Pulp Mineral Content of Passion Fruit Germplasm Grown in Ecuador and Its Relationship with Fruit Quality Traits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Univariate Analysis
2.1.1. Plant Yield and Fruit Quality Traits
2.1.2. Mineral Content
2.2. Regression Analysis
2.3. Principal Component Analysis
3. Materials and Methods
3.1. Experimental Site and Plant Material
3.2. Plant Yield and Physical Fruit Traits
3.3. Soluble Solids Determination
3.4. Titratable Acidity Determination
3.5. Sugar/Acid Ratio (SAR)
3.6. Vitamin C
3.7. Sampling Preparation for Mineral Analysis
3.8. Determination of Total Nitrogen
3.9. Sampling Digestion
3.10. Determination of Macro and Micronutrients
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joy, P.P. Passion Fruit (Passiflora Edulis Sims): Passifloraceae; Kerala Agricultural University: Kerala, India, 2010; pp. 1–8. [Google Scholar]
- Santos, C.; Vieira, E.; Girardi, E.; Carriello, R.; Nunez, O. Fruit Quality and Production of Yellow and Sweet Passion Fruits in Northern State of São Paulo. Rev. Bras. Frutic. 2018, 40, e968. [Google Scholar]
- Faleiro, F.G.; Junqueira, N.T.V.; Junghans, T.G.; Jesus, O.; Miranda, D.; Otoni, W.C. Advances in Passion Fruit (Passiflora spp.) Propagation. Rev. Bras. Frutic. 2019, 41, e155. [Google Scholar] [CrossRef]
- Castro, J.; Paredes, C.; Muñoz, D. El Cultivo de Maracuyá; Gerencia Regional Agraria La Libertad: Trujillo, Peru, 2009; pp. 1–30. [Google Scholar]
- Viera, W.; Brito, B.; Zambrano, E.; Ron, L.; Merino, J.; Campaña, D.; Álvarez, H. Genotype x Environment Interaction in the Yield and Fruit Quality of Passion Fruit Germplasm Grown in the Ecuadorian Littoral. Int. J. Fruit Sci. 2020, 20, S1829–S1844. [Google Scholar] [CrossRef]
- Sierra Cárdenas, J.C.; Gómez Rodríguez, C.; Sánchez Buendía, E.E.; Pinilla Rivera, M. Financial Viability for the Production of Gulupa (Passiflora Edulis Sims) and for Its Exportation to the Spanish Market. Cienc. Tecnol. Agropecu. 2013, 14, 17–26. [Google Scholar]
- Rojas, L.; Muñoz, L. Gulupa: Characteristics and traditional uses. In Investigación, Ciencia, Innovación y Competitividad; Vera, E., Duque, G., Hernández, O., Peñaranda, L., Perdomo, M., Jurado, A., Eds.; Universidad de la Amazonía: Caquetá, Colombia, 2016; pp. 145–155. [Google Scholar]
- Rodríguez, N.; Ambachew, D.; Melgarejo, L.; Wohlgemuth, M. Morphological and Agronomic Variability among Cultivars, Landraces, and Genebank Accessions of Purple Passion Fruit, Passiflora Edulis f. Edulis. HortScience 2020, 55, 768–777. [Google Scholar]
- Bermeo, L.P. Evaluation of the Influence of the Degree of Maturity of Gulupa (Passiflora Edulis Sims) on Sensory Acceptance in Food Products. Enfoque UTE 2021, 12, 29–43. [Google Scholar] [CrossRef]
- Rinaldi, M.; Dianese, A.; Costa, A.; Assis, D.; Oliveira, T.; Assis, S. Post-Harvest Conservation of Passiflora Alata Fruits under Ambient and Refrigerated Condition. Food Sci. Technol. 2019, 39, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Alves, R.R.; Salomão, L.C.C.; Siqueira, D.L.; Cecon, P.R.; Silva, D.F.P. Relações Entre Características Físicas e Químicas de Frutos de Maracujazeiro-Doce Cultivado em Viçosa-MG. Rev. Bras. Frutic. 2012, 34, 619–623. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Agricultura y Ganadería (MAG). Sistema de Información Pública Agropecuaria. Available online: http://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas (accessed on 15 December 2021).
- Valarezo, A.; Valarezo, O.; Mendoza, A.; Álvarez, H.; Vásquez, W. El Cultivo de Maracuyá: Manual Técnico para Su Manejo en el Litoral Ecuatoriano; INIAP: Quito, Ecuador, 2014; pp. 9–12. [Google Scholar]
- Hardisson, A.; Rubio, C.; Báez, A.; Martín, M.; Álvarez, R.; Díaz, E. Mineral Composition of the Banana (Musa Acuminata) from the Island of Tenerife. Food Chem. 2001, 73, 153–161. [Google Scholar] [CrossRef]
- Ramos, L.; Pesamosca, E.; Salvador, M.; Hickmann, S.; de Oliveira, A. Antioxidant Potential and Physicochemical Characterization of Yellow, Purple and Orange Passion Fruit. J. Food Sci. Technol. 2018, 55, 2679–2691. [Google Scholar]
- Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants 2022, 11, 328. [Google Scholar] [CrossRef]
- Carvajal, L.; Turbay, S.; Álvarez, L.; Rodríguez, A.; Alvarez, M.; Bonilla, K.; Restrepo, S.; Parra, M. Functional and Nutritional Properties of Six Species of Passiflora (Passifloraceae) from the Department of Huila, Colombia. Caldasia 2014, 36, 1–15. [Google Scholar] [CrossRef]
- Núcleo de Estudios e Pesquisas em Alimentacao (NEPA). Tabela Brasileira de Composição de Alimentos (TACO); NEPA-UNICAMP: Campinas, Brasil, 2006; pp. 98–113. [Google Scholar]
- Souza, V.R.; Pereira, P.A.P.; Queiroz, F.; Borges, S.V.; Carneiro, J.D.S. Determination of Bioactive Compounds, Antioxidant Activity and Chemical Composition of Cerrado Brazilian Fruits. Food Chem. 2012, 134, 381–386. [Google Scholar] [CrossRef]
- Kondo, T.; Higuchi, H. Effects of Nitrogen Form in Nutrient Solution on Passion Fruit Quality. Trop. Agric. Dev. 2013, 57, 49–53. [Google Scholar]
- Kondo, T.; Higuchi, H. Acidity of Passion Fruit as Affected by Potassium Fertilizer. Acta Hort. 2013, 984, 385–391. [Google Scholar] [CrossRef]
- Kondo, T.; Higuchi, H. Effects of Excess Phosphorous Application on Passion Fruit Quality. Trop. Agric. Dev. 2013, 57, 109–113. [Google Scholar]
- Kondo, T.; Koga, K.; Sato, D. Effect of Nitrogen Content in Fertilizer Solution in Vegetative Growth, Flowering, and Fruit Quality in Passion Fruit. Trop. Agric. Dev. 2020, 64, 161–164. [Google Scholar]
- Kondo, T.; Higuchi, H. Effects of Calcium Content in Fertilizer Solution on Passion Fruit Quality. Trop. Agric. Dev. 2020, 64, 165–170. [Google Scholar]
- Huang, X.; Wang, H.; Qu, S.; Luo, W.; Gao, Z. Relationship between Fruit Quality and Mineral Elements in Soil, Leaf and Fruit of Loquat Orchard in Dongshan Hillside of Jiangsu Province. Acta Bot. Boreali 2019, 39, 692–702. [Google Scholar]
- Chavarría-Perez, L.M.; Giordani, W.; Gracas Dias, K.O.; Portugal Costa, Z.; Massena Ribeiro, C.A.; Benedetti, A.R.; Cauz-Santos, L.A.; Silva Pereira, G.; Feijo Rosa, J.R.B.; Franco Garcia, A.A.; et al. Improving Yield and Fruit Quality Traits in Sweet Passion Fruit: Evidence for Genotype by Environment Interaction and Selection of Promising Genotypes. PLoS ONE 2020, 15, e0232818. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Hansen, N.C. Phosphorus Management in High-Yield Systems. J. Environ. Qual. 2019, 48, 1265–1280. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Polanco, E.; Bermeo, P.; Segura-Amaya, J.; Parra-Alferes, E. Characterization and Typification of Purple Passion Fruit (Passifora Edulis f. Edulis Sims) Production Systems, in Tolima Nothern and Central-Western Regions. Rev. Investig. Agrar. Ambient. 2022, 13, 89–107. [Google Scholar]
- Álvarez, H.; Pionce, J.; Castro, J.; Viera, W.; Sotomayor, A. Population Densities and Nitrogen Fertilization in Passion Fruit. Rev. Cientif. Ecuat. 2018, 5, 1–6. [Google Scholar]
- Thokchom, R.; Mandal, G. Production Preference and Importance of Passion Fruit (Passiflora Edulis): A Review. J. Agric. Eng. Food Technol. 2017, 4, 27–30. [Google Scholar]
- Granados, C.; Tinoco, K.; Granados, E.; Pájaro-Castro, N.; García, Y. Chemical Characterization and Determination of the Antioxidant Activity of the Pulp of Passiflora Edulis Sims (Gulupa). Rev. Cub. Plantas Med. 2017, 22, 1–9. [Google Scholar]
- Chandra, J.; Prasad, V.M.; Bahadur, V.; Mishra, A. Study on Response of Different Doses of Nitrogen on Vegetative Growth, Flowering, Fruiting and Fruit Quality of Cape Gooseberry (Physalis Peruviana L.). Pharma Innov. J. 2021, 10, 117–120. [Google Scholar]
- Galvão-Novaes, K.; Da Silva-Romão, I.L.; Gomes-Santos, B.; Palhares-Ribeiro, J.; Almeida-Bezerra, M.; Galvão-Paranhos da Silva, E. Screening of Passiflora L. Mineral Content Using Principal Component Analysis and Kohonen Self-Organizing Maps. Food Chem. 2017, 233, 507–513. [Google Scholar] [CrossRef]
- Kumssa, D.B.; Joy, E.J.M.; Broadley, M.R. Global Trends (1961–2017) in Dietary Potassium (K) Intake. Nutrients 2021, 13, 1369. [Google Scholar] [CrossRef]
- Da Silva, M.; Tadashi, E.; Grassi, H.; Briancon, R.; Mosca, J. Physical Characterization and Quantity of Nutrients in Sweet Passion Fruit. Rev. Bras. Frutic. 2001, 23, 690–694. [Google Scholar]
- Leonel, M.; Batista Bolfarini, A.C.; Rodrigues da Silva, M.J.; Azevêdo Souza, J.M.; Leonel, S. Banana Fruits with High Content of Resistant Starch: Effect of Genotypes and Phosphorus Fertilization. Int. J. Biol. Macromol. 2020, 150, 1020–1026. [Google Scholar] [CrossRef]
- Winkler, A.; Knoche, M. Calcium and the Physiology of Sweet Cherries: A Review. Sci. Hortic. 2019, 245, 107–115. [Google Scholar] [CrossRef]
- Uwitonze, A.M.; Razzaque, M.S. Role of Magnesium in Vitamin D Activation and Function. J. Osteopath. Med. 2018, 118, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Rezazadeh, A.; Bailey, M.; Sarkhosh, A. Passion Fruit Problems in the Home Landscape; University of Florida: Gainesville, FL, USA, 2020; pp. 1–5. [Google Scholar]
- Taboada, N. El Zinc y el Cobre: Micronutrientes Esenciales para la Salud Humana. Acta Med. Centro 2017, 11, 79–89. [Google Scholar]
- Noriega, P.; De Freitas Mafud, D.; Strasser, M.; Myiake Kato, E.Y.; Bacchi, E.M. Passiflora Alata Curtis: A Brazilian Medicinal Plant. Bol. Latinoam. Caribe Plantas Med. Aromat. 2011, 10, 398–413. [Google Scholar]
- Ministry of Education, Culture, Sports, Science and Technology–Japan (MEXT). Standards Tables of Food Composition in Japan -2015-(Seventh Revised Edition) Documentation and Table. Available online: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/sdetail01/sdetail01/1385122.htm (accessed on 29 December 2021).
- Nedjimi, B. Can Trace Element Supplementations (Cu, Se, and Zn) Enhance Human Immunity against COVID-19 and Its New Variants? J. Basic Appl. Sci. 2021, 10, 33. [Google Scholar] [CrossRef]
- Lal, A. Iron in Health and Disease: An Update. Indian J. Pediatr. 2020, 87, 58–65. [Google Scholar] [CrossRef]
- Miah, M.R.; Ijomone, O.M.; Okoh, C.O.A.; Ijomone, O.K.; Akingbade, G.T.; Ke, T.; Krum, B.; da Cunha, M.A.; Akinyemi, A.; Aranoff, N.; et al. The Effects of Manganese Overexposure on Brain Health. Neurochem. Int. 2020, 135, 104688. [Google Scholar] [CrossRef]
- Tighe-Neira, R. Role of potassium in governing photosynthetic processes and plant yield. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 191–203. [Google Scholar]
- Brdar-Jokanovi, M. Boron Toxicity and Deficiency in Agricultural Plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef] [Green Version]
- Birkelund Schmidt, S.; Husted, S. The Biochemical Properties of Manganese in Plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, M.; El-Sayed, Q. Using Boron, Magnesium and Some Amino Acids to Improve Yield and Fruit Quality of Roomy Red Grapevines. Hortsci. J. Suez Canal Univ. 2019, 8, 79–86. [Google Scholar]
- Bashira, M.; Noreen, A.; Ikhlaq, M.; Shabir, K.; Altaf, F.; Akhtar, N. Effect of Boric Acid, Potassium Nitrate and Magnesium Sulphate on Managing Fruit Cracking and Improving Fruit Yield and Quality of Pomegranate. J. Hortic. Sci. Technol. 2019, 2, 49–53. [Google Scholar] [CrossRef]
- Garza-Alonso, C.A.; Niño-Medina, G.; Gutiérrez-Díez, A.; García-López, J.I.; Vázquez-Alvarado, R.E.; López-Jiménez, A.; Olivares-Sáenz, E. Physicochemical Characteristics, Minerals, Phenolic Compounds, and Antioxidant Capacity in Fig Tree Fruits with Macronutrient Deficiencies. Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 1585–1599. [Google Scholar] [CrossRef]
- Obreza, T.A.; Zekri, M.; Futch., S.H. General soil fertility and citrus tree nutrition. In Nutrition of Florida Citrus Trees; Morgan, K.T., Kadyampaken, D.M., Eds.; University of Florida: Gainesville, FL, USA, 2008; pp. 13–21. [Google Scholar]
- Hada, T.S.; Neeharika, K.; Singh, B.K. Foliar Application of Different Combination of Boron and Zinc on Yield, Pulp and Seed Attributes of Winter Season Guava (Psidium Guajava L.) cv L-49. Environ. Ecol. 2017, 35, 1534–1537. [Google Scholar]
- Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture. Int. J. Mol. Sci. 2018, 19, 1856. [Google Scholar] [CrossRef] [Green Version]
- Morais Cunha, J.; Mendonça Freitas, M.S.; Cordeiro de Carvalho, A.J.; Santos Caetano, L.C.; Vieira, M.E.; Alves Peçanha, D.; Capato Lima, T.; Costa de Jesus, A.; Pereira Pinto, L. Pineapple Yield and Fruit Quality in Response to Potassium Fertilization. J. Plant Nutr. 2021, 44, 865–874. [Google Scholar] [CrossRef]
- Barboza Mejía, M.; Guevara Guerrero, W.; Guevara Guerrero, J.; Chico León, H. Effect of Vacuum Time and Concentration of Ascorbic Acid on the Physicochemical Parameters of a Fruit Mix. Rev. Cienc. Norandina 2019, 2, 57–65. [Google Scholar]
- Adiloğlu, S.; Eryılmaz Açıkgöz, F.; Adiloğlu, A. The Effect of Increasing Doses of Sulfur Application of Some Nutrient Elements, Vitamin C, Protein Contents and Biological Properties of Canola Plant (Brassica Napus L.). J. Tekirdag Agric. Fac. 2013, 10, 59–63. [Google Scholar]
- Al-Fraihat, A.H. Effect of Different Nitrogen and Sulphur Fertilizer Levels on Growth, Yield and Quality of Onion (Allium Cepa, L.). Jordan J. Agric. Sci. 2009, 5, 155–166. [Google Scholar]
- Rather, M.A.; Chattoo, M.A.; Bhat, T.A.; Mushtaq, F.; Rashid, M.; Shah, M.; Sultan, A. Influence of Different Levels of Sulphur and Potassium and Their Interactions on Different Quality and Storage Parameters of Potato. Int. J. Plant Soil Sci. 2021, 33, 38–46. [Google Scholar] [CrossRef]
- Mostafa, R.A.A. Effect of Bio and Organic Nitrogen Fertilization and Elemental Sulphur Application on Growth, Yield and Fruit Quality of Flame Seedless Grapevines. Assiut J. Agric. Sci. 2008, 39, 79–96. [Google Scholar]
- Wilkinson, B.G. The Effect of Orchard Factors on the Chemical Composition of Apples: II. The Relationship between Potassium and Titratable Acidity, and between Potassium and Magnesium, in the Fruit. J. Hortic. Sci. 1958, 33, 49–57. [Google Scholar] [CrossRef]
- Carvalho, E.; Nunes, R.; de Almeida, E.; Pereira, J.; de Melo, S. Quality of ‘Imperial’ Pineapple Infructescence in Function of Nitrogen and Potassium Fertilization. Rev. Bras. De Ciências Agrárias 2018, 13, e5499. [Google Scholar]
- Wang, Y.; Fang Chen, Y.; Hua Wu, W. Potassium and Phosphorus Transport and Signaling in Plants. J. Integr. Plant Biol. 2020, 63, 34–52. [Google Scholar] [CrossRef]
- Moor, U.; Karp, K.; Põldma, P.; Starast, M. Influence of preharvest calcium treatments on apple soluble solids, titratable acids and vitamin C content at harvest and after storage. In XXVII International Horticultural Congress-IHC2006: International Symposium on The Role of Postharvest Technology in the 768; Hewett, E.W., Lurie, S., Wuensche, J.N., Eds.; ISHS Acta Horticulturae: Seoul, South Korea, 2008; pp. 49–56. [Google Scholar]
- Thor, K. Calcium—Nutrient and Messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Michailidis, M.; Karagiannis, E.; Tanou, G.; Samiotaki, M.; Tsiolas, G.; Sarrou, E.; Stamatakis, G.; Ganopoulos, J.; Martens, S.; Argiriou, A.; et al. Novel Insights into the Calcium Action in Cherry Fruit Development Revealed by High-Throughput Mapping. Plant Mol. Biol. 2020, 104, 597–614. [Google Scholar] [CrossRef]
- Cheng, L.; Ma, F.; Ranwala, D. Nitrogen Storage and Its Interaction with Carbohydrates of Young Apple Trees in Response to Nitrogen Supply. Tree Physiol. 2004, 24, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.; Shen, Y.; Huang, Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. Front. Plant Sci. 2021, 12, 620018. [Google Scholar] [CrossRef]
- Medeiros, R.F.; Pereira, W.E.; Rodrigues, R.M.; do Nascimento, R. Growth and Yield of Strawberry Plants Fertilized with Nitrogen and Phosphorus. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Sajjid, M.; Hayat, S.; Ullah, R.; Ali, M.; Jamal, A.; Rahman, A.; Aman, Z.; Ali, J. Growth, Yield and Fruit Quality of Strawberry (Frageria Ananasa Dutch) under Different Phosphorus Levels. Res. Agric. 2017, 2, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Villalobos Rodríguez, E. Fisiología de la Producción de los Cultivos Tropicales; Editorial de la Universidad de Costa Rica: San José, Costa Rica, 2001; pp. 186–195. [Google Scholar]
- René, P.J.J.; Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar]
- Fan, X.; Zhou, X.; Chen, H.; Tang, M.; Xie, X. Cross-Talks between Macro- and Micronutrient Uptake and Signaling in Plants. Front. Plant Sci. 2021, 12, 663477. [Google Scholar] [CrossRef]
- Viera, W.; Winefield, C. Genetic Parameters for Fruit Mineral Content in an Interspecific Pear (Pyrus spp.) Population. N. Z. J. Crop Hortic. Sci. 2019, 47, 125–141. [Google Scholar] [CrossRef]
- Nikhontha, K.; Krisanapook, K.; Imsabai, W. Fruit Growth, Endocarp Lignification, and Boron and Calcium Contents in Nam Hom (Aromatic) Coconut during Fruit Development. J. ISSAAS 2019, 25, 21–31. [Google Scholar]
- Onzec, N.; Onzec, D.B. Effect of Magnesium Fertilization on Some Plant Nutrient Interactions and Nut Quality Properties in Turkish Hazelnut (Corylus Avellana L.). Sci. Res. Essays 2015, 10, 465–470. [Google Scholar]
- Manzi, M.; Hernández, F.; Pintos, P.; Luque, E.; Yorio, C.; Lado, J. Efecto de la Composición Mineral de la Cáscara en la Tolerancia al Daño por Frío Postcosecha en Naranjas. INIA Salto Gd. 2019, 794, 13–21. [Google Scholar]
- Adnan, M.; Tampubolon, K.; Rehman, F.; Saeed, M.S.; Hayyat, M.S.; Imran, M.; Tahir, R.; Mehta, J. Influence of Foliar Application of Magnesium on Horticultural Crops: A Review. Agrinula J. Agroteknologi dan Perkeb. 2021, 4, 13–21. [Google Scholar] [CrossRef]
- Cartagena, Y. El Análisis Químico de Suelos: Una Herramienta Para Diseñar Recomendaciones de Fertilización y Enmiendas en los Cultivos. Soil and Plant Nutrition Specialist Degree, Universidad Central del Ecuador, Quito, Ecuador, 2002. [Google Scholar]
- Ellong, E.N.; Billard, C.; Adenet, S.; Rochefort, K. Polyphenols, Carotenoids, Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods. Food Nutr. Sci. 2015, 6, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Lo’ay, A.A.; EL-Ezz, S.F.A.; Awadeen, A.A. Effect of Different Foliar Potassium Fertilization Forms on Vegetative Growth, Yield, and Fruit Quality of Kaki Trees Grown in Sandy Soil. Sci. Hortic. 2021, 288, 110420. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Maver, M.; Fontanari, S.; Mott, D.; Savini, G.; Tiziani, R.; Pii, Y.; Mimmo, T.; Cesco, S. Foliar Application of Potassium-Based Fertilizer Improves Strawberry Fruit Quality. Acta Hortic. 2017, 1217, 379–384. [Google Scholar] [CrossRef]
- Islam, M.Z.; Mele, M.A.; Choi, K.; Kang, H. The Effect of Silicon and Boron Foliar Application on the Quality and Shelf Life of Cherry Tomatoes. Zemdirb. Agric. 2018, 105, 159–164. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2012; pp. 650–672. [Google Scholar]
- Singh, Y.; Bhatnagar, P.; Meena, N.; Gurjar, S. The Effect of Foliar Spray of Zn, Cu and B on Physico-Chemical Parameters of Sweet Orange (Citrus Sinensis L.) cv. Mosambi. J. Pharmacogn. Phytochem. 2018, 7, 1606–1610. [Google Scholar]
- Sau, S.; Sarkar, S.; Ghosh, B.; Ray, K.; Deb, P.; Ghosh, D. Effect of Foliar Application of B, Zn and Cu on Yield, Quality and Economics of Rainy Season Guava Cultivation. Curr. J. Appl. Sci. Technol. 2018, 28, 1–10. [Google Scholar] [CrossRef]
- Kumari, A.; Singh, R.; Kundu, M. Effect of Pre-Harvest Application of Ca, K, B and Zn on Yield and Quality of Mango (Mangifera Indica L.) cv. Langra. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 892–902. [Google Scholar] [CrossRef]
- Fischer, G.; Miranda, D. Review on the Ecophysiology of Important Andean Fruits: Passiflora L. Rev. Fac. Nac. Agron. Medellín 2021, 74, 9471–9481. [Google Scholar] [CrossRef]
- Pinzón, I.; Fisher, G.; Corredor, G. Determination of the Maturity Stages of Purple Passion Fruit (Passiflora Edulis Sims.). Agron. Colomb. 2007, 25, 83–95. [Google Scholar]
- Vargas Alfonso, J.A. Desarrollo de Una Alternativa Tecnológica para la Producción de Maracuyá (Passiflora Edulis var. Flavicarpa) en el Municipio de Borbur, Boyacá. Bachelor’s Thesis, Univerdidad de la Salle, Bogotá, Colombia, 2018. [Google Scholar]
- Malavé Acuña, A. Soils as Boron Source for Plants. Rev. UDO Agric. 2005, 5, 10–26. [Google Scholar]
- Brito, B.; Vásquez, W. Control de Calidad en la Pre-y Pos Cosecha de las Frutas; INIAP: Quito, Ecuador, 2013; pp. 14–23. [Google Scholar]
- Viera, W.; Samaniego, I.; Camacho, D.; Habibi, N.; Ron, L.; Sediqui, N.; Álvarez, J.; Viteri, P.; Sotomayor, A.; Merino, J.; et al. Phytochemical Characterization of a Tree Tomato (Solanum Betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. Plants 2022, 11, 268. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 21th ed.; AOAC: Gaithersburg, MD, USA, 2019; p. 700. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 15 January 2022).
Genotype | Yield (kg Plant−1) | Fruit Weight * (g) | Polar Diameter * (mm) | Equatorial Diameter * (mm) |
---|---|---|---|---|
INIAP 2009 | 15.27 ± 1.42 b | 223.63 ± 49.44 a | 96.18 ± 7.13 b | 90.20 ± 5.53 a |
P10 | 19.45 ± 4.53 a | 207.93 ± 63.48 a | 96.45 ± 7.69 b | 82.05 ± 4.43 b |
Sweet passion fruit | 3.60 ± 0.67 d | 184.66 ± 35.04 b | 117.80 ± 6.60 a | 67.97 ± 2.19 c |
Gulupa | 7.64 ± 0.76 c | 34.22 ± 3.73 d | 49.27 ± 3.41 d | 44.13 ± 2.60 d |
Criollo POR1 | 7.15 ± 0.79 c | 109.64 ± 15.52 c | 76.73 ± 3.76 c | 69.72 ± 3.67 c |
Criollo PICH1 | 1.75 ± 0.19 d | 32.96 ± 3.76 d | 50.03 ± 5.57 d | 44.77 ± 3.25 d |
Genotype | Peel Thickness * (mm) | Soluble Solids Content ** (°Brix) | Titratable Acidity ** (%) | Sugar/acid Ratio ** |
INIAP 2009 | 10.38 ± 1.32 b | 12.13 ± 0.15 d | 4.43 ± 0.02 a | 2.71 ± 0.02 f |
P10 | 10.01 ± 1.22 b | 12.23 ± 0.15 d | 4.24 ± 0.04 b | 2.88 ± 0.03 e |
Sweet passion fruit | 11.54 ± 0.99 a | 19.47 ± 0.12 a | 1.12 ± 0.01 f | 17.41 ± 0.22 a |
Gulupa | 5.36 ± 0.60 c | 14.70 ± 0.10 b | 2.07 ± 0.02 e | 7.10 ± 0.03 b |
Criollo POR1 | 5.87 ± 0.37 c | 13.47 ± 0.06 c | 3.91 ± 0.05 c | 3.43 ± 0.04 d |
Criollo PICH1 | 3.85 ± 0.44 d | 11.00 ± 0.20 e | 2.20 ± 0.04 d | 5.00 ± 0.15 c |
Genotype | Peel Yield * (%) | Pulp Yield ** (%) | Seed Yield * (%) | |
INIAP 2009 | 38.05 ± 2.25 c | 43.10 ± 3.14 a | 14.84 ± 0.88 a | |
P10 | 36.59 ± 0.47 c | 45.94 ± 0.89 a | 17.57 ± 0.43 a | |
Sweet passion fruit | 84.34 ± 2.73 a | 13.01 ± 2.54 b | 2.53 ± 0.20 c | |
Gulupa | 47.10 ± 2.56 b | 46.34 ± 2.34 a | 6.56 ± 0.33 b | |
Criollo POR1 | 34.54 ± 3.32 c | 46.59 ± 5.73 a | 18.87 ± 2.67 a | |
Criollo PICH1 | 45.67 ± 1.71 b | 46.75 ± 1.62 a | 5.60 ± 0.32 bc |
Macronutrients | |||||||
---|---|---|---|---|---|---|---|
Genotype | N | K | P | Ca | Mg | S | Na |
INIAP 2009 | 818.68 ± 50.39 d | 2456.05 ± 49.87 b | 112.24 ± 0.15 e | 26.93 ± 0.13 b | 86.86 ± 5.30 c | 81.62 ± 0.07 b | 8.81 ± 0.07 e |
P10 | 1218.99 ± 7.36 a | 2816.00 ± 76.46 a | 88.56 ± 0.64 f | 18.82 ± 1.09 c | 69.32 ± 3.95 d | 73.52 ± 0.89 c | 12.48 ± 0.11 a |
Sweet passion fruit | 925.93 ± 17.98 c | 1471.28 ± 58.85 e | 147.44 ± 0.30 b | 8.00 ± 0.24 e | 97.10 ± 0.48 c | 139.71 ± 0.62 a | 9.49 ± 0.06 cd |
Gulupa | 1101.05 ± 8.22 b | 1926.84 ± 18.35 d | 134.82 ± 0.25 c | 19.70 ± 0.74 c | 196.97 ± 7.34 a | 41.96 ± 0.61 e | 9.22 ± 0.07 de |
Criollo POR1 | 1270.96 ± 13.11 a | 2574.69 ± 6.56 b | 131.12 ± 0.08 d | 16.64 ± 0.13 d | 100.76 ± 8.91 c | 74.55 ± 1.18 c | 10.05 ± 0.20 c |
Criollo PICH1 | 1091.13 ± 12.69 b | 2252.25 ± 19.04 c | 170.03 ± 1.27 a | 42.51 ± 0.13 a | 160.85 ± 4.38 b | 57.95 ± 1.97 d | 11.00 ± 0.45 b |
Micronutrients | |||||||
Genotype | B | Zn | Cu | Fe | |||
INIAP 2009 | 1.18 ± 0.07 b | 2.12 ± 0.13 ab | 0.13 ± 0.01 b | 7.62 ± 0.15 b | |||
P10 | 1.21 ± 0.06 b | 1.53 ± 0.13 bc | 0.14 ± 0.01 b | 4.19 ± 0.12 c | |||
Sweet passion fruit | 0.53 ± 0.06 d | 2.77 ± 0.18 a | 0.24 ± 0.01 a | 8.24 ± 0.59 b | |||
Gulupa | 1.41 ± 0.06 a | 2.69 ± 0.25 a | 0.13 ± 0.01 b | 4.40 ± 0.74 c | |||
Criollo POR1 | 1.11 ± 0.07 b | 0.98 ± 0.68 c | 0.12 ± 0.01 b | 9.56 ± 0.40 a | |||
Criollo PICH1 | 0.82 ± 0.07 c | 2.09 ± 0.07 ab | 0.25 ± 0.01 a | 8.08 ± 0.08 b |
Plant Yield | Fruit Weight | Peel Thickness | Pulp Yield | Soluble Solids | Titratable Acidity | Vitamin C | N | K | P | Ca | Mg | S | Na | B | Zn | Cu | Fe | Mn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant yield | 1.00 | 0.68 | 0.49 | 0.32 | −0.36 | 0.79 | 0.31 | 0.01 | 0.66 | −0.94 | −0.15 | −0.57 | −0.13 | 0.29 | 0.57 | 0.31 | −0.65 | −0.53 | 0.70 |
Fruit weight | 1.00 | 0.90 | −0.35 | 0.17 | 0.45 | −0.40 | −0.36 | 0.20 | −0.67 | −0.43 | −0.88 | 0.60 | 0.05 | −0.12 | −0.11 | −0.22 | −0.01 | 0.47 | |
Peel Thickness | 1.00 | −0.61 | 0.47 | 0.14 | −0.60 | −0.49 | −0.13 | −0.54 | −0.60 | −0.75 | 0.76 | −0.08 | −0.27 | 0.17 | −0.06 | −0.08 | 0.27 | ||
Pulp yield | 1.00 | −0.88 | 0.61 | 0.92 | 0.47 | 0.75 | −0.24 | 0.57 | 0.26 | −0.90 | 0.29 | 0.74 | −0.51 | −0.52 | −0.27 | 0.33 | |||
Soluble Solids | 1.00 | −0.66 | −0.75 | −0.27 | −0.82 | 0.20 | −0.79 | −0.04 | 0.74 | −0.40 | −0.51 | 0.50 | 0.26 | 0.12 | −0.51 | ||||
Titratable Acidity | 1.00 | 0.53 | 0.19 | 0.91 | −0.75 | 0.13 | −0.55 | −0.31 | 0.24 | 0.58 | −0.69 | −0.72 | −0.07 | 0.64 | |||||
Vitamin C | 1.00 | 0.36 | 0.60 | −0.24 | 0.45 | 0.39 | −0.94 | 0.03 | 0.87 | −0.34 | −0.64 | −0.32 | 0.09 | ||||||
N | 1.00 | 0.46 | −0.12 | −0.04 | 0.06 | −0.43 | 0.62 | 0.28 | −0.62 | −0.25 | −0.13 | 0.33 | |||||||
K | 1.00 | −0.61 | 0.32 | −0.41 | −0.48 | 0.54 | 0.54 | −0.77 | −0.54 | −0.13 | 0.76 | ||||||||
P | 1.00 | 0.37 | 0.61 | 0.05 | −0.28 | −0.56 | 0.35 | 0.72 | 0.51 | −0.66 | |||||||||
Ca | 1.00 | 0.38 | −0.59 | 0.19 | 0.09 | −0.06 | 0.29 | 0.07 | 0.13 | ||||||||||
Mg | 1.00 | −0.59 | −0.27 | 0.21 | 0.45 | 0.18 | −0.20 | −0.62 | |||||||||||
S | 1.00 | −0.17 | −0.77 | 0.21 | 0.39 | 0.42 | −0.08 | ||||||||||||
Na | 1.00 | −0.01 | −0.43 | 0.13 | −0.33 | 0.83 | |||||||||||||
B | 1.00 | −0.24 | −0.83 | −0.58 | 0.17 | ||||||||||||||
Zn | 1.00 | 0.43 | −0.24 | −0.52 | |||||||||||||||
Cu | 1.00 | 0.28 | −0.16 | ||||||||||||||||
Fe | 1.00 | −0.34 | |||||||||||||||||
Mn | 1.00 |
Site | N | P | K | Ca | Mg | S | Zn | Cu | Fe | Mn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
Portoviejo | 23 M | 13 M | 507 H | 3400 H | 864 H | 23 H | 3.5 M | 6 H | 56 H | 25 H | 0.6 M |
Quevedo | 23 M | 20 M | 273 H | 2800 H | 276 H | 17 M | 8.5 H | 17 H | 330 H | 7.5 M | 0.3 L |
Tumbaco | 42 M | 86 H | 273 H | 1600 M | 408 H | 12 M | 13 H | 9 H | 59 H | 5.4 M | 0.8 L |
Species | Name | Type of Germplasm | Site | Province | Latitude (South) | Longitude (West) | Altitude (Masl) | Annual Precipitation (mm) | Annual Average Temperature (°C) | Heliophany (Hours/ Year) |
---|---|---|---|---|---|---|---|---|---|---|
Passiflora edulis f. flavicarpa | INIAP 2009 | EV | Portoviejo | Manabí | 01°09′43″ | 80°23′06″ | 52 | 852 | 26 | 1385 |
Passiflora edulis f. flavicarpa | P10 | BG | ||||||||
Passiflora sp. | Criollo POR1 | ELG | ||||||||
Passiflora sp. | Sweet PF | IG | Quevedo | Los Ríos | 01°04′24″ | 79°29′14″ | 74 | 1200 | 25 | 920 |
Passiflora edulis f. edulis | Criollo PICH1 | ELG | ||||||||
Passiflora alata | Gulupa | IG | Tumbaco | Pichincha | 00°12′57″ | 78°24′43″ | 2348 | 892 | 17 | 2039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viera, W.; Shinohara, T.; Samaniego, I.; Terada, N.; Sanada, A.; Ron, L.; Koshio, K. Pulp Mineral Content of Passion Fruit Germplasm Grown in Ecuador and Its Relationship with Fruit Quality Traits. Plants 2022, 11, 697. https://doi.org/10.3390/plants11050697
Viera W, Shinohara T, Samaniego I, Terada N, Sanada A, Ron L, Koshio K. Pulp Mineral Content of Passion Fruit Germplasm Grown in Ecuador and Its Relationship with Fruit Quality Traits. Plants. 2022; 11(5):697. https://doi.org/10.3390/plants11050697
Chicago/Turabian StyleViera, William, Takashi Shinohara, Iván Samaniego, Naoki Terada, Atsushi Sanada, Lenin Ron, and Kaihei Koshio. 2022. "Pulp Mineral Content of Passion Fruit Germplasm Grown in Ecuador and Its Relationship with Fruit Quality Traits" Plants 11, no. 5: 697. https://doi.org/10.3390/plants11050697
APA StyleViera, W., Shinohara, T., Samaniego, I., Terada, N., Sanada, A., Ron, L., & Koshio, K. (2022). Pulp Mineral Content of Passion Fruit Germplasm Grown in Ecuador and Its Relationship with Fruit Quality Traits. Plants, 11(5), 697. https://doi.org/10.3390/plants11050697