Identification and Quantification of Polyphenols in Croatian Traditional Apple Varieties
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Total Polyphenolic Content (TPC) Determination
3.4. Antioxidant Activity (AA) Determination
3.5. LC-MS/MS Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ján, M.; Ivana, M. Changes in the Levels of Selected Organic Acids and Sugars in Apple Juice after Cold Storage. Czech J. Food Sci. 2018, 36, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Lončarić, A.; Matanović, K.; Ferrer, P.; Kovač, T.; Šarkanj, B.; Babojelić, M.S.; Lores, M. Peel of Traditional Apple Varieties as a Great Source of Bioactive Compounds: Extraction by Micro-Matrix Solid-Phase Dispersion. Foods 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacopini, P.; Camangi, F.; Stefani, A.; Sebastiani, L. Antiradical Potential of Ancient Italian Apple Varieties of Malus×domestica Borkh. in a Peroxynitrite-Induced Oxidative Process. J. Food Compos. Anal. 2010, 23, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. Technological Aspects and Stability of Polyphenols. In Polyphenols: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2018; Volume 9, pp. 295–323. [Google Scholar] [CrossRef]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of Polyphenols in Apple Pomace: A Comparative Study of Different Extraction and Hydrolysis Procedures. Ind. Crops Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Purves, R.; Karbancioglu-Guler, F.; Kilic-Akyilmaz, M. Enhancement of Phenolic Antioxidants in Industrial Apple Waste by Fermentation with Aspergillus spp. Biocatal. Agric. Biotechnol. 2020, 25, 101562. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Jakobek, L.; García-Villalba, R.; Tomás-Barberán, F.A. Polyphenolic Characterisation of Old Local Apple Varieties from Southeastern European Region. J. Food Compos. Anal. 2013, 31, 199–211. [Google Scholar] [CrossRef]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of Apple By-Products as Source of New Ingredients: Current Situation and Perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. [Google Scholar] [CrossRef]
- Wang, L.; Huang, J.; Li, Z.; Liu, D.; Fan, J. A Review of the Polyphenols Extraction from Apple Pomace: Novel Technologies and Techniques of Cell Disintegration. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–14. [Google Scholar] [CrossRef]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Romero, M.P.; Motilva, M.J. Phytochemical Profiles of New Red-Fleshed Apple Varieties Compared with Traditional and New White-Fleshed Varieties. J. Agric. Food Chem. 2017, 65, 1684–1696. [Google Scholar] [CrossRef]
- Skoko, A.-M.G.; Vilić, R.; Kovač, M.; Nevistić, A.; Šarkanj, B.; Lores, M.; Celeiro, M.; Babojelić, M.S.; Kovač, T.; Lončarić, A. Occurrence of Patulin and Polyphenol Profile of Croatian Traditional and Conventional Apple Cultivars during Storage. Foods 2022, 11, 1912. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Obara, M.; Takahashi, T.; Masumoto, S.; Hirota, H.; Miura, T. The Differences in the Flavan-3-Ol and Procyanidin Contents of the Japanese ‘Fuji’ and ‘Orin’ Apples Using a Rapid Quantitative High-Performance Liquid Chromatography Method: Estimation of the Japanese Intake of Flavan-3-Ols and Procyanidins from Apple As. Foods 2021, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Yamada, M.; Miura, T.; Nagashima, K.; Ogura, K.; Inagaki, N.; Maeda-Yamamoto, M. Chronic Administration of Apple Polyphenols Ameliorates Hyperglycaemia in High-Normal and Borderline Subjects: A Randomised, Placebo-Controlled Trial. Diabetes Res. Clin. Pract. 2017, 129, 43–51. [Google Scholar] [CrossRef]
- Choi, D.-Y.; Lee, Y.-J.; Hong, J.T.; Lee, H.-J. Antioxidant Properties of Natural Polyphenols and Their Therapeutic Potentials for Alzheimer’s Disease. Brain Res. Bull. 2012, 87, 144–153. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Tam, N.F.; Lin, Y.-M.; Ding, Z.-H.; Chai, W.-M.; Wei, S.-D. Relationships between Degree of Polymerization and Antioxidant Activities: A Study on Proanthocyanidins from the Leaves of a Medicinal Mangrove Plant Ceriops Tagal. PLoS ONE 2014, 9, e107606. [Google Scholar] [CrossRef] [PubMed]
- Hellström, J.K.; Törrönen, A.R.; Mattila, P.H. Proanthocyanidins in Common Food Products of Plant Origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef]
- Starowicz, M.; Piskuła, M.; Achrem–Achremowicz, B.; Zieliński, H. Phenolic Compounds from Apples: Reviewing Their Occurrence, Absorption, Bioavailability, Processing, and Antioxidant Activity—A Review. Polish J. Food Nutr. Sci. 2020, 70, 321–336. [Google Scholar] [CrossRef]
- Afroz, R.; Tanvir, E.M.; Islam, M.A.; Alam, F.; Gan, S.H.; Khalil, M.I. Potential Antioxidant and Antibacterial Properties of a Popular Jujube Fruit: Apple Kul (Z Izyphus Mauritiana). J. Food Biochem. 2014, 38, 592–601. [Google Scholar] [CrossRef]
- Yamaji, K.; Ichihara, Y. The Role of Catechin and Epicatechin in Chemical Defense against Damping-off Fungi of Current-Year Fagus Crenata Seedlings in Natural Forest. For. Pathol. 2012, 42, 1–7. [Google Scholar] [CrossRef]
- Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Younis, T.; Ali, M.; Sarfraz, I.; Selamoglu, Z. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. Adv. Pharmacol. Sci. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Xia, F.; Modarresi-Ghazani, F. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Petkovšek, M.M.; Usenik, V.; Štampar, F. The role of chlorogenic acid in the resistance of apples to apple scab (Venturia inaequalis (Cooke) G. Wind. Aderh.). Zb. Biotech. Fak. Univerze V Ljubljani Kmet. 2003, 81, 233–242. [Google Scholar]
- Akagić, A.; Vranac, A.; Gaši, F.; Drkenda, P.; Spaho, N.; Žuljević, S.O.; Kurtović, M.; Musić, O.; Murtić, S.; Hudina, M. Sugars, Acids and Polyphenols Profile of Commercial and Traditional Apple Cultivars for Processing. Acta Agric. Slov. 2019, 113, 239. [Google Scholar] [CrossRef] [Green Version]
- Lončarić, A.; Šarkanj, B.; Gotal, A.-M.; Kovač, M.; Nevistić, A.; Fruk, G.; Babojelić, M.S.; Babić, J.; Miličević, B.; Kovač, T. Penicillium Expansum Impact and Patulin Accumulation on Conventional and Traditional Apple Cultivars. Toxins 2021, 13, 703. [Google Scholar] [CrossRef]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Janulis, V.; Viskelis, P. Phenolic Antioxidant Profiles in the Whole Fruit, Flesh and Peel of Apple Cultivars Grown in Lithuania. Sci. Hortic. 2017, 216, 186–192. [Google Scholar] [CrossRef]
- Kalinowska, M.; Bielawska, A.; Lewandowska-Siwkiewicz, H.; Priebe, W.; Lewandowski, W. Apples: Content of Phenolic Compounds vs. Variety, Part of Apple and Cultivation Model, Extraction of Phenolic Com-pounds, Biological Properties. Plant Physiol. Biochem. 2014, 84, 169–188. [Google Scholar] [CrossRef]
- Marks, S.C.; Mullen, W.; Crozier, A. Flavonoid and Chlorogenic Acid Profiles of English Cider Apples. J. Sci. Food Agric. 2007, 87, 719–728. [Google Scholar] [CrossRef]
- Donnapee, S.; Li, J.; Yang, X.; Ge, A.; Donkor, P.O.; Gao, X.; Chang, Y. Cuscuta chinensis Lam.: A Systematic Review on Ethnopharmacology, Phytochemistry and Pharmacology of an Important Traditional Herbal Medicine. J. Ethnopharmacol. 2014, 157, 292–308. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Choi, Y.-J.; Kang, M.-K.; Park, S.-H.; Antika, L.D.; Lee, E.-J.; Kim, D.-Y.; Kang, Y.-H. Astragalin Inhibits Allergic Inflammation and Airway Thickening in Ovalbumin-Challenged Mice. J. Agric. Food Chem. 2017, 65, 836–845. [Google Scholar] [CrossRef]
- Bıtıs, L.; Kultur, S.; Melıkoglu, G.; Ozsoy, N.; Can, A. Flavonoids and Antioxidant Activity of Rosa Agrestis Leaves. Nat. Prod. Res. 2010, 24, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Symes, A.; Shavandi, A.; Zhang, H.; Ahmed, I.M.; Al-Juhaimi, F.; Bekhit, A. Antioxidant Activities and Caffeic Acid Content in New Zealand Asparagus (Asparagus Officinalis) Roots Extracts. Antioxidants 2018, 7, 52. [Google Scholar] [CrossRef]
Sample ID | mg/kg dw |
---|---|
‘Kolačarka’ | 8891 ± 144.1 |
‘Muškatna Mirisava’ | 4062.8 ± 29.1 |
‘Senabija’ | 4827.3 ± 0.9 |
‘Princeza’ | 7603.6 ± 109.9 |
‘Kokos Reneta’ | 5416.1 ± 136.5 |
‘Karlovčica’ | 4414.9 ± 210.5 |
‘Zmazanka’ | 4494.1 ± 61.8 |
‘Imperica’ | 3823.1 ± 4.0 |
‘Šumatovka’ | 8468.9 ± 321.0 |
‘Poglavnikova’ | 5518.3 ± 46.2 |
‘Boskopska tikvica’ | 6743.5 ± 99.2 |
‘Kablarka’ | 5788.1 ± 2.6 |
‘Palaska’ | 9660.4 ± 220.0 |
‘Bobovec’ | 13264.9 ± 10.2 |
‘Bobovec Palči’ | 6424.7 ± 168.9 |
‘Slastica’ | 5230.5 ± 116.5 |
‘Gospoinjača’ | 4951.6 ± 2.8 |
‘Kraljevača’ | 3781.5 ± 14.6 |
‘Grofova’ | 4317.9 ± 130.1 |
‘Meglena’ | 8995.9 ± 26.0 |
‘Ilinjača’ | 10,806.6 ± 68.3 |
‘Ploska Letovanička’ | 10,126.7 ± 2.7 |
‘Ananas Reneta’ | 6869.3 ± 79.8 |
Sample ID | Catechin (mg/kg dw) | Epicatechin (mg/kg dw) | Procyanidin B1 + B2 (mg/kg dw) | Chlorogenic Acid (mg/kg dw) | Quercetin-3-Rutinoside (mg/kg dw) | Quercetin-3-Glucoside (mg/kg dw) | Astragalin (mg/kg dw) |
---|---|---|---|---|---|---|---|
‘Kolačarka’ | 90.18 ± 7.5 | 243.56 ± 4.4 | 357.71 ± 35.2 | 245.67 ± 40.6 | 7.71 ± 0.7 | 58.56 ± 5.0 | 9.78 ± 1.8 |
‘Muškatna Mirisava’ | 30.16 ± 0.5 | 149.42 ± 30.5 | 164.27 ± 38.8 | 110.35 ± 46.5 | 12.53 ± 1.4 | 115.84 ± 34.0 | 15.35 ± 0.5 |
‘Senabija’ | 22.87 ± 4 | 120.50 ± 3.4 | 191.31 ± 10.1 | 161.22 ± 17.3 | 13.55 ± 1.7 | 106.04 ± 1.7 | 17.48 ± 1.2 |
‘Princeza’ | 30.77 ± 1.4 | 149.55 ± 7.0 | 203.40 ± 11.0 | 455.86 ± 2.1 | 4.98 ± 0.1 | 69.75 ± 1.4 | 15.46 ± 0.0 |
‘Kokos Reneta’ | 145.19 ± 8.5 | 141.21 ± 9.2 | 292.88 ± 18.9 | 247.68 ± 46.1 | 3.84 ± 0.7 | 52.74 ± 6.3 | 15.57 ± 1.3 |
‘Karlovčica’ | 33.72 ± 2.5 | 113.17 ± 16.1 | 169.57 ± 34.5 | 131.55 ± 42.1 | 0.70 ± 0.6 | 12.00 ± 3.8 | 3.54 ± 0.7 |
‘Zmazanka’ | 29.62 ± 2.8 | 191.27 ± 2.6 | 252.94 ± 3.7 | 165.20 ± 4.4 | 0.26 ± 0.2 | 18.35 ± 0.1 | 4.31 ± 0.1 |
‘Imperica’ | 31.50 ± 1.9 | 173.29 ± 15.1 | 228.39 ± 11.3 | 117.73 ± 10.5 | 1.43 ± 1.0 | 82.44 ± 3.5 | 13.91 ± 0.2 |
‘Šumatovka’ | 46.71 ± 3.6 | 161.90 ± 18.3 | 287.32 ± 16.9 | 204.29 ± 20.6 | 14.75 ± 1.6 | 93.89 ± 8.5 | 14.68 ± 1.2 |
‘Poglavnikova’ | 48.76 ± 4.5 | 161.43 ± 14.4 | 253.57 ± 3.9 | 169.04 ± 0.4 | 3.76 ± 0.9 | 47.40 ± 2.5 | 9.63 ± 0.2 |
‘Boskopska tikvica’ | 311.79 ± 18.1 | 216.50 ± 0.5 | 313.03 ± 1.5 | 244.43 ± 12.0 | 8.84 ± 1.0 | 132.19 ± 8.2 | 16.98 ± 0.8 |
‘Kablarka’ | 21.52 ± 29.9 | 135.25 ± 24.7 | 191.04 ± 29.1 | 297.40 ± 82.8 | 8.35 ± 4.0 | 25.50 ± 0.9 | 8.19 ± 0.2 |
‘Palaska’ | 95.29 ± 14.7 | 231.27 ± 41.8 | 284.83 ± 77.9 | 260.86 ± 91.3 | 15.69 ± 1.6 | 74.97 ± 12.5 | 8.81 ± 0.8 |
‘Bobovec’ | 132.15 ± 42.2 | 163.50 ± 46.2 | 285.99 ± 70.1 | 277.64 ± 166.0 | 11.43 ± 3.3 | 69.24 ± 30.1 | 16.95 ± 4.2 |
‘Bobovec Palči’ | 53.07 ± 6.3 | 169.91 ± 29.2 | 209.66 ± 26.8 | 281.06 ± 63.3 | 9.45 ± 2.8 | 87.89 ± 8.2 | 13.19 ± 1.1 |
‘Slastica’ | 40.12 ± 0.2 | 243.16 ± 28.5 | 230.50 ± 1.4 | 148.43 ± 10.8 | 5.11 ± 1.1 | 55.19 ± 4.1 | 9.58 ± 0.1 |
‘Gospoinjača’ | 0.70 ± 0.2 | 1.75 ± 0.1 | 4.08 ± 0.2 | 1.29 ± 0.2 | 0.15 ± 0.1 | 0.96 ± 0.1 | 0.70 ± 0.0 |
‘Kraljevača’ | 10.20 ± 13.9 | 127.31 ± 1.9 | 104.63 ± 1.1 | 328.57 ± 3.4 | 4.13 ± 1.6 | 36.55 ± 1.1 | 28.79 ± 0.3 |
‘Grofova’ | 10.87 ± 14.8 | 141.65 ± 5.2 | 167.73 ± 20.0 | 188.02 ± 19.5 | 0.82 ± 0.6 | 40.64 ± 0.4 | 12.90 ± 1.0 |
‘Meglena’ | 70.65 ± 46.3 | 119.68 ± 5.0 | 181.64 ± 28.5 | 245.67 ± 40.6 | 2.23 ± 1.4 | 21.78 ± 4.9 | 11.63 ± 1.1 |
‘Ilinjača’ | 120.65 ± 4.7 | 146.94 ± 15.8 | 256.56 ± 6.7 | 110.35 ± 46.5 | 4.39 ± 0.6 | 47.07 ± 2.7 | 15.53 ± 0.2 |
‘Ploska Letovanička’ | 67.72 ± 9.5 | 84.50 ± 8.8 | 148.96 ± 30.2 | 161.22 ± 17.3 | 2.41 ± 0.9 | 19.10 ± 8.1 | 11.49 ± 3.3 |
‘Ananas Reneta’ | 28.13 ± 2.8 | 86.13 ± 5.7 | 357.71 ± 35.2 | 455.86 ± 2.1 | 8.43 ± 1.0 | 230.66 ± 15.8 | 21.79 ± 1.1 |
Sample ID | mmol TE/kg dw |
---|---|
‘Kolačarka’ | 23.9 ± 0.5 |
‘Muškatna Mirisava’ | 11.3 ± 0.4 |
‘Senabija’ | 12.1 ± 0.5 |
‘Princeza’ | 23.1 ± 1.3 |
‘Kokos Reneta’ | 27.0 ± 2.4 |
‘Karlovčica’ | 13.3 ± 2.3 |
‘Zmazanka’ | 14.7 ± 1.2 |
‘Imperica’ | 12,0 ± 1.1 |
‘Šumatovka’ | 36,2 ± 1.9 |
‘Poglavnikova’ | 29.7 ± 1.3 |
‘Boskopska tikvica’ | 35.6 ± 1.7 |
‘Kablarka’ | 29.3 ± 2.0 |
‘Palaska’ | 17.3 ± 1.3 |
‘Bobovec’ | 51.3 ± 3.7 |
‘Bobovec Palči’ | 17.7 ± 2.0 |
‘Slastica’ | 15.2 ± 1.0 |
‘Gospoinjača’ | 19.6 ± 1.7 |
‘Kraljevača’ | 16.1 ± 1.4 |
‘Grofova’ | 17.6 ± 0.9 |
‘Meglena’ | 59.0 ± 3.6 |
‘Ilinjača’ | 44.9 ± 4.2 |
‘Ploska Letovanička’ | 58.6 ± 3.4 |
‘Ananas Reneta’ | 35.6 ± 2.7 |
Polyphenols | CAS | Molecular Mass (g/mol) | Retention Time (min) | MS/MS Transitions 1 |
---|---|---|---|---|
Gallic acid | 149-91-7 | 170.1 | 2.61 | 169.02 → 125.04 (17) 169.02 → 153.1 (15) |
2,4,6-trihydroxybenzoic acid | 71989-93-0 | 188.1 | 4.22 | 168.98 → 150.99 (17) 168.98 → 83.02 (23) 168.98 → 107.02 (22) |
2,4-dihydroxybenzoic acid | 89-86-1 | 154.1 | 5.00 | 153.00 → 109.05 (16) 153.00 → 65.09 (19) 153.00 → 67.07 (23) |
3,4-dihydroxybenzoic acid | 99-50-3 | 154.1 | 5.00 | 152.98 → 109.04 (17) 152.98 → 91.04 (28) 152.98 → 108.03 (26) |
Caftaric acid | 67879-58-7 | 312.2 | 4.78 | 310.96→ 178.97 (17) 310.96 → 148.96 (14) |
3,4-dihydroxybenzaldehyde | 139-85-5 | 138.1 | 5.05 | 137.07 → 136.11 (21) 137.07 → 91.09 (24) 137.07 → 92.13 (25) |
Procyanidin B1 | 20315-25-7 | 578.5 | 5.07 | 577.03 → 407.06 (26) 577.03 → 288.93 (25) 577.03 → 424.97 (26) |
p-hydroxybenzoic acid | 99-96-7 | 138.1 | 5.35 | 137.00 → 93.00 (17) 137.00 → 65.00 (27) |
2,5-dihydroxybenzoic acid | 490-79-9 | 117.1 | 5.38 | 152.96 → 108.00 (24) 152.96 → 81.02 (21) 152.96 → 109.01 (16) |
Catechin | 18829-70-4 | 290.3 | 5.50 | 289.00 → 245.02 (17) 289.00 → 203.11 (22) |
3-hydroxyphenylacetic acid | 621-37-4 | 152.2 | 5.70 | 151.00 → 65.00 (20) 151.00 → 79.00 (20) |
Procyanidin B2 | 29106-49-8 | 578.5 | 5.96 | 577.03 → 407.06 (26) 577.03 → 288.93 (25) 577.03 → 424.97 (26) |
2,5-dihydroxybenzaldehyde | 1194-98-5 | 138.1 | 6.11 | 136.99 → 108.02 (21) 136.99 → 81.08 (18) 136.99 → 109.04 (14) |
Chlorogenic acid | 327-97-9 | 354.3 | 6.12 | 353.00 → 191.07 (22) 353.00 → 85.09 (43) 353.00 → 93.07 (45) |
3-hydroxybenzaldehyde | 100-83-4 | 122.1 | 6.22 | 121.02 → 93.05 (20) 121.02 → 92.05 (23) 121.02 → 120.04 (19) |
4-hydroxybenzaldehyde | 123-08-0 | 122.1 | 6.25 | 122.97 → 95.05 (13) 122.97 → 51.10 (36) 122.97 → 77.05 (20) |
Vanillic acid | 121-34-6 | 168.2 | 6.29 | 167.00 → 108.00 (27) 167.00 → 152.00 (18) |
2,6-dihydroxybenzoic acid | 303-07-1 | 154.1 | 6.33 | 153.00 → 109.05 (17) 153.00 → 65.09 (21) 153.00 → 135.02 (16) |
3,5-dihydroxybenzoic acid | 99-10-5 | 154.1 | 6.33 | 152.97 → 109.01 (15) 152.97 → 65.06 (16) 152.97 → 67.05 (20) |
3,4-dimethoxybenzoic acid | 93-07-2 | 182.2 | 6.45 | 182.96 → 137.08 (6) 182.96 → 106.99 (22) |
Caffeic acid | 331-39-5 | 180.2 | 6.50 | 178.98 → 135.03 (19) 178.98 → 134.01 (28) |
Epicatechin | 35323-91-2 | 290.3 | 6.56 | 289.00 → 245.02 (17) 289.00 → 203.11 (22) |
Epigallocatechin gallate | 989-51-5 | 458.4 | 6.79 | 457.15 → 169.05 (21) 457.15 → 125.09 (42) 457.15 → 305.09 (21) |
Gallocatechin gallate | 84650-60-2 | 458.4 | 7.29 | 457.15 → 169.05 (21) 457.15 → 125.09 (42) 457.15 → 305.09 (21) |
Procyanidin A2 | 41743-41-3 | 576.5 | 7.32 | 577.09 → 287.00 (32) 577.09 → 136.98 (62) 577.09 → 425.08 (13) |
7-hydroxycoumarin | 93-35-6 | 162.1 | 7.80 | 162.99 → 107.04 (22) 162.99 → 77.05 (34) 162.99 → 91.05 (20) |
p-coumaric acid | 501-98-4 | 164.2 | 7.89 | 163.02 → 119.07 (18) 163.02→ 93.07 (37) 163.02 → 117.05 (38) |
Catechin gallate | 130405-40-2 | 442.3 | 8.01 | 441.13 → 289.13 (20) 441.13 → 125.08 (42) 441.13 → 169.05 (24) |
Trans-ferulic acid | 537-98-4 | 194.2 | 8.33 | 192.80 → 177.90 (12) 192.80 → 133.90 (16) |
3,4-dimethoxybenzaldehyde | 120-14-9 | 166.2 | 8.92 | 167.01 → 139.05 (13) 167.01 → 108.05 (21) 167.01 → 124.03 (18) |
4-methoxybenzaldehyde | 123-11-5 | 136.1 | 10.03 | 136.97 → 109.05 (12) 136.97 → 77.05 (23) 136.97 → 94.04 (18) |
Quercetin-3-glucuronide | 22688-79-5 | 478.4 | 10.32 | 479.09 → 461.50 (14) 479.09 → 302.96 (18) |
Quercetin-3-rutinoside | 153-18-4 | 610.5 | 10.35 | 609.18 → 270.92 (96) 609.18 → 178.87 (44) 609.18 → 300.01 (37) |
Quercetin-3-glucoside | 482-35-9 | 463.4 | 10.43 | 465.07 → 256.90 (41) 465.07 → 302.97 (14) |
Myricetin | 529-44-2 | 318.2 | 11.43 | 319.00 → 153.02 (31) 319.00 → 217.06 (31) 319.00 → 245.06 (27) |
3,4,5-trimethoxycinnamic acid | 90-50-6 | 238.2 | 11.59 | 239.03 → 221.04 (11) 239.03 → 162.99 (27) 239.03 → 190.01 (19) |
3,5-dimethoxybenzaldehyde | 7311-34-4 | 166.2 | 11.81 | 167.15 → 124.03 (17) 167.15 → 77.05 (26) |
Quercetine | 117-39-5 | 302.2 | 12.10 | 303.09 → 229.10 (28) 303.09 → 153.04 (33) |
Kaempferol | 520-18-3 | 286.2 | 12.57 | 285.07 → 184.91 (30) 285.07 → 239.12 (35) |
Apigenin | 520-36-5 | 270.2 | 12.63 | 269.09 → 117.12 (37) 269.09 → 149.12 (26) 269.09 → 151.06 (26) |
Chrysin | 480-40-0 | 254.2 | 13.24 | 253.13 → 143.18 (30) 253.13 → 63.20 (34) 253.13 → 145.16 (31) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoko, A.-M.G.; Šarkanj, B.; Lores, M.; Celeiro, M.; Babojelić, M.S.; Kamenjak, D.; Flanjak, I.; Jozinović, A.; Kovač, T.; Lončarić, A. Identification and Quantification of Polyphenols in Croatian Traditional Apple Varieties. Plants 2022, 11, 3540. https://doi.org/10.3390/plants11243540
Skoko A-MG, Šarkanj B, Lores M, Celeiro M, Babojelić MS, Kamenjak D, Flanjak I, Jozinović A, Kovač T, Lončarić A. Identification and Quantification of Polyphenols in Croatian Traditional Apple Varieties. Plants. 2022; 11(24):3540. https://doi.org/10.3390/plants11243540
Chicago/Turabian StyleSkoko, Ana-Marija Gotal, Bojan Šarkanj, Marta Lores, Maria Celeiro, Martina Skendrović Babojelić, Dragutin Kamenjak, Ivana Flanjak, Antun Jozinović, Tihomir Kovač, and Ante Lončarić. 2022. "Identification and Quantification of Polyphenols in Croatian Traditional Apple Varieties" Plants 11, no. 24: 3540. https://doi.org/10.3390/plants11243540
APA StyleSkoko, A. -M. G., Šarkanj, B., Lores, M., Celeiro, M., Babojelić, M. S., Kamenjak, D., Flanjak, I., Jozinović, A., Kovač, T., & Lončarić, A. (2022). Identification and Quantification of Polyphenols in Croatian Traditional Apple Varieties. Plants, 11(24), 3540. https://doi.org/10.3390/plants11243540