Environmental Behaviors of Bacillus thuringiensis (Bt) Insecticidal Proteins and Their Effects on Microbial Ecology
Abstract
:1. Introduction
2. Expression and Mechanism of Bt Insecticidal Proteins
2.1. Formation and Structure of Bt Insecticidal Proteins
2.2. Mechanism of Action for Bt Insecticidal Proteins
3. Environmental Fate of Bt Insecticidal Proteins in Soils
3.1. Adsorption, Retention, and Degradation of Bt Insecticidal Proteins in Soils
3.2. Transformation Fate of Bt Insecticidal Proteins in Soils
4. Effects of Bt Insecticidal Proteins on Soil Microbial Ecology
4.1. Effects of Bt Insecticidal Proteins on Soil Physicochemical Properties
4.2. Effects of Bt Insecticidal Proteins on Soil Microbial Community Diversity
4.3. Effects of Bt Insecticidal Proteins on Functional Diversity of Soil Microorganisms
5. Perspectives
5.1. Evaluating Environmental Behaviors of Bt Insecticidal Proteins Using Stable Isotope Tracing
5.2. Analysis of Microbial Ecological Effects of Bt Insecticidal Proteins Using Microbiome Techniques
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hannay, C.L. Crystalline inclusions in aerobic spore-forming bacteria. Nature 1953, 172, 1004. [Google Scholar] [CrossRef] [PubMed]
- Faust, R.M.; Abe, K.; Held, G.A.; Iizuka, T.; Bulla, L.A.; Meyers, C.L. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp. israelensis. Plasmid 1983, 9, 98–103. [Google Scholar] [CrossRef]
- Estruch, J.J.; Warren, G.W.; Mullins, M.A.; Nye, G.J.; Craig, J.A.; Koziel, M.G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 1996, 93, 5389–5394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barloy, F.; Lecadet, M.M.; Delécluse, A. Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene 1998, 211, 293–299. [Google Scholar] [CrossRef]
- Shan, Y.M. Discovery and Activity Analysis of Novel Insecticidal Genes from Bacillus Thuringiensis. Ph.D. Dissertation, Northeast Agricultural University, Harbin, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Deng, L.X. Biopesticide Bacillus thuringiensis insecticide and its synergist. Chem. Teach. 2004, 3, 29–31, (In Chinese with English Abstract). [Google Scholar]
- Ding, X.Z.; Luo, Z.H.; Xia, L.Q.; Gao, B.D.; Sun, Y.J.; Fu, Z.J.; Liu, F.; Hu, S.B.; Mo, X.T.; Zhang, Y.M. Cloning and expression of the cry1Ac-tchiB fusion gene from Bacillus Thuringinesis and Tobacco and its insecticidal synergistic effect. Acta Microbiol. Sin. 2007, 47, 1002–1008, (In Chinese with English Abstract). [Google Scholar]
- Wang, G.; Zhang, J.; Song, F.; Wu, J.; Feng, S.L.; Huang, D.F. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Appl. Microbiol. Biot. 2006, 72, 924–930. [Google Scholar] [CrossRef]
- Liu, H.M.; Xu, G.J. Microbial pesticide Bacillus thuringiensis G033A. Pestic. Sci. Admin. 2018, 39, 59–60, (In Chinese with English Abstract). [Google Scholar]
- Timmons, A.M.; Charters, Y.M.; Crawford, J.W.; Burn, D.; Scott, S.E.; Dubbels, S.J.; Wilson, N.J.; Robertson, A.; O’Brien, E.T.; Squire, G.R.; et al. Risks from transgenic crops. Nature 1996, 380, 487. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Y.; Li, J.P.; Du, K. Research progress in the effects of genetically modified crops on soil microbial community. Biotechnol. Bull. 2021, 37, 255–265, (In Chinese with English Abstract). [Google Scholar]
- James, C. Global Status of Commercialized Biotech/GM Crops: ISAAA Brief No. 55; ISAAA: Ithaca, NY, USA, 2019. [Google Scholar]
- Sun, L.Y.; Li, J.; Yuan, H.W.; Yao, J.H.; Li, W.; Chen, X.Y. Expression analysis of Bt-BADH-GA20ox-rolB multigenes in transgenic tobacco plants. J. Beijing Fores. Univ. 2011, 33, 86–90, (In Chinese with English Abstract). [Google Scholar]
- Sun, S.S.; Wang, C.S.; Zhu, T.T.; Zhao, H.L.; Jiao, Y.; Qu, S.W.; Wang, P. Construction of bivalent plant expressed vector of NPR1 and Cry1Ab13-1 genes and is transformation in maize. Mol. Plant Breed. 2021, 1–14, (In Chinese with English Abstract). [Google Scholar]
- Dong, H.; Li, W. Variability of endotoxin expression in Bt transgenic cotton. J. Agron. Crop. Sci. 2007, 193, 21–29. [Google Scholar] [CrossRef]
- Rui, Y.K.; Yi, G.X.; Zhao, J.; Wang, B.M.; Li, Z.H.; Zhai, Z.X.; He, Z.P.; Li, Q.X. Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria. World J. Microbiol. Biot. 2005, 21, 1279–1284. [Google Scholar] [CrossRef]
- Valldor, P.; Graff, R.; Martens, R.; Tebbe, C.C. Fate of the insecticidal Cry1Ab protein of GM crops in two agricultural soils as revealed by 14C-tracer studies. Appl. Microbiol. Biot. 2015, 99, 7333–7341. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Liu, N.; Zhao, M.; Li, H.; Zhou, L.; Tang, Z.W.; Cao, F.; Li, W. Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology. Hereditas 2011, 33, 443–448, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Souza, C.S.F.; Silveira, L.C.P.; Souza, B.H.S.; Nascimento, P.T.; Damasceno, N.C.R.; Mendes, S.M. Efficiency of biological control for fall armyworm resistant to the protein Cry1F. Braz. J. Biol. 2020, 81, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Crecchio, C.; Stotzky, G. Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. Kustuki bound to humic acids from soil. Soil Biol. Biochem. 1998, 30, 463–470. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, S.Y.; Lang, Z.H.; Zhang, J.; Zhu, L.; Huang, D.F. Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. Plant. Cell Rep. 2013, 32, 1299–1308. [Google Scholar] [CrossRef]
- Wang, H.Y. Study on Environmental Behavior and Bioeffects of bt Transgenic Rice and Expressed Products of Its Exogenous gene. Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2007. (In Chinese with English Abstract). [Google Scholar]
- Song, Y.Y.; Liu, J.W.; Li, L.K.; Liu, M.Q.; Chen, X.Y.; Chen, F.J. Evaluating the effects of transgenic Bt rice cultivation on soil stability. Environ. Sci. Pollut. Res. 2020, 27, 17412–17419. [Google Scholar] [CrossRef]
- Stotzky, G.; Saxena, D. Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol. Ecol. 2000, 33, 35–39. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China (No. 2 of 2022). Decision of the Ministry of Agriculture and Rural Affairs on Amending the Regulations on the Administration of Safety Evaluation of Agricultural Genetically Modified Organisms. Available online: http://www.moa.gov.cn/govpublic/CYZCFGS/202201/t20220124_6387560.htm (accessed on 27 April 2022).
- Ren, G.X.; Feng, X.C.; Feng, W.X. The Shape and Antigenic Characteristics of the Parasporal Crystal of Bacillus thuringiensis. Acta Microbiol. Sin. 1983, 23, 57–62, (In Chinese with English Abstract). [Google Scholar]
- Schnepf, E.; Crickmore, N.; Van, R.J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal Crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.F.; Zhu, Y.J.; Liu, B.; Ruan, C.Q.; Lin, J. Study on morphological characteristics of parasporal crystals of Bacillus thuringiensis strain LSZ9408. WuYi Sci. J. 2006, 22, 37–40, (In Chinese with English Abstract). [Google Scholar]
- Shan, Y.; Shu, C.; He, K.; Cheng, X.; Zhang, J. Characterization of a novel insecticidal protein Cry9Cbl from Bacillus thuringiensis. J. Agric. Food Chem. 2019, 67, 3781–3788. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Z.H. Observation on development process of Bacillus thuringiensis SFZZ-03. J. Chin. Elect. Microbol. Soci. 2016, 35, 436–439, (In Chinese with English Abstract). [Google Scholar]
- Li, M.Y.; Gao, J.H.; Song, C.M.; Li, T.F.; Wang, G. Study on parasporal Crystal of Bacillus thuringiensis. J. Yunnan Nation. Univ. (Nat. Sci.) 2006, 15, 324–327, (In Chinese with English Abstract). [Google Scholar]
- Burkness, E.C.; Dively, G.; Patton, T.; Morey, A.C.; Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-doseefficacy against Helicoverpazea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. GM Crops 2010, 1, 337–343. [Google Scholar] [CrossRef]
- Adamczyk, J.J.; Mahaffey, J.S. Efficacy of Vip3A and Cry1Ab transgenic traits in cotton against various lepidopteran pests. Fla. Entomol. 2008, 91, 570–575. [Google Scholar]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Wang, B.C.; Yu, Z.N.; Sun, M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins 2014, 6, 2732–7270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.Y.; Jiang, M.X.; Cheng, J.A.; Jiang, Y.H. Advances in safety studies of soil Bt toxin proteins released from transgenic Bt crops. Chin. J. Appl. Ecol. 2003, 14, 2062–2066, (In Chinese with English Abstract). [Google Scholar]
- Cao, B.; Shu, C.; Geng, L.; Song, F.; Zhang, J. Cry78Ba1, One novel crystal protein from Bacillus thuringiensis with high activity against rice planthopper. J. Agric. Food Chem. 2020, 68, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- McGaughey, W.H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 1985, 229, 193–195. [Google Scholar] [CrossRef]
- Jin, L.; Wang, J.; Guan, F.; Zhang, J.P.; Yu, S.; Liu, S.Y.; Xue, Y.Y.; Li, L.L.; Wu, S.W.; Wang, X.L.; et al. Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Proc. Natl. Acad. Sci. USA 2018, 115, 11760–11765. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.R.; Zheng, A.P.; Zhu, J.; Wang, L.X.; Li, S.C.; Deng, Q.M.; Wang, S.Q.; Li, P.; Tang, X.M. Rapid cloning, identification, and application of one novel crystal protein gene cry30Fa1 from Bacillus thuringiensis. FEMS Microbiol. Lett. 2010, 302, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Zheng, J.S.; Bo, D.X.; Yu, Y.; Ye, W.X.; Peng, D.H.; Sun, M. BtToxin_Digger: A comprehensive and high-throughput pipeline for mining toxin protein genes from Bacillus thuringiensis. Bioinformatics 2022, 38, 250–251. [Google Scholar] [CrossRef]
- Ye, W.X.; Zhu, L.; Liu, Y.Y.; Crickmore, N.; Peng, D.H.; Ruan, L.F.; Sun, M. Mining new crystal protein genes from Bacillus thuringiensis on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. Appl. Environ. Microbol. 2012, 78, 14. [Google Scholar] [CrossRef] [Green Version]
- Vachon, V.; Laprade, R.; Schwartz, J.L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Bravo, A.; Gómez, I.; Conde, J.; Muñoz-Garay, C.; Sánchez, J.; Miranda, R.; Zhuang, M.; Gill, S.S.; Soberón, M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. BBA-Biomembr. 2004, 1667, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.B.; Candas, M.; Griko, N.; Taussig, R.; Bulla, A. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 2006, 103, 9897–9902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.C. Structural and Functional Research on Bacillus thuringiensis Cry51Aa1 Insecticidal Crystal Protein. Ph.D. Dissertation, Huazhong Agricultural University, Wuhan, China, 2015. (In Chinese with English Abstract). [Google Scholar]
- Tan, F.R.; Zhu, J.; Tang, J.; Tang, X.M.; Wang, S.Q.; Zheng, A.P.; Li, P. Cloning and characterization of two novel crystal protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28. Curr. Microbiol. 2009, 58, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, H.; Zhao, S.; Huang, J.; Yang, Y.; Tabashnik, B.E.; Wu, Y. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLOS Pathog. 2020, 16, e1008427. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, L.H.; Guo, L.; Wang, S.L.; Wu, Q.J.; Crickmore, N.; Zhou, X.G.; Bravo, A.; Soberón, M.; Guo, Z.J.; et al. A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth. BMC Biol. 2022, 20, 33. [Google Scholar] [CrossRef]
- Guo, Z.J.; Kang, S.; Sun, D.; Gong, L.J.; Zhou, J.L.; Qin, J.Y.; Guo, L.; Zhu, L.H.; Bai, Y.; Ye, F.; et al. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nat. Commun. 2020, 11, 3003. [Google Scholar] [CrossRef]
- Guo, Z.J.; Kang, S.; Wu, Q.J.; Wang, S.L.; Crickmore, N.; Zhou, X.G.; Bravo, A.; Soberón, M.; Zhang, Y.J. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathog. 2021, 17, e1009917. [Google Scholar] [CrossRef]
- Batool, K.; Alam, I.; Jin, L.; Xu, J.; Wu, C.; Wang, J.; Huang, E.; Guan, X.; Yu, X.Q.; Zhang, L. CTLGA9 Interacts with ALP1 and APN receptors to modulate Cry11Aa toxicity in Aedes aegypti. J. Agric. Food Chem. 2019, 67, 8896–8904. [Google Scholar] [CrossRef]
- Zhao, G.H.; Liu, J.N.; Hu, X.H.; Batool, K.; Zhang, L.L. Cloning, expression, and activity of ATP binding protein in Bt toxicity modulation against Aedes aegypti. Parasites Vectors 2019, 12, 319. [Google Scholar] [CrossRef]
- Gao, M.J.; Dong, S.; Hu, X.D.; Zhang, X.; Liu, Y.; Zhong, J.F.; Lu, L.; Wang, Y.; Chen, L.; Liu, X.J. Roles of midgut cadherin from two moths in different Bt action mechanisms: Correlation among toxin binding, cellular toxicity, and synergism. J. Agric. Food Chem. 2019, 67, 13237–13246. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.J.; Xu, C.X.; Gao, M.J.; Zhang, X.; Lu, L.; Hu, X.D.; Chen, W.; Jurat-Fuentes, J.L.; Zhu, Q.; Liu, Y.; et al. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Pest. Manag. Sci. 2021, 77, 4593–4606. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liang, Y.S.; Hu, T.; Zeng, H.; Gao, R.; Wang, L.; Xiao, Y.H. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption, and degradation. Ecotoxicol. Environ. Saf. 2021, 226, 112805. [Google Scholar] [CrossRef] [PubMed]
- Tapp, H.; Stotzky, G. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol. Biochem. 1998, 30, 471–476. [Google Scholar] [CrossRef]
- Stotzky, G.; Crecchio, C. Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound on complexes of montmorillonite humic acids-Al hydroxy polymers. Soil Biol. Biochem. 2001, 33, 573–581. [Google Scholar]
- Conde, J.M.; Patino, J.M.R. The effect of enzymatic treatment of a sunflower protein isolate on the rate of adsorption at the air-water interface. J. Food Eng. 2007, 78, 1001–1009. [Google Scholar] [CrossRef]
- Helassa, N.; M’Charek, A.; Quiquampoix, H.; Noinville, S.; Déjardin, P.; Frutos, R.; Staunton, S. Effects of physicochemical interactions and microbial activity on the persistence of Cry1Aa Bt (Bacillus thuringiensis) toxin in soil. Soil Biol. Biochem. 2011, 43, 1089–1097. [Google Scholar] [CrossRef]
- Yao, Y.L.; Cui, H.R.; Lu, M.Z.; Jin, J.Q. Adsorption/desorption of Cry1Ab Crystal protein in different soils. Acta Pedol. Sin. 2007, 2, 312–317, (In Chinese with English Abstract). [Google Scholar]
- Zhou, X.Y.; Gao, J.B.; Cai, P.; Huang, Q.Y. Adsorption and Desorption of Bt toxin on three kinds of minerals. Chin. J. Appl. Ecol. 2008, 19, 1144–1148, (In Chinese with English Abstract). [Google Scholar]
- She, C.M.; Zhou, X.Y.; Zheng, C.Y.; Liu, H.F. Adsorption characteristics and bioactivity of Bt (Bacillus thuringiensis) insecticidal protein on Attapulgite. Acta Mine Ralog. Sin. 2017, 37, 67–74, (In Chinese with English Abstract). [Google Scholar]
- Zhou, X.; Li, H.; Liu, D.; Hao, J.; Liu, H.; Lu, X. Effects of toxin from Bacillus thuringiensis (Bt) on sorption of Pb (II) in red and black soils: Equilibrium and kinetics aspects. J. Hazard. Mater. 2018, 360, 172–181. [Google Scholar] [CrossRef]
- Wang, J.W.; Luo, S.M.; Feng, Y.J.; Cindy, N. Environmental fate and ecological effects of Bt toxin from transgenic Bt crops in soil. Acta Ecol. Sin. 2003, 4, 797–804, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.W.; Feng, Y.J.; Luo, S.M. Studies on spatial-temporal dynamics of insecticidal protein expression of Bt corn and its degradation in soil. Sci. Agric. Sin. 2003, 11, 1279–1286, (In Chinese with English Abstract). [Google Scholar]
- Stotzky, G. Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant. Soil. 2005, 266, 77–89. [Google Scholar] [CrossRef]
- Zhang, M.J.; Feng, M.C.; Xiao, L.J.; Song, X.Y.; Ding, G.W.; Yang, W.D. Persistence of Cry1Ac Protein from Transgenic Bt Cotton Cultivation and Residue Returning in Fields and Its Effect on Functional Diversity of Soil Microbial Communities. Pedosphere 2019, 29, 114–122. [Google Scholar] [CrossRef]
- Feng, Y.; Lin, L.; Fan, H.; Liu, Y.; Tan, F.; Shu, Y.; Wang, J. Effects of temperature, water content, and pH on degradation of Cry1Ab protein released from Bt corn straw in soil. Soil Biol. Biochem. 2011, 43, 1600–1606. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Y.; Yang, F.; Liu, Y.; Liu, B. Persistence of insecticidal Cry toxins in Bt rice residues under field conditions estimated by biological and immunological assays. Sci. Total Environ. 2019, 679, 45–51. [Google Scholar] [CrossRef]
- Zhou, L. Effects of Different Soil Conditions on the Degradation of Bt Protein. Mater’s Thesis, (In Chinese with English Abstract). Harbin Normal University, Harbin, China, 2018. [Google Scholar]
- Li, P.; Ye, S.F.; Liu, H.; Pan, A.H.; Ming, F.; Tang, X.M. Cultivation of drought-tolerant and insect-resistant rice affects soil bacterial, but not fungal, abundances and community structures. Front. Microbiol. 2018, 9, 1390. [Google Scholar] [CrossRef]
- Accinelli, C.; Koskinen, W.C.; Becker, J.M.; Sadowsky, M.J. Mineralization of the Bacillus thuringiensis Cry1Ac endotoxin in soil. J. Agric. Food Chem. 2008, 56, 1025–1028. [Google Scholar] [CrossRef]
- Saxena, D.; Flores, S.; Stotzky, G. Insecticidal toxin in root exudates from Bt corn. Nature 1999, 402, 6761. [Google Scholar] [CrossRef]
- Madliger, M.; Sander, M.; Schwarzenbach, R.P. Adsorption of transgenic insecticidal Cry1Ab protein to SiO2. 2. Patch-controlled electrostatic attraction. Environ. Sci. Technol. 2010, 44, 8870–8876. [Google Scholar] [CrossRef] [PubMed]
- Madliger, M.; Gasser, C.A.; Schwarzenbach, R.P.; Sander, M. Adsorption of transgenic insecticidal Cry1Ab protein to silica particles. Effects on transport and bioactivity. Environ. Sci. Technol. 2011, 45, 4377–4384. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P. Effect of Bt Protein on Denitrification and Microbial Diversity in Paddy Soil. Mater’s Thesis, (In Chinese with English Abstract). Huazhong Agricultural University, Wuhan, China, 2013. [Google Scholar]
- Chen, Y.J.; Pan, L.B.; Ren, M.Y.; Li, J.S.; Guan, X.; Tao, J. Comparison of genetically modified insect-resistant maize and non-transgenic maize revealed changes in soil metabolomes but not in rhizosphere bacterial community. GM Crops Food 2022, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Ren, M.Y.; Guan, X.; Zhu, W.J.; Shen, Q. Influence of insect-resistant transgenic Bt cotton on Bt protein residue and available nutrient contents in rhizosphere soil. Agric. Res. Arid. Areas 2019, 37, 123–128, (In Chinese with English Abstract). [Google Scholar]
- Yu, X. Effects of Transgenic Bt Gene Rice Denitrification and Microbial Diversity Straw on in Paddy Soil. Mater’s Thesis, (In Chinese with English Abstract). Huazhong Agricultural University, Wuhan, China, 2012. [Google Scholar]
- Zhang, F.L.; Yin, Q.; Mao, J.F.; Guo, L.A.; Lei, S.R.; Liu, W.J.; Luo, P.; Wang, D.; Song, J.; Yang, X.F. Effects of Bacillus thuringiensis transgenic cotton straw returning to field on soil fertility. Chin. J. Eco-Agric. 2020, 28, 734–744. [Google Scholar]
- Teng, Y.; Huang, C.Y. Ecological effect of heavy metals on microbes and research advances on the mechanisms of bioremediation. Soil Environ. Sci. 2002, 11, 85–89, (In Chinese with English Abstract). [Google Scholar]
- Cao, R.; Wu, F.Z.; Yang, W.Q.; Xu, Z.F.; Tan, B.; Wang, B.; Li, J.; Chang, C.H. Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chin. J. Appl. Ecol. 2016, 27, 1257–1264, (In Chinese with English Abstract). [Google Scholar]
- Li, P.; Wu, G.G.; Li, Y.J.; Hu, C.; Ge, L.; Zheng, X.Q.; Zhang, J.Q.; Chen, J.; Zhang, H.L.; Bai, N.L.; et al. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability. Geoderma 2022, 413, 115745. [Google Scholar] [CrossRef]
- Li, Z.L.; Bu, N.S.; Chen, X.P.; Cui, J.; Xiao, M.Q.; Song, Z.P.; Nie, M.; Fang, C.M. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities. Ecotoxicol. Environ. Saf. 2018, 152, 33–41. [Google Scholar]
- Guan, Z.J.; Wei, W.; Stewart, C.N.J.; Tang, Z.X. Effects of transgenic oilseed rape harboring the Cry1Ac gene on microbial communities in the rhizosphere soil. Eur. J. Soil Biol. 2021, 103, 103277. [Google Scholar] [CrossRef]
- Jan, F.; Dana, E.; Monika, H.; Frantisek, K. The Effect of Bt-corn on Soil Invertebrates, Soil Microbial Community and Decomposition Rates of Corn Post-Harvest Residues Under Field and Laboratory Conditions. J. Sustain. Agr. 2008, 32, 645–655. [Google Scholar]
- Hong, X.; Han, C.; Kong, F.; Zhou, F.W.; Wu, S.S.; Zhong, W.H.; Liu, B. Effects of Insect-resistant and Herbicide-tolerant Transgenic Maize on Rhizospheric Bacterial and Fungal Communities. J. Ecolo. Rural. Environ. 2020, 36, 358–366, (In Chinese with English Abstract). [Google Scholar]
- Wei, M.; Tan, F.R.; Hong, Z.; Cheng, K.; Xiao, W.; Ling, X.; Wang, J.; Kai, Z.; Tang, X.M. Impact of Bt-transgenic rice (SHK601) on soil ecosystems in the rhizosphere during crop development. Plant. Soil Environ. 2012, 58, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Xue, Y.; Shi, J.L.; Pan, A.H.; Tang, X.M.; Ming, F. The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties. Microbiome 2018, 6, 184. [Google Scholar] [CrossRef]
- Li, X.G.; Liu, B.; Cui, J.J.; Liu, D.F.; Ding, S.; Ben, G.; Luo, J.Y.; Fang, Z.X.; Cao, W.; Han, Z.M. No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant Soil 2011, 339, 247–257. [Google Scholar] [CrossRef]
- Qi, X.M.; Liu, B.; Song, Q.X.; Zou, B.J.; Bu, Y.; Wu, H.P.; Ding, L.; Zhou, G.H. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons. Front. Plant Sci. 2016, 7, 1023. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.C.; Dai, R.B.; Ruan, Y.; Ren, S.C.; Liu, M.Q.; Guo, S.W.; Ling, N.; Shen, Q.R. Probing active microbes involved in Bt-containing rice straw decomposition. Appl. Microbiol. Biot. 2018, 102, 10273–10284. [Google Scholar] [CrossRef]
- Zuo, L.H.; Yang, R.L.; Zhen, Z.X.; Liu, J.X.; Huang, L.S.; Yang, M.S. A 5-year field study showed no apparent effect of the Bt transgenic poplar on the arthropod community and soil bacterial diversity. Sci. Rep. 2018, 8, 1956. [Google Scholar] [CrossRef]
- Wu, N.; Shi, W.C.; Liu, W.W.; Gao, Z.; Han, L.Z.; Wang, X.F. Differential impact of Bt-transgenic rice plantings on bacterial community in three niches over consecutive years. Ecotoxicol. Environ. Saf. 2021, 223, 112569. [Google Scholar] [CrossRef]
- Wang, J.; Chapman, S.J.; Ye, Q.; Yao, H. Limited effect of planting transgenic rice on the soil microbiome studied by continuous 13CO2 labeling combined with high-throughput sequencing. Appl. Microbiol. Biotechnol. 2019, 103, 4217–4227. [Google Scholar] [CrossRef]
- Fan, C.; Wu, F.; Dong, J.; Wang, B.; Yin, J.; Song, X. No impact of transgenic cry1Ie maize on the diversity, abundance and composition of soil fauna in a 2-year field trial. Sci. Rep. 2019, 9, 10333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.J.; Xie, M.; Wu, G.; Peng, D.L.; Yu, W.B. A 3-year field investigation of impacts of Monsanto’s transgenic Bt-cotton NC 33B on rhizosphere microbial communities in northern China. Appl. Soil Ecol. 2015, 89, 18–24. [Google Scholar] [CrossRef]
- Li, Z.L.; Bu, N.S.; Cui, J.; Chen, X.P.; Xiao, M.Q.; Wang, F.; Song, Z.P.; Fang, C.M. Effects of long-term cultivation of transgenic Bt rice (Kefeng-6) on soil microbial functioning and C cycling. Sci. Rep. 2017, 7, 4647. [Google Scholar]
- Lin, X.G.; Hu, J.L. Scientific connotation and ecological service function of soil microbial diversity. Acta Pedol. Sin. 2008, 45, 9, (In Chinese with English Abstract). [Google Scholar]
- Escalas, A.; Hale, L.; Voordeckers, J.W.; Yang, Y.F.; Firestone, M.K.; Alvarez-Cohen, L.; Zhou, J.Z. Microbial functional diversity: From concepts to applications. Nat. Ecol. Evol. 2019, 9, 12000–12016. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, A.; Ahmad, A.; Shahid, I.B.; Salisu, S.A.; Mukhtar, A.; Abdul, Q.R. Effects of Cry toxins on non-target soil bacteria during a 2-year follow up study. Span. J. Agric. Res. 2019, 17, e0303. [Google Scholar] [CrossRef]
- Wu, W.X.; Ye, Q.F.; Min, H.; Duan, X.J.; Jin, W.M. Bt transgenic rice straw affects the culturable microbiota and dehydrogenase activity in flooded soil. Soil Biol. Biochem. 2004, 36, 289–295. [Google Scholar]
- Liu, W.; Lu, H.H.; Wu, W.X.; Wei, Q.K.; Chen, Y.X.; Thies, J.E. Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol. Biochem. 2008, 40, 475–486. [Google Scholar] [CrossRef]
- Liang, J.G.; Xin, L.T.; Luan, Y.; Song, X.Y.; Zhang, Z.G. Effect of Cry1Ie Bt Maize on Carbon Source Metabolism of Rhizosphere Microorganisms. J. Agr. Sci. Tech. 2019, 21, 104–110, (In Chinese with English Abstract). [Google Scholar]
- Luan, Y. Effects of Transgenic BT-Maize with Cry1Ab-Ma Gene on the Microbial Community Structure and Functional Diversity of Rhizosphere Soil. Mater’s Thesis, Nanjing Agricultural University, Nanjing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Xin, L.T. Effect of Transgenic Bt-Maize with Cry1Ie Gene on the Structure and Functional Diversity of Rhizosphere Microbial Communities. Mater’s Thesis, Nanjing Agricultural University, Nanjing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Li, Z.L.; Cui, J.; Mi, Z.R.; Tian, D.S.; Wang, J.S.; Ma, Z.L.; Wang, B.X.; Chen, H.Y.H.; Niu, S.L. Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops—A global meta-analysis. Sci. Total Environ. 2018, 651, 1830–1838. [Google Scholar] [CrossRef]
- Valldor, P.; Graff, R.; Dockhorn, S.; Martens, R.; Tebbe, C.C. Production of the 14C-labeled insecticidal protein Cry1Ab for soil metabolic studies using a recombinant Escherichia coli in small-scale batch fermentations. Appl. Microbiol. Biot. 2012, 96, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Chen, Q.S. Recently photosynthesized carbon allocation and turnover: A minor review of the literature. Acta Phytoecol. Sin. 2005, 29, 845–850, (In Chinese with English Abstract). [Google Scholar]
- Ouyang, Y.; Sun, X.H.; Yan, J.; Chu, J.F.; Yan, C.Y. Progress in relative quantitative analysis of biological molecules with stable isotope labeling. Chin. Sci. Bull. 2013, 58, 2762–2778, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zheng, Y.; Jia, Z.J. Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils. Acta Microbiol. Sin. 2013, 53, 173–184, (In Chinese with English Abstract). [Google Scholar]
- Quan, Z.X. Seeking of “missed” microorganisms. Microbiol. China 2013, 40, 34–43, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.; Huang, M.; Zhang, W.; Gardea-Torresdey, J.L.; White, J.C.; Ji, R.; Zhao, L. Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils. Environ. Sci. Technol. 2020, 54, 3334–3342. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, C.; Ge, L.; Hu, C.; Wu, G.; Sun, Y.; Song, L.; Wu, X.; Pan, A.; Xu, Q.; et al. Environmental Behaviors of Bacillus thuringiensis (Bt) Insecticidal Proteins and Their Effects on Microbial Ecology. Plants 2022, 11, 1212. https://doi.org/10.3390/plants11091212
Li Y, Wang C, Ge L, Hu C, Wu G, Sun Y, Song L, Wu X, Pan A, Xu Q, et al. Environmental Behaviors of Bacillus thuringiensis (Bt) Insecticidal Proteins and Their Effects on Microbial Ecology. Plants. 2022; 11(9):1212. https://doi.org/10.3390/plants11091212
Chicago/Turabian StyleLi, Yujie, Cui Wang, Lei Ge, Cong Hu, Guogan Wu, Yu Sun, Lili Song, Xiao Wu, Aihu Pan, Qinqing Xu, and et al. 2022. "Environmental Behaviors of Bacillus thuringiensis (Bt) Insecticidal Proteins and Their Effects on Microbial Ecology" Plants 11, no. 9: 1212. https://doi.org/10.3390/plants11091212
APA StyleLi, Y., Wang, C., Ge, L., Hu, C., Wu, G., Sun, Y., Song, L., Wu, X., Pan, A., Xu, Q., Shi, J., Liang, J., & Li, P. (2022). Environmental Behaviors of Bacillus thuringiensis (Bt) Insecticidal Proteins and Their Effects on Microbial Ecology. Plants, 11(9), 1212. https://doi.org/10.3390/plants11091212