohaerens. J. Nat. Prod. 2013, 76, 1612–1618. [Google Scholar] [CrossRef]
- Qiu, D.; Zhou, M.; Chen, J.; Wang, G.; Lin, T.; Huang, Y.; Yu, F.; Ding, R.; Sun, C.; Tian, W.; et al. Hyperelodiones A–C, monoterpenoid polyprenylated acylphoroglucinols from Hypericum elodeoides, induce cancer cells apoptosis by targeting RXRalpha. Phytochemistry 2020, 170, 112216. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.X.; Tanaka, N.; Tatano, Y.; Kashiwada, Y. Erecricins A–E, prenylated acylphloroglucinols from the roots of Hypericum erectum. Fitoterapia 2016, 114, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-W.; Ye, Y.-S.; Xia, F.; Yang, X.-W.; Xu, G. Diverse Polyphenols from Hypericum faberi. Nat. Prod. Bioprospect. 2019, 9, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.J.; Xu, W.J.; Zhang, M.H.; Zhang, Y.Q.; Li, Y.R.; Zhang, H.; Luo, J.; Kong, L.Y. Diverse Polycyclic Polyprenylated Acylphloroglucinol Congeners with Anti-Nonalcoholic Steatohepatitis Activity from Hypericum forrestii. J. Nat. Prod. 2021, 84, 1135–1148. [Google Scholar] [CrossRef]
- Ma, J.; Zang, Y.D.; Zhang, J.J.; Li, C.J.; Li, Y.; Su, Y.L.; Wang, A.G.; Zhang, D.M. Nine prenylated acylphloroglucinols with potential anti-depressive and hepatoprotective activities from Hypericum scabrum. Bioorg. Chem. 2021, 107, 104529. [Google Scholar] [CrossRef]
- Zong, J.F.; Zhang, M.M.; Zhou, Y.B.; Li, J.; Hou, A.J.; Lei, C. Polyprenylated acylphloroglucinol meroterpenoids with PTP1B inhibition from Hypericum forrestii. Fitoterapia 2021, 153, 104959. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W.; Li, M.M.; Liu, X.; Ferreira, D.; Ding, Y.; Zhang, J.J.; Liao, Y.; Qin, H.B.; Xu, G. Polycyclic Polyprenylated Acylphloroglucinol Congeners Possessing Diverse Structures from Hypericum henryi. J. Nat. Prod. 2015, 78, 885–895. [Google Scholar] [CrossRef]
- Ye, Y.-S.; Wu, M.; Jiang, N.-N.; Lao, Y.-Z.; Fu, W.-W.; Liu, X.; Yang, X.-W.; Zhang, J.; Xu, H.-X.; Xu, G. Dearomatized Isoprenylated Acylphloroglucinol Derivatives with Potential Antitumor Activities from Hypericum henryi. Nat. Prod. Bioprospect. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Li, Y.; Cheng, X.; Wang, K.; He, J.; Pan, Z.-H.; Li, M.-M.; Peng, L.-Y.; Xu, G.; Zhao, Q.-S. Polycyclic polyprenylated acylphloroglucinols and chromone O-glucosides from Hypericum henryi subsp. uraloides. Chem. Biodivers. 2010, 7, 196–204. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, X.-W.; Zhou, Y.; Xu, G. homo-Adamantane type polycyclic polyprenylated acylphloroglucinols from Hypericum hookerianum. Fitoterapia 2019, 133, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-Q.; Wang, X.-D.; Wu, L.-Z.; Fang, Q.-Q.; Liu, Y.-N.; Jiang, K.; Qu, S.-J.; Tan, C.-H. Polyprenylated acylphloroglucinols as deubiquitinating protease USP7 inhibitors from Hypericum hookerianum. Fitoterapia 2020, 146, 104678. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-P.; Hu, K.; Yang, X.-W.; Xu, G. Antibacterial Dimeric Acylphloroglucinols from Hypericum japonicum. J. Nat. Prod. 2018, 81, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Discovery of phloroglucinols from Hypericum japonicum as ferroptosis inhibitors. Fitoterapia 2021, 153, 104984. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, R.A.; Gomez-Sandoval, Z.; Mammino, L. Evaluation of the antiradical activity of hyperjovinol-A utilizing donor-acceptor maps. J. Mol. Model. 2014, 20, 2337. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Otani, M.; Kashiwada, Y.; Takaishi, Y.; Shibazaki, A.; Gonoi, T.; Shiro, M.; Kobayashi, J.i. Petiolins J–M, prenylated acylphloroglucinols from Hypericum pseudopetiolatum var. kiusianum. Bioorg. Med. Chem. Lett. 2010, 20, 4451–4455. [Google Scholar] [CrossRef]
- Zhang, N.; Shi, Z.; Xu, Q.; Sun, W.; Gu, L.; Xie, S.; Guo, Y.; Duan, Y.; Zhang, K.; Qi, C.; et al. Longisglucinols A–C, Structurally Intriguing Polycyclic Polyprenylated Acylphloroglucinols with Anti-inflammatory Activity from Hypericum longistylum. Org. Lett. 2020, 22, 7926–7929. [Google Scholar] [CrossRef]
- Tocci, N.; Weil, T.; Perenzoni, D.; Moretto, M.; Nurk, N.; Madrinan, S.; Ferrazza, R.; Guella, G.; Mattivi, F. Potent Antifungal Properties of Dimeric Acylphloroglucinols from Hypericum mexicanum and Mechanism of Action of a Highly Active 3’Prenyl Uliginosin B. Metabolites 2020, 10, 459. [Google Scholar] [CrossRef]
- Zeng, Y.R.; Yi, P.; Gu, W.; Xiao, C.X.; Huang, L.J.; Tian, D.S.; Yan, H.; Chen, D.Z.; Yuan, C.M.; Hao, X.J. Hypermonins A and B, two 6-norpolyprenylated acylphloroglucinols with unprecedented skeletons from Hypericum monogynum. Org. Biomol. Chem. 2018, 16, 4195–4198. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.R.; Li, Y.N.; Zhang, Z.Z.; Hu, Z.X.; Gu, W.; Huang, L.J.; Li, Y.M.; Yuan, C.M.; Hao, X.J. Hypermoins A–D: Rearranged Nor-Polyprenylated Acylphloroglucinols from the Flowers of Hypericum monogynum. J. Org. Chem. 2021, 86, 7021–7027. [Google Scholar] [CrossRef]
- Zeng, Y.-R.; Li, Y.-N.; Lou, H.-Y.; Jian, J.-Y.; Gu, W.; Huang, L.-J.; Du, G.-H.; Yuan, C.-M.; Hao, X.-J. Polycyclic polyprenylated acylphloroglucinol derivatives with neuroprotective effects from Hypericum monogynum. J. Asian Nat. Prod. Res. 2021, 23, 73–81. [Google Scholar] [CrossRef]
- Pinhatti, A.V.; de Barros, F.M.C.; de Farias, C.B.; Schwartsmann, G.; Poser, G.L.v.; Abujamra, A.L. Antiproliferative activity of the dimeric phloroglucinol and benzophenone derivatives of Hypericum spp. native to southern Brazil. Anticancer. Drugs 2013, 24, 699–703. [Google Scholar] [CrossRef]
- Stolz, E.D.; Hasse, D.R.; von Poser, G.L.; Rates, S.M.K. Uliginosin B, a natural phloroglucinol derivative, presents a multimediated antinociceptive effect in mice. J. Pharm. Pharmacol. 2014, 66, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Shiu, W.K.P.; Gibbons, S.; Malkinson, J.P. Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. Eur. J. Med. Chem. 2018, 155, 255–262. [Google Scholar] [CrossRef]
- Shiu, W.K.; Rahman, M.M.; Curry, J.; Stapleton, P.; Zloh, M.; Malkinson, J.P.; Gibbons, S. Antibacterial acylphloroglucinols from Hypericum olympicum. J. Nat. Prod. 2012, 75, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Ao, Z.; Xu, Q.-Q.; Zhu, D.-R.; Chen, C.; Wang, X.-B.; Luo, J.-G.; Kong, L.-Y. Hyperpatulols A–I, spirocyclic acylphloroglucinol derivatives with anti-migration activities from the flowers of Hypericum patulum. Bioorg. Chem. 2019, 87, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Deng, Y.; Bu, P.; Xie, S.; Guo, Y.; Shi, Z.; Guo, Y.; Cao, Y.; Qi, C.; Zhang, Y. Discovery of nor-bicyclic polyprenylated acylphloroglucinols possessing diverse architectures with anti-hepatoma activities from Hypericum patulum. Bioorg. Chem. 2021, 111, 104902. [Google Scholar] [CrossRef]
- Duan, Y.; Xie, S.; Bu, P.; Guo, Y.; Shi, Z.; Guo, Y.; Cao, Y.; Sun, W.; Qi, C.; Zhang, Y. Hypaluton A, an Immunosuppressive 3,4-nor-Polycyclic Polyprenylated Acylphloroglucinol from Hypericum patulum. J. Org. Chem. 2021, 86, 6478–6485. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, N.; Duan, X.Y.; Cao, Y.F.; Xue, Y.B.; Luo, Z.W.; Zhu, H.C.; Chen, C.M.; Wang, J.P.; Zhang, Y.H. Hyperforatins L–U: Prenylated acylphloroglucinols with a terminal double bond from Hypericum perforatum L. (St John’s Wort). Phytochemistry 2019, 164, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, N.; Sun, W.G.; Duan, X.Y.; Zhang, Q.; Zhou, Q.; Chen, C.M.; Zhu, H.C.; Luo, Z.W.; Liu, J.J.; et al. Bioactive polycyclic polyprenylated acylphloroglucinols from Hypericum perforatum. Org. Biomol. Chem. 2018, 16, 8130–8143. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, N.; Chen, C.; Huang, J.; Li, X.-N.; Liu, J.; Zhu, H.; Tong, Q.; Zhang, J.; Luo, Z.; et al. Tricyclic Polyprenylated Acylphloroglucinols from St John’s Wort, Hypericum perforatum. J. Nat. Prod. 2017, 80, 1493–1504. [Google Scholar] [CrossRef]
- Lou, H.; Yi, P.; Hu, Z.; Li, Y.; Zeng, Y.; Gu, W.; Huang, L.; Yuan, C.; Hao, X. Polycyclic polyprenylated acylphloroglucinols with acetylcholinesterase inhibitory activities from Hypericum perforatum. Fitoterapia 2020, 143, 104550. [Google Scholar] [CrossRef]
- Lou, H.Y.; Li, Y.N.; Yi, P.; Jian, J.Y.; Hu, Z.X.; Gu, W.; Huang, L.J.; Li, Y.M.; Yuan, C.M.; Hao, X.J. Hyperfols A and B: Two Highly Modified Polycyclic Polyprenylated Acylphloroglucinols from Hypericum perforatum. Org. Lett. 2020, 22, 6903–6906. [Google Scholar] [CrossRef]
- Shinjyo, N.; Nakayama, H.; Li, L.; Ishimaru, K.; Hikosaka, K.; Suzuki, N.; Yoshida, H.; Norose, K. Hypericum perforatum extract and hyperforin inhibit the growth of neurotropic parasite Toxoplasma gondii and infection-induced inflammatory responses of glial cells in vitro. J. Ethnopharmacol. 2021, 267, 113525. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cao, Y.; Qi, C.; Tong, Q.; Chen, C.; Yang, J.; Zhu, H.; Zhang, Y. Polycyclic polyprenylated acylphloroglucinols with immunosuppressive activity from Hypericum perforatum and absolute configurations assignment of previously reported analogues. Bioorg. Chem. 2021, 114, 105144. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, F.; Sun, W.; Zhou, Y.; Chen, C.; Qi, C.; Yang, J.; Li, X.N.; Luo, Z.; Zhu, H.; et al. Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer’s activity from St. John’s wort. Chem. Sci. 2021, 12, 11438–11446. [Google Scholar] [CrossRef]
- Cargnin, S.T.; Vieira Pde, B.; Cibulski, S.; Cassel, E.; Vargas, R.M.; Montanha, J.; Roehe, P.; Tasca, T.; von Poser, G.L. Anti-Trichomonas vaginalis activity of Hypericum polyanthemum extract obtained by supercritical fluid extraction and isolated compounds. Parasitol. Int. 2013, 62, 112–117. [Google Scholar] [CrossRef]
- Zong, J.F.; Hu, Z.; Shao, Y.Y.; Shi, Q.; Zhang, M.M.; Zhou, Y.B.; Li, J.; Hou, A.J. Hyperprins A and B, Two Complex Meroterpenoids from Hypericum przewalskii. Org. Lett. 2020, 22, 2797–2800. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Zhen, B.; Wang, X.; Suo, X.; Lin, M.; Jiang, J.; Ji, T. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum pseudohenryi. Phytochemistry 2021, 187, 112761. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.C.; Chen, C.M.; Yang, J.; Li, X.N.; Liu, J.J.; Sun, B.; Huang, S.X.; Li, D.Y.; Yao, G.M.; Luo, Z.W.; et al. Bioactive Acylphloroglucinols with Adamantyl Skeleton from Hypericum sampsonii. Org. Lett. 2014, 16, 6322–6325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Zeng, Y.R.; Li, Y.N.; Hu, Z.X.; Huang, L.J.; Gu, W.; Hao, X.J.; Yuan, C.M. Two new seco-polycyclic polyprenylated acylphloroglucinol from Hypericum sampsonii. Org. Biomol. Chem. 2021, 19, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, S.E.; Farimani, M.M.; Soroury, S.; Ebrahimi, S.N.; Jabbarzadeh, E. Hypermongone C Accelerates Wound Healing through the Modulation of Inflammatory Factors and Promotion of Fibroblast Migration. Molecules 2019, 24, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Su, Y.; Yang, J.; Wang, A. Polyprenylated acylphloroglucinols from Hypericum scabrum. Phytochemistry 2017, 142, 38–50. [Google Scholar] [CrossRef]
- Hu, J.; Gao, W.; Xu, F.; Wei, C.; Shi, M.; Sun, H.; Zhen, B.; Wang, J.; Ji, T.; Jiang, J. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum scabrum. Bioorg. Med. Chem. Lett. 2017, 27, 4932–4936. [Google Scholar] [CrossRef]
- Gao, W.; Hu, J.W.; Hou, W.Z.; Xu, F.; Zhao, J.; Xu, F.; Sun, H.; Xing, J.G.; Peng, Y.; Wang, X.L.; et al. Four new prenylated phloroglucinol derivatives from Hypericum scabrum. Tetrahedron. Lett. 2016, 57, 2244–2248. [Google Scholar] [CrossRef]
- Gao, W.; Hou, W.Z.; Zhao, J.; Xu, F.; Li, L.; Xu, F.; Sun, H.; Xing, J.G.; Peng, Y.; Wang, X.L.; et al. Polycyclic Polyprenylated Acylphloroglucinol Congeners from Hypericum scabrum. J. Nat. Prod. 2016, 79, 1538–1547. [Google Scholar] [CrossRef]
- Soroury, S.; Alilou, M.; Gelbrich, T.; Tabefam, M.; Danton, O.; Ebrahimi, S.N.; Kaiser, M.; Hamburger, M.; Stuppner, H.; Moridi Farimani, M. Unusual derivatives from Hypericum scabrum. Sci. Rep. 2021, 10, 22181. [Google Scholar] [CrossRef]
- Wang, H.R.; Shao, B.; Yu, H.Y.; Xu, F.B.; Wang, P.Y.; Yu, K.Y.; Han, Y.F.; Song, M.; Li, Y.F.; Cao, Z. Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells. Chem. Biol. Interact. 2019, 299, 15–26. [Google Scholar] [CrossRef]
- Bridi, H.; Beckenkamp, A.; Maurmann, N.; Elingson, B.; Buffon, A.; Pranke, P.; von Poser, G.L. Phloroglucinol derivatives from Hypericum species induce in vitro proliferation of cells involved in the wound healing process. Nat. Prod. Res. 2019, 35, 4648–4652. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Pan, X.; Zhou, F.; Liu, K.; Wang, L. Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation. Brain Res. 2018, 1678, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Dellafiora, L.; Galaverna, G.; Cruciani, G.; Dall’Asta, C.; Bruni, R. On the Mechanism of Action of Anti-Inflammatory Activity of Hypericin: An In Silico Study Pointing to the Relevance of Janus Kinases Inhibition. Molecules 2018, 23, 3058. [Google Scholar] [CrossRef] [PubMed]
- Novelli, M.; Beffy, P.; Gregorelli, A.; Porozov, S.; Mascia, F.; Vantaggiato, C.; Masiello, P.; Menegazzi, M. Persistence of STAT-1 inhibition and induction of cytokine resistance in pancreatic beta cells treated with St John’s wort and its component hyperforin. J. Pharm. Pharmacol. 2019, 71, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Cheng, P.; Yu, K.; Han, Y.; Song, M.; Li, Y. Hyperforin attenuates aluminum-induced Abeta production and Tau phosphorylation via regulating Akt/GSK-3beta signaling pathway in PC12 cells. Biomed. Pharmacother. 2017, 96, 1–6. [Google Scholar] [CrossRef]
- Silva, S.M.; Martinho, A.; Moreno, I.; Silvestre, S.; Granadeiro, L.B.; Alves, G.; Duarte, A.P.; Domingues, F.; Gallardo, E. Effects of Hypericum perforatum extract and its main bioactive compounds on the cytotoxicity and expression of CYP1A2 and CYP2D6 in hepatic cells. Life Sci. 2016, 144, 30–36. [Google Scholar] [CrossRef]
- Novelli, M.; Menegazzi, M.; Beffy, P.; Porozov, S.; Gregorelli, A.; Giacopelli, D.; De Tata, V.; Masiello, P. St. John’s wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic beta cells. Int. J. Biochem. Cell Biol. 2016, 81, 92–104. [Google Scholar] [CrossRef]
- Nosratabadi, R.; Rastin, M.; Sankian, M.; Haghmorad, D.; Tabasi, N.; Zamani, S.; Aghaee, A.; Salehipour, Z.; Mahmoudi, M. St. John’s wort and its componenthyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells. J. Immunotoxicol. 2016, 13, 364–374. [Google Scholar] [CrossRef]
- Takada, H.; Furuya, K.; Sokabe, M. Mechanosensitive ATP release from hemichannels and Ca2+ influx through TRPC6 accelerate wound closure in keratinocytes. J. Cell Sci. 2014, 127, 4159–4171. [Google Scholar] [CrossRef]
- Novelli, M.; Beffy, P.; Menegazzi, M.; De Tata, V.; Martino, L.; Sgarbossa, A.; Porozov, S.; Pippa, A.; Masini, M.; Marchetti, P.; et al. St. John’s wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity. Acta Diabetol. 2014, 51, 113–121. [Google Scholar] [CrossRef]
- Gibon, J.; Deloulme, J.C.; Chevallier, T.; Ladeveze, E.; Abrous, D.N.; Bouron, A. The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner. Int. J. Neuropsychoph. 2013, 16, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Zhang, Y.B.; He, J.; Zhang, H.D.; Xiao, L.; Nazarali, A.; Zhang, Z.J.; Zhang, D.; Tan, Q.R.; Kong, J.M.; et al. Hyperforin promotes nnitochondrial function and development of oligodendrocytes. J. Neurochem. 2011, 119, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Inestrosa, N.C.; Tapia-Rojas, C.; Griffith, T.N.; Carvajal, F.J.; Benito, M.J.; Rivera-Dictter, A.; Alvarez, A.R.; Serrano, F.G.; Hancke, J.L.; Burgos, P.V.; et al. Tetrahydrohyperforin prevents cognitive deficit, A beta deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1 Delta E9 model of Alzheimer’s disease: A possible effect on APP processing. Transl. Psychiat. 2011, 1, e20. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Liu, X.; Yang, J.; Lao, Y.Z.; Yang, X.W.; Li, X.N.; Zhang, J.J.; Ding, Z.J.; Xu, H.X.; Xu, G. Hypersubones A and B, New Polycyclic Acylphloroglucinols with Intriguing Adamantane Type Cores from Hypericum subsessile. Org. Lett. 2015, 17, 1172–1175. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.-W.; Liu, X.; Yan, S.; Zhou, H.-M.; Liu, D.-W.; Xiong, W.-Y.; Xu, G. Anti-adipogenicadamantane type polycyclic polyprenylated acylphloroglucinols from Hypericum subsessile. Fitoterapia 2020, 147, 104755. [Google Scholar] [CrossRef]
- Zhou, H.M.; Ye, Y.S.; Jiang, N.N.; Mu, R.F.; Wang, Q.; Hu, J.; Liu, X.; Qin, W.Y.; Xu, G.; Xiong, W.Y. Adipogenesis Inhibitory Activity of Hypersampsone P from Hypericum subsessile. Nat. Prod. Bioprospect. 2020, 10, 163–170. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Li, Z.R.; Wang, X.B.; Luo, J.G.; Kong, L.Y. Polycyclic Polyprenylated Derivatives from Hypericum uralum: Neuroprotective Effects and Antidepressant-like Activity of Uralodin A. J. Nat. Prod. 2016, 79, 1231–1240. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yang, X.W.; Liu, X.; Ma, J.Z.; Liao, Y.; Xu, G. 1,9-seco-Bicyclic Polyprenylated Acylphloroglucinols from Hypericum uralum. J. Nat. Prod. 2015, 78, 3075–3079. [Google Scholar] [CrossRef]
- Fang, Q.-Q.; Feng, T.-T.; Wang, A.-Z.; He, W.-Y.; Wei, R.-J.; Lu, Q.; Tan, C.-H. Structurally diverse polyprenylated acylphloroglucinols from Hypericum uralum Buch.-Ham. ex D. Don. Phytochemistry 2021, 187, 112771. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Tan, X.; Liu, Y.; Duan, Y.; Chen, G.; Feng, H.; Sun, L.; Huang, Y.; Guo, Y.; Shi, Z.; et al. Hypersonins A–D, Polycyclic Polyprenylated Acylphloroglucinols with a 1,2-seco-Homoadamantane Architecture from Hypericum wilsonii. J. Nat. Prod. 2020, 83, 1804–1809. [Google Scholar] [CrossRef]
- Duan, Y.; Deng, Y.; Bu, P.; Guo, Y.; Shi, Z.; Cao, Y.; Zhang, Y.; Hu, H.; Hu, Z.; Qi, C.; et al. Discovery of bioactive polycyclic polyprenylated acylphloroglucinols from Hypericum wilsonii. Bioorg. Chem. 2021, 115, 105246. [Google Scholar] [CrossRef]
- Tanaka, N.; Tsuji, E.; Kashiwada, Y.; Kobayashi, J.i. Yezo’otogirins D–H, Acylphloroglucinols and Meroterpenes from Hypericum yezoense. Chem. Pharm. Bull. 2016, 64, 991–995. [Google Scholar] [CrossRef]
- Tanaka, N.; Mamemura, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J.i. Yojironins E–I, prenylated acylphloroglucinols from Hypericum yojiroanum. Bioorg. Med. Chem. Lett. 2011, 21, 5393–5397. [Google Scholar] [CrossRef] [PubMed]
- Mamemura, T.; Tanaka, N.; Shibazaki, A.; Gonoi, T.; Kobayashi, J. Yojironins A–D, meroterpenoids and prenylated acylphloroglucinols from Hypericum yojiroanum. Tetrahedron. Lett. 2011, 52, 3575–3578. [Google Scholar] [CrossRef]
- Ye, Y.S.; Li, W.Y.; Du, S.Z.; Yang, J.; Nian, Y.; Xu, G. Congenetic Hybrids Derived from Dearomatized Isoprenylated Acylphloroglucinol with Opposite Effects on Cav3.1 Low Voltage-Gated Ca(2+) Channel. J. Med. Chem. 2020, 63, 1709–1716. [Google Scholar] [CrossRef]
- Jia, X.Y.; Wu, Y.M.; Lei, C.; Yu, Y.Y.; Li, J.Q.; Li, J.Y.; Hou, A.J. Hyperinoids A and B, two polycyclic meroterpenoids from Hypericum patulum. Chin. Chem. Lett. 2020, 31, 1263–1266. [Google Scholar] [CrossRef]
- Hao, J.; Zhou, T.; Ma, Y.; Deng, J.; Cheng, H.; Wang, Q.; Lin, Q.; Yang, X.; Choi, H. New Polyprenylated Acylphloroglucinol Derivatives and Xanthones From Hypericum wilsonii. Front. Chem. 2021, 9, 717904. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xia, G.Y.; Zang, Y.D.; Li, C.J.; Yang, J.B.; Huang, J.W.; Zhang, J.J.; Su, Y.L.; Wang, A.G.; Zhang, D.M. Three new decarbonyl prenylphloroglucinols bearing unusual spirost subunits from Hypericum scabrum and their neuronal activities. Chin. Chem. Lett. 2021, 32, 1173–1176. [Google Scholar] [CrossRef]
- Xie, S.S.; Zhou, Y.; Tan, X.S.; Sun, W.G.; Duan, Y.L.; Feng, H.; Sun, L.J.; Guo, Y.; Shi, Z.Y.; Hao, X.C.; et al. Norwilsonnol A, an immunosuppressive polycyclic polyprenylated acylphloroglucinol with a spiro[5-oxatricyclo[6.4.0.0(3,7)]dodecane-6’,1-1’,2’-dioxane] system from Hypericum wilsonii. Org. Chem. Front. 2021, 8, 2280–2286. [Google Scholar] [CrossRef]
- Zeng, Y.R.; Li, Y.N.; Yang, J.; Yi, P.; Huang, L.; Huang, L.J.; Gu, W.; Hu, Z.X.; Li, Y.M.; Yuan, C.M.; et al. Hypermonones A–I, New Polyprenylated Acylphloroglucinols from Hypericum monogynum with Multidrug Resistance Reversal Activity. Chin. J. Chem. 2021, 39, 2422–2432. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Yu, J.J.; Chen, X.L.; Zhang, F.Y.; Wei, W.; Zhang, L.Y.; Chen, W.M.; Lin, N.X.; Wu, Y. Hyperforin Ameliorates Imiquimod-Induced Psoriasis-Like Murine Skin Inflammation by Modulating IL-17A-Producing gamma delta T Cells. Front. Immunol. 2021, 12, 635076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Ao, Z.; He, Y.W.; Lu, J.Y.; Chen, X.L.; Kong, L.Y.; Luo, J.G. Hyperpatulones C–G, new spirocyclic polycyclic polyprenylated acylphloroglucinols from the leaves of Hypericum patulum. Fitoterapia 2021, 155, 105063. [Google Scholar] [CrossRef] [PubMed]
- Zhen, B.; Suo, X.Y.; Dang, J.; Yue, H.L.; Tao, Y.D.; Wang, J.J.; Li, L.; Lin, M.B.; Hou, Q.; Wang, W.P.; et al. Hyperterpenoids A and B: Two pairs of unprecedented 6/6/4/6/6 polycyclic cyclobutane meroterpenoids with potent neuroprotective and anti-inflammatory activities from Hypericum beanii. Chin. Chem. Lett. 2021, 32, 2338–2341. [Google Scholar] [CrossRef]
- Bridi, H.; Pustay, A.P.; Bordignon, S.A.D.; Picoli, S.U.; von Poser, G.L.; Ferraz, A.D.F. Antimicrobial activity of dimeric acylphloroglucinols isolated from southern Brazilian Hypericum species against to resistant bacterial. Nat. Prod. Res. 2022, 10, 1–5. [Google Scholar] [CrossRef]
- Shi, Z.; Hu, H.; Guo, Y.; Duan, Y.; Zhang, Y.; Tao, B.; Bu, P.; Sun, W.; Qi, C.; Zhang, Y. Discovery of 13,15-nor-polycyclic polyprenylated acylphloroglucinols from Hypericum longistylum with anti-inflammatory activity. Org. Biomol. Chem. 2022, 20, 1284–1291. [Google Scholar] [CrossRef]
- Yang, B.Y.; Qi, C.X.; Yao, Z.Y.; Lin, S.; Li, F.L.; Sun, W.G.; Hu, Z.X.; Zhang, Y.H. Hybeanones A and B, Two Highly Modified Polycyclic Polyprenylated Acylphloroglucinols from Hypericum beanii. Chin. J. Chem. 2022, 40, 53–58. [Google Scholar] [CrossRef]
- Li, Q.-J.; Tang, P.-F.; Zhou, X.; Lu, W.-J.; Xu, W.-J.; Luo, J.; Kong, L.-Y. Dimethylated acylphloroglucinol meroterpenoids with anti-oral-bacterial and anti-inflammatory activities from Hypericum elodeoides. Bioorg. Chem. 2020, 104, 104275. [Google Scholar] [CrossRef] [PubMed]
- Mahendrakumar, M.; Seeni, S.; Perinbam, K. Hypericin, an Anthraquinone Derivative of Hypericum hookerianum Wight and Arn. (Hypericaceae) of Palni Hills, South India, Exhibits Anti-Inflammatory Property in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Pharmacogn. Mag. 2018, 14, 378–382. [Google Scholar] [CrossRef]
- Bahmani, M.; Taherikalani, M.; Khaksarian, M.; Rafieian-Kopaei, M.; Ashrafi, B.; Nazer, M.; Soroush, S.; Abbasi, N.; Rashidipour, M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci. OA 2019, 5, FSO371. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Di, L.; Zhang, Y.; Li, N. Chemical constituents with cytotoxic and anti-inflammatory activity in Hypericum sampsonii and the antitumor potential under the view of cancer-related inflammation. J. Ethnopharmacol. 2020, 259, 112948. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, S.W.; Seok, K.H.; Hwang, C.W.; Ahn, J.-C.; Jin, J.-O.; Kang, H.W. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer. Photodiagnosis Photodyn. Ther. 2018, 24, 15–21. [Google Scholar] [CrossRef]
- Yonar, D.; Kilic Suloglu, A.; Selmanoglu, G.; Sunnetcioglu, M.M. An Electron paramagnetic resonance (EPR) spin labeling study in HT-29 Colon adenocarcinoma cells after Hypericin-mediated photodynamic therapy. BMC Mol. Cell Biol. 2019, 20, 16. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Kim, S.Y. Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction. Biomol. Ther. 2017, 25, 158–164. [Google Scholar] [CrossRef]
- Montoya, A.; Daza, A.; Munoz, D.; Rios, K.; Taylor, V.; Cedeno, D.; Velez, I.D.; Echeverri, F.; Robledo, S.M. Development of a novel formulation with hypericin to treat cutaneous leishmaniasis based on photodynamic therapy in in vitro and in vivo studies. Antimicrob. Agents Chemother. 2015, 59, 5804–5813. [Google Scholar] [CrossRef] [Green Version]
- Jendzelovska, Z.; Jendzelovsky, R.; Hilovska, L.; Koval, J.; Mikes, J.; Fedorocko, P. Single pre-treatment with hypericin, a St. John’s wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells. Toxicol. Vitr. 2014, 28, 1259–1273. [Google Scholar] [CrossRef]
- Cavarga, I.; Bilcik, B.; Vyboh, P.; Zaskvarova, M.; Chorvat, D.; Kasak, P.; Mlkvy, P.; Mateasik, A.; Chorvatova, A.; Miskovsky, P. Photodynamic Effect of Hypericin after Topical Application in the Ex Ovo Quail Chorioallantoic Membrane Model. Planta Med. 2014, 80, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, N.; Ghelardini, C. Reversal of NO-induced nociceptive hypersensitivity by St. John’s wort and hypericin: NF-kappaB, CREB and STAT1 as molecular targets. Psychopharmacology 2013, 227, 149–163. [Google Scholar] [CrossRef]
- Dalmizrak, O.; Kulaksiz-Erkmen, G.; Ozer, N. Evaluation of the in vitro inhibitory impact of hypericin on placental glutathione S-transferase pi. Protein J. 2012, 31, 544–549. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Qi, Z. Hypericin prolongs action potential duration in hippocampal neurons by acting on K+ channels. Brit. J. Pharmacol. 2010, 159, 1402–1407. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, S.J. Hypericin, the active component of St. John’s wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway. Eur. J. Pharmacol. 2010, 634, 53–61. [Google Scholar] [CrossRef]
- De Souza, L.M.; de Sousa, F.D.; Cruz, R.C.R.; Tavares, D.C.; Francielli de Oliveira, P. Hypericin, a medicinal compound from St. John’s Wort, inhibits genotoxicity induced by mutagenic agents in V79 cells. Drug Chem. Toxicol. 2020, 45, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-D.; Guan, X.-Q.; Cao, Y.-F.; Weng, Z.-M.; Hu, Q.; Liu, H.-B.; Jia, S.-N.; Zang, S.-Z.; Zhou, Q.; Yang, L.; et al. Inhibition of pancreatic lipase by the constituents in St. John’s Wort: In vitro and in silico investigations. Int. J. Biol. Macromol. 2020, 145, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.D.R.; Caetano, B.C.; de Almeida Filho, J.L.; Martins, J.; de Oliveira, M.G.P.; Sousa, T.D.C.; Horta, M.A.P.; Siqueira, M.M.; Fernandez, J.H. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front. Microbiol. 2022, 13, 828984. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, C.; Zheng, L.; Liu, L.; Li, Z.; Yang, G.; Li, Y. Anti-fatigue effect of hypericin in a chronic forced exercise mouse model. J. Ethnopharmacol. 2022, 284, 114767. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Chen, Y.; Han, X.; Zhu, Y.; Li, X.; Zhang, Y.; Lu, Y. The protective effect of hypericin on postpartum depression rat model by inhibiting the NLRP3 inflammasome activation and regulating glucocorticoid metabolism. Int. Immunopharmacol. 2022, 105, 108560. [Google Scholar] [CrossRef]
- Nedialkov, P.T.; Zheleva-Dimitrova, D.; Momekov, G.; Karlov, K.; Girreser, U.; Kitanov, G.M. Elegaphenone and 7-epi-clusianone, the major cytotoxic constituents of Hypericum elegans. Nat. Prod. Res. 2011, 25, 1743–1750. [Google Scholar] [CrossRef]
- Zofou, D.; Kowa, T.K.; Wabo, H.K.; Ngemenya, M.N.; Tane, P.; Titanji, V.P. Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: A bioassay-guided fractionation of the stem bark. Malar. J. 2011, 10, 167. [Google Scholar] [CrossRef]
- Xie, J.Y.; Jin, Q.; Gao, J.M.; Zong, S.C.; Yan, X.T. Two new benzophenone glycosides from the aerial parts of Hypericum przewalskii. Nat. Prod. Res. 2020, 36, 3520–3528. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Chen, Q.; Li, N. Hyperprzeone A, a new benzophenone with cytotoxicity from Hypericum przewalskii Maxim. Nat. Prod. Res. 2020, 35, 4960–4968. [Google Scholar] [CrossRef]
- Tian, W.-J.; Qiu, Y.-Q.; Chen, H.-F.; Jin, X.-J.; Yao, X.-J.; Dai, Y.; Yao, X.-S. Chiral separation and absolute configurations of two pairs of racemic polyprenylated benzophenones from Hypericum sampsonii. Fitoterapia 2017, 116, 39–44. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chang, T.C.; Wu, Y.J.; Chen, Y.; Chen, J.J. Benzophenone and Benzoylphloroglucinol Derivatives from Hypericum sampsonii with Anti-Inflammatory Mechanism of Otogirinin A. Molecules 2020, 25, 4463. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Viet, D.; Le Ba, V.; Nguyen Duy, T.; Pham Thi, V.A.; Tran Thi, H.; Le Canh, V.C.; Bach Long, G.; Kim, Y.H.; Tuan Anh, H.L. Bioactive compounds from the aerial parts of Hypericum sampsonii. Nat. Prod. Res. 2021, 35, 646–648. [Google Scholar] [CrossRef]
- Haas, J.S.; Viana, A.F.; Heckler, A.P.M.; von Poser, G.L.; Rates, S.M.K. The antinociceptive effect of a benzopyran (HP1) isolated from Hypericum polyanthemum in mice hot-plate test is blocked by naloxone. Planta Med. 2010, 76, 1419–1423. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Hu, J.-W.; Xu, F.; Wei, C.-J.; Shi, M.-J.; Zhao, J.; Wang, J.-J.; Zhen, B.; Ji, T.-F.; Xing, J.-G.; et al. Polyisoprenylated benzoylphloroglucinol derivatives from Hypericum scabrum. Fitoterapia 2016, 115, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.I.; Pinho, C.; Fonte, P.; Sarmento, B.; Dias, A.C.P. Development, characterization, antioxidant and hepatoprotective properties of poly(epsilon-caprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. Int. J. Biol. Macromol. 2018, 110, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Nedialkov, P.T.; Ilieva, Y.; Zheleva-Dimitrova, D.; Kokanova-Nedialkova, Z.; Momekov, G. Three new prenyloxy chromanones from aerial parts of Hypericum aucheri. Fitoterapia 2019, 139, 104421. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.R.; Zhou, M.; Liu, X.Z.; Chen, J.J.; Wang, G.H.; Lin, T.; Yu, F.R.; Ding, R.; Sun, C.L.; Tian, W.J.; et al. Cytotoxic polyprenylated phloroglucinol derivatives from Hypericum elodeoides Choisy modulating the transactivation of RXRalpha. Bioorg. Chem. 2021, 107, 104578. [Google Scholar] [CrossRef]
- Yan, X.-T.; An, Z.; Huangfu, Y.; Zhang, Y.-T.; Li, C.-H.; Chen, X.; Liu, P.-L.; Gao, J.-M. Polycyclic polyprenylated acylphloroglucinol and phenolic metabolites from the aerial parts of Hypericum elatoides and their neuroprotective and anti-neuroinflammatory activities. Phytochemistry 2019, 159, 65–74. [Google Scholar] [CrossRef]
- Win, T.; Htwe, T.T.; Shwe, H.H.; Heilmann, J. Lavandulyl flavanones from the stems of Hypericum calycinum L. Chem. Biodivers. 2012, 9, 1198–1204. [Google Scholar] [CrossRef]
- Esposito, F.; Sanna, C.; Del Vecchio, C.; Cannas, V.; Venditti, A.; Corona, A.; Bianco, A.; Serrilli, A.M.; Guarcini, L.; Parolin, C.; et al. Hypericum hircinum L. components as new single-molecule inhibitors of both HIV-1 reverse transcriptase-associated DNA polymerase and ribonuclease H activities. Pathog. Dis. 2013, 68, 116–124. [Google Scholar] [CrossRef]
- Sajid, A.; Ahmed, E.; Sharif, A.; Arshed, F.; Arshad, M.; Sher, M.; Sajid, A.; Amanat, S. Bioassay Directed Isolation Studies on Hypericum oblongifolium. J. Chem. Soc. Pak. 2018, 40, 249–254. [Google Scholar]
- Wu, F.S.; Hung, C.J.; Lin, C.L.; Huang, H.Y.; Kuo, Y.H.; Chang, T.H.; Chen, C.L.; Sung, P.J.; Cheng, M.J.; Kuo, C.W.; et al. A New Benzophenone and Bioactive Constituents of Hypericum nokoense. Chem. Nat. Compd. 2021, 57, 645–649. [Google Scholar] [CrossRef]
- An, J.; Zuo, G.Y.; Hao, X.Y.; Wang, G.C.; Li, Z.S. Antibacterial and synergy of a flavanonol rhamnoside with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2011, 18, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Larit, F.; Elokely, K.M.; Nael, M.A.; Benyahia, S.; Leon, F.; Cutler, S.J.; Ghoneim, M.M. Proposed Mechanism for the Antitrypanosomal Activity of Quercetin and Myricetin Isolated from Hypericum afrum Lam.: Phytochemistry, In Vitro Testing and Modeling Studies. Molecules 2021, 26, 1009. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.X.; He, J.F.; Zhang, K.Q.; Luo, X.G.; Zhang, T.C. alpha-Glucosidase Inhibition Action of Major Flavonoids Identified from Hypericum Attenuatum Choisy and Their Synergistic Effects. Chem. Biodivers. 2021, 18, e2100244. [Google Scholar] [CrossRef]
- Feng, S.L.; Zhang, J.; Jin, H.; Zhu, W.T.; Yuan, Z. A Network Pharmacology Study of the Molecular Mechanisms of Hypericum japonicum in the Treatment of Cholestatic Hepatitis with Validation in an Alpha-Naphthylisothiocyanate (ANIT) Hepatotoxicity Rat Model. Med. Sci. Monit. 2021, 27, e928402. [Google Scholar] [CrossRef]
- Farooq, U.; Khan, T.; Shah, S.A.; Hossain, M.S.; Ali, Y.; Ullah, R.; Raziq, N.; Shahid, M.; Capasso, R. Isolation, Characterization and Neuroprotective Activity of Folecitin: An In Vivo Study. Life 2021, 11, 825. [Google Scholar] [CrossRef]
- Duan, J.Y.; Chen, W.; Zhao, Y.Q.; He, L.L.; Li, E.C.; Bai, Z.H.; Wang, Y.J.; Zhang, C.P. Flavonoids from Hypericum patulum enhance glucose consumption and attenuate lipid accumulation in HepG2 cells. J. Food Biochem. 2021, 45, e13898. [Google Scholar] [CrossRef]
- Sun, S.; Yan, Z.; Shui, X.; Qi, W.; Chen, Y.; Xu, X.; Hu, Y.; Guo, W.; Shang, P. Astilbin prevents osteoarthritis development through the TLR4/MD-2 pathway. J. Cell Mol. Med. 2020, 24, 13104–13114. [Google Scholar] [CrossRef]
- Xing, H.; Fu, R.; Cheng, C.; Cai, Y.; Wang, X.; Deng, D.; Gong, X.; Chen, J. Hyperoside Protected Against Oxidative Stress-Induced Liver Injury via the PHLPP2-AKT-GSK-3beta Signaling Pathway In Vivo and In Vitro. Front. Pharmacol. 2020, 11, 1065. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, P.; Xu, H. Hyperoside exhibits anticancer activity in non-small cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncol. Rep. 2020, 43, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Sevastre-Berghian, A.C.; Toma, V.A.; Sevastre, B.; Benedec, D.; Oniga, I.; Filip, L.; Baldea, I.; Suciu, S.; Popovici, C.P.; Lucaciu, R.L.; et al. Hypericum Sp. Extracts Improve Anxiety-Like Behaviour and Influence Cerebral Hmox1 Expression in a Rat Model of Fg-7142-Induced Anxiety. Farmacia 2021, 69, 1080–1088. [Google Scholar] [CrossRef]
- Li, Y.N.; Zeng, Y.R.; Yang, J.; He, W.; Chen, J.; Deng, L.; Yi, P.; Huang, L.J.; Gu, W.; Hu, Z.X.; et al. Chemical constituents from the flowers of Hypericum monogynum L. with COX-2 inhibitory activity. Phytochemistry 2022, 193, 112970. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, L.; Chen, J.L.; Chen, T.B.; Lei, B.; Zheng, N.D.; Wan, X.Q.; Xu, J.G.; Wang, T.H. Hyperoside Attenuate Inflammation in HT22 Cells via Upregulating SIRT1 to Activities Wnt/beta-Catenin and Sonic Hedgehog Pathways. Neural Plast. 2021, 2021, 8706400. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wu, M.H.; Dong, J.Y. Quercetin-4 ‘-O-beta-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells. PLoS ONE 2012, 7, e31708. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.S.; Stolz, E.D.; Betti, A.H.; Stein, A.C.; Schripsema, J.; von Poser, G.L.; Rates, S.M.K. The anti-immobility effect of hyperoside on the forced swimming test in rats is mediated by the D2-like receptors activation. Planta Med. 2011, 77, 334–339. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Chen, P.; Su, W.-W.; Wang, Y.-G.; Wu, H.; Peng, W.; Li, P.-B. Antioxidant Activity and Hepatoprotective Potential of Quercetin 7-Rhamnoside In Vitro and In Vivo. Molecules 2018, 23, 1188. [Google Scholar] [CrossRef]
- Liang, S.; Su, W.-W.; Wang, Y.-G.; Peng, W.; Nie, Y.-C.; Li, P.-B. Effect of quercetin 7-rhamnoside on glycochenodeoxycholic acid-induced L-02 human normal liver cell apoptosis. Int. J. Mol. Med. 2013, 32, 323–330. [Google Scholar] [CrossRef]
- Quispe, Y.N.G.; Hwang, S.H.; Wang, Z.Q.; Lim, S.S. Screening of Peruvian Medicinal Plants for Tyrosinase Inhibitory Properties: Identification of Tyrosinase Inhibitors in Hypericum laricifolium Juss. Molecules 2017, 22, 402. [Google Scholar] [CrossRef]
- Fu, T.; Wang, L.; Jin, X.-n.; Sui, H.-j.; Liu, Z.; Jin, Y. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin. 2016, 37, 505–518. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, W.; Wu, P. Hyperoside exerts potent anticancer activity in skin cancer. Front. Biosci. (Landmark Ed.) 2020, 25, 463–479. [Google Scholar] [PubMed]
- Cao, J.; Tang, C.; Gao, M.; Rui, Y.; Zhang, J.; Wang, L.; Wang, Y.; Xu, B.; Yan, B.C. Hyperoside alleviates epilepsy-induced neuronal damage by enhancing antioxidant levels and reducing autophagy. J. Ethnopharmacol. 2020, 257, 112884. [Google Scholar] [CrossRef]
- Kolarevic, A.; Pavlovic, A.; Djordjevic, A.; Lazarevic, J.; Savic, S.; Kocic, G.; Anderluh, M.; Smelcerovic, A. Rutin as Deoxyribonuclease I Inhibitor. Chem. Biodivers. 2019, 16, e1900069. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tantai, J.C.; Sun, Y.F.; Zhong, C.X.; Li, Z.G. Effect of hyperoside on the apoptosis of A549 human non-small cell lung cancer cells and the underlying mechanism. Mol. Med. Rep. 2017, 16, 6483–6488. [Google Scholar] [CrossRef]
- Verjee, S.; Kelber, O.; Kolb, C.; Abdel-Aziz, H.; Butterweck, V. Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix. J. Pharm. Pharmacol. 2017, 71, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.L.; Yang, Y.H.; Chen, X.Q.; Yang, M.; Huang, D.; Yang, R.; Zhou, L.Y.; Li, C.L.; Xiong, Q.J.; Xiong, Z. Hyperoside protects against chronic mild stress-induced learning and memory deficits. Biomed. Pharmacother. 2017, 91, 831–840. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Liu, G.-H.; Mei, J.-J.; Wang, J. The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway. Biomed. Pharmacother. 2016, 83, 381–391. [Google Scholar] [CrossRef]
- Jin, X.-N.; Yan, E.-Z.; Wang, H.-M.; Sui, H.-J.; Liu, Z.; Gao, W.; Jin, Y. Hyperoside exerts anti-inflammatory and anti-arthritic effects in LPS-stimulated human fibroblast-like synoviocytes in vitro and in mice with collagen-induced arthritis. Acta Pharmacol. Sin. 2016, 37, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.K.; Kwak, S.; Kwon, O.J.; Bae, J.S. Hyperoside inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation 2014, 37, 1389–1400. [Google Scholar] [CrossRef]
- Karuppagounder, S.S.; Madathil, S.K.; Pandey, M.; Haobam, R.; Rajamma, U.; Mohanakumar, K.P. Quercetin up-Regulates Mitochondrial Complex-I Activity to Protect against Programmed Cell Death in Rotenone Model of Parkinson’s Disease in Rats. Neuroscience 2013, 236, 136–148. [Google Scholar] [CrossRef]
- Zeng, K.W.; Wang, X.M.; Ko, H.; Kwon, H.C.; Cha, J.W.; Yang, H.O. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid beta-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur. J. Pharmacol. 2011, 672, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Narayanan, S.; Chang, K.O. Inhibition of influenza virus replication by plant-derived isoquercetin. Antivir. Res. 2010, 88, 227–235. [Google Scholar] [CrossRef]
- Demgne, O.M.F.; Damen, F.; Fankam, A.G.; Guefack, M.F.; Wamba, B.E.N.; Nayim, P.; Mbaveng, A.T.; Bitchagno, G.T.M.; Tapondjou, L.A.; Penlap, V.B.; et al. Botanicals and phytochemicals from the bark of Hypericum roeperianum (Hypericaceae) had strong antibacterial activity and showed synergistic effects with antibiotics against multidrug-resistant bacteria expressing active efflux pumps. J. Ethnopharmacol. 2021, 277, 114257. [Google Scholar] [CrossRef]
- Takada, H.; Yonekawa, J.; Matsumoto, M.; Furuya, K.; Sokabe, M. Hyperforin/HP-beta-Cyclodextrin Enhances Mechanosensitive Ca2+ Signaling in HaCaT Keratinocytes and in Atopic Skin Ex Vivo Which Accelerates Wound Healing. Biomed. Res. Int. 2017, 2017, 8701801. [Google Scholar] [CrossRef]
- Li, D.; Du, G.; Gong, X.; Guo, J.; Zhang, J.; Chen, C.; Xue, Y.; Zhu, H.; Zhang, Y. Hyperattenins L and M, two new polyprenylated acylphloroglucinols with adamantyl and homoadamantyl core structures from Hypericum attenuatum. Fitoterapia 2018, 125, 130–134. [Google Scholar] [CrossRef]
- Cao, X.; Yang, X.; Wang, P.; Liang, Y.; Liu, F.; Tuerhong, M.; Jin, D.Q.; Xu, J.; Lee, D.; Ohizumi, Y.; et al. Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum: Structures, PTP1B inhibitory activities, and interactions with PTP1B. Bioorg. Chem. 2017, 75, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Nedialkov, P.T.; Momekov, G.; Kokanova-Nedialkova, Z.K.; Heilmann, J. Polyprenylated Phloroglucinols from Hypericum maculatum. Nat. Prod. Commun. 2015, 10, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-B.; Fazary, A.E.; Lin, Y.-C.; Lo, I.W.; Ong, S.-C.; Chen, S.-Y.; Chien, C.-T.; Lin, Y.-J.; Lin, W.-W.; Shen, Y.-C. Hyperinakin, a new anti-inflammatory phloroglucinol derivative from Hypericum nakamurai. Nat. Prod. Res. 2013, 27, 727–734. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Timraz, N.Z.; Ibrahim, S.R.M.; El-Halawany, A.M.; Malebari, A.M.; Shehata, I.A.; El-Bassossy, H.M. Nitric-Oxide-Mediated Vasodilation of Bioactive Compounds Isolated from Hypericum revolutum in Rat Aorta. Biology 2021, 10, 541. [Google Scholar] [CrossRef]
- Menezes, C.B.; Rigo, G.V.; Bridi, H.; Trentin, D.d.S.; Macedo, A.J.; von Poser, G.L.; Tasca, T. The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem. Biol. Drug Des. 2017, 90, 811–819. [Google Scholar] [CrossRef]
- Muatsumoto, T.; Imahori, D.; Ohnishi, E.; Okayama, M.; Kitagawa, T.; Ohta, T.; Yoshida, T.; Kojima, N.; Yamashita, M.; Watanabe, T. Chemical structures and induction of cell death via heat shock protein inhibition of the prenylated phloroglucinol derivatives isolated from Hypericum erectum. Fitoterapia 2022, 156, 105097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yin, J.; Li, X.; Zhang, J.; Yue, R.; Diao, Y.; Li, H.; Wang, H.; Shan, L.; Zhang, W. Jacarelhyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins. BMC Cancer 2014, 14, 689. [Google Scholar] [CrossRef]
- Tanaka, N.; Yano, Y.; Tatano, Y.; Kashiwada, Y. Hypatulins A and B, Meroterpenes from Hypericum patulum. Org Lett 2016, 18, 5360–5363. [Google Scholar] [CrossRef]
- Niwa, K.; Tanaka, N.; Shimomoto, Y.; Tsuji, D.; Kim, S.Y.; Kojoma, M.; Itoh, K.; Chen, C.H.; Lee, K.H.; Kashiwada, Y. Hyperdioxanes, dibenzo-1,4-dioxane derivatives from the roots of Hypericum ascyron. J. Nat. Med. 2021, 75, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Y.Y.; Gao, X.; Chen, X.Q.; Peng, L.Y.; Li, Y.; Xu, G.; Zhao, Q.S. Polycyclic polyprenylated acylphloroglucinols and cytotoxic constituents of Hypericum androsaemum. Chem. Biodivers. 2012, 9, 1213–1220. [Google Scholar] [CrossRef]
- Guefack, M.F.; Damen, F.; Mbaveng, A.T.; Tankeo, S.B.; Bitchagno, G.T.M.; Celik, I.; Simo Mpetga, J.D.; Kuete, V. Cytotoxic Constituents of the Bark of Hypericum roeperianum towards Multidrug-Resistant Cancer Cells. Evid.-Based Complement. Altern. Med. 2020, 2020, 4314807. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Feng, H.; Sun, L.; Shi, Z.; Hu, H.; Duan, Y.; Guo, Y.; Tan, X.; Chen, G.; Qi, C.; et al. Discovery of immunosuppressive Lupane-type Triterpenoids from Hypericum longistylum. Nat. Prod. Res. 2022, 36, 4394–4400. [Google Scholar] [CrossRef] [PubMed]
- Darbinian, N.; Khalili, K.; Amini, S. Neuroprotective activity of pDING in response to HIV-1 Tat. J. Cell Physiol. 2014, 229, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.-I.; Lee, Y.-C.; Lee, J.-H. Phenol glycosides with in vitro anti-Helicobacter pylori activity from Hypericum erectum Thunb. Phytother. Res. 2011, 25, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.Z.; Zhu, H.C.; Li, L.; Huang, J.F.; Sun, W.G.; Liu, J.J.; Li, H.; Luo, Z.W.; Wang, J.P.; Xue, Y.B.; et al. (±)-Japonones A and B, two pairs of new enantiomers with anti-KSHV activities from Hypericum japonicum. Sci. Rep. 2016, 6, 27588. [Google Scholar] [CrossRef]
- Shiu, W.K.; Malkinson, J.P.; Rahman, M.M.; Curry, J.; Stapleton, P.; Gunaratnam, M.; Neidle, S.; Mushtaq, S.; Warner, M.; Livermore, D.M.; et al. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int. J. Antimicrob. Agents 2013, 42, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Z.; Fang, Q.Q.; Feng, T.T.; Wei, R.J.; Jiang, K.; Lu, Q.; Tan, C.H. Acmoxanthones A-E, New Lavandulated Xanthones from Hypericum acmosepalum N. Robson. Fitoterapia 2021, 154, 104923. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, M.; Nikolova, I.; Benbasat, N.; Kitanov, G.; Danchev, N. Acute Toxicity, Antidepressive and Mao Inhibitory Activity of Mangiferin Isolated from Hypericum Aucheri. Biotechnol. Biotech. Equip. 2011, 25, 2668–2671. [Google Scholar] [CrossRef]
- Zuo, G.-Y.; An, J.; Han, J.; Zhang, Y.-L.; Wang, G.-C.; Hao, X.-Y.; Bian, Z.-Q. Isojacareubin from the Chinese herb Hypericum japonicum: Potent antibacterial and synergistic effects on clinical methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Mol. Sci. 2012, 13, 8210–8218. [Google Scholar] [CrossRef]
- Mathioudaki, A.; Berzesta, A.; Kypriotakis, Z.; Skaltsa, H.; Heilmann, J. Phenolic metabolites from Hypericum kelleri Bald., an endemic species of Crete (Greece). Phytochemistry 2018, 146, 1–7. [Google Scholar] [CrossRef]
- Breard, D.; Viault, G.; Mezier, M.C.; Pagie, S.; Bruguiere, A.; Richomme, P.; Charreau, B.; Derbre, S. Additional Insights into Hypericum perforatum Content: Isolation, Total Synthesis, and Absolute Configuration of Hyperbiphenyls A and B from Immunomodulatory Root Extracts. J. Nat. Prod. 2018, 81, 1850–1859. [Google Scholar] [CrossRef]
- Tocci, N.; D’Auria, F.D.; Simonetti, G.; Panella, S.; Palamara, A.T.; Debrassi, A.; Rodrigues, C.A.; Cechinel, V.; Sciubba, F.; Pasqua, G. Bioassay-guided fractionation of extracts from Hypericum perforatum in vitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiol. Bioch. 2013, 70, 342–347. [Google Scholar] [CrossRef]
- Damen, F.; Demgne, O.M.F.; Bitchagno, G.T.M.; Celik, I.; Mpetga, J.D.S.; Tankeo, S.B.; Opatz, T.; Kuete, V.; Tane, P. A new polyketide from the bark of Hypericum roeperianum Schimp. (Hypericaceae). Nat. Prod. Res. 2021, 35, 2381–2387. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, R.; Zhang, C.; Li, X.; Negrin, A.; Yuan, C.; Kennelly, E.J.; Long, C. Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China. Molecules 2019, 24, 3568. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Q.; Liu, Y.; Xia, C.; Shi, J.; Zheng, M. Effect of xanthone derivatives on animal models of depression. Curr. Ther. Res. Clin. Exp. 2014, 76, 45–50. [Google Scholar] [CrossRef]
- Radulovic, N.S.; Gencic, M.S.; Stojanovic, N.M.; Randjelovic, P.J.; Baldovini, N.; Kurteva, V. Prenylated beta-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites. Food Chem. Toxicol. 2018, 118, 505–513. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldeira, G.I.; Gouveia, L.P.; Serrano, R.; Silva, O.D. Hypericum Genus as a Natural Source for Biologically Active Compounds. Plants 2022, 11, 2509. https://doi.org/10.3390/plants11192509
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. Plants. 2022; 11(19):2509. https://doi.org/10.3390/plants11192509
Chicago/Turabian StyleCaldeira, Gonçalo Infante, Luís Pleno Gouveia, Rita Serrano, and Olga Duarte Silva. 2022. "Hypericum Genus as a Natural Source for Biologically Active Compounds" Plants 11, no. 19: 2509. https://doi.org/10.3390/plants11192509
APA StyleCaldeira, G. I., Gouveia, L. P., Serrano, R., & Silva, O. D. (2022). Hypericum Genus as a Natural Source for Biologically Active Compounds. Plants, 11(19), 2509. https://doi.org/10.3390/plants11192509