Genetic Variability for Micronutrient Content and Tuber Yield Traits among Biofortified Potato (Solanum tuberosum L.) Clones in Ethiopia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Result
2.1. Analysis of Variance
2.2. Phenotypic (PCV) and Genotypic (GVC) Coefficients of Variation
2.3. Broad-Sense Heritability and Genetic Advance
2.4. Phenotypic and Genotypic Correlation of Iron (Fe) and Zinc (Zn) with Other Traits
2.5. Genotypic Path Coefficient Analysis of Iron (Fe) and Zinc (Zn) Concentration with Other Traits
2.6. Principal Component Analysis (PCA)
2.7. Cluster Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Site, Materials, and Design
4.2. Data Collection
4.3. Micronutrient Analysis
Sampling and Iron and Zinc Analysis
4.4. Data Analysis
4.4.1. Analysis of Variance
4.4.2. Phenotypic and Genotypic Variance
4.4.3. Heritability
4.4.4. Expected Genetic Advance under Selection (GA) and as Percent of Mean (GAM)
4.4.5. Phenotypic and Genotypic Correlation Coefficient
4.4.6. Path Coefficient Analysis
4.4.7. Principal Component Analysis (PCA)
4.4.8. Genetic Distance and Clustering
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devaux, A.; Kroman, P.; Ortiz, O. Potatoes for Sustainable Global Food Security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Hancock, R.D.; Morris, W.L.; Ducreux, L.J.; Morris, J.A.; Usman, M.; Verrall, S.R.; Taylor, M.A. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 2014, 37, 439–450. [Google Scholar] [CrossRef]
- von Grebmer, K.; Saltzman, A.; Birol, E.; Wiesmann, D.; Prasai, N.; Yin, S.; Yohannes, Y.; Menon, P. Global Hunger Index: Armed Conflict and the Challenge of Hidden Hunger; International Food Policy Research and Concern Worldwide: Bonn, Germany, 2014; p. 51. [Google Scholar] [CrossRef]
- Ritchie, H.; Reay, D.S.; Higgins, P. Quantifying, projecting, and addressing India’s hidden hunger. Front. Sustain. Food Syst. 2018, 2, 11. [Google Scholar] [CrossRef]
- Muthayya, S.; Rah, J.H.; Sugimoto, J.D.; Roos, F.F.; Kraemer, K.; Black, R.E. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 2013, 8, e67860. [Google Scholar] [CrossRef]
- EPHI. Ethiopian National Micronutrient Survey Report; Ethiopian Public Health Institute, Ministry of Health: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Melash, A.A.; Mengistu, D.K.; Aberra, D.A. Linking agriculture with health through genetic and agronomic biofortification. Agri. Sci. 2016, 7, 295–307. [Google Scholar] [CrossRef]
- Asfaw, A.; Woldegiorgis, G.; Kolech, S.A.; Mulugeta, G.; Mulugeta, D.; Ngugi, A.; Bonierbale, M. Micro-nutrient composition and end-user acceptable quality in potato in Ethiopia. Acta Agric.Scand. Sect. B-Soil Plant Sci. 2018, 68, 596–607. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Van Koesveld, M.J.; Schepers, H.T.A.M.; Wijnands, J.H.M.; Wustman, R.; Zhang, X.X. Potato Prospects for Ethiopia: On the Road to Value Addition; (No. 528); Wageningen UR: Wageningen, The Netherlands, 2012. [Google Scholar]
- Jongstra, R.; Mwangi, M.N.; Burgos, G.; Zeder, C.; Low, J.W.; Mzembe, G.; Wegmüller, R. Iron absorption from iron-biofortified sweet potato is higher than regular sweet potato in Malawian women while iron absorption from regular and iron-biofortified potatoes is high in Peruvian women. J. Nutr. 2020, 150, 3094–3102. [Google Scholar] [CrossRef]
- Burgos, G.; Liria, R.; Zeder, C.; Kroon, P.A.; Hareau, G.; Penny, M.; Dainty, J.; Al-Jaibaji, O.; Boy, E.; Mithen, R.; et al. Total Iron Absorbed from Iron-Biofortified Potatoes Is Higher than that from Nonbiofortified Potatoes: A Randomized Trial Using Stable Iron Isotopes in Women from the Peruvian Highlands. J. Nutr. 2023, 153, 1710–1717. [Google Scholar] [CrossRef]
- US Department of Agriculture. USDA National Nutrient Database for Standard Reference; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2007.
- Phillippy, B.Q.; Lin, M.; Rasco, B. Analysis of phytate in raw and cooked potatoes. J. Food Compos. Anal. 2004, 17, 217–226. [Google Scholar] [CrossRef]
- Smith, O. Potatoes: Production, storing, processing. Potatoes: Production, Storing, Processing; The Avil Publishing Company, Inc.: Westport, CT, USA; London, UK, 1968; pp. 16–22. [Google Scholar]
- Anderson, K.A.; Magnuson, B.A.; Tschirgi, M.L.; Smith, B. Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. J. Agric. Food Chem. 1999, 47, 1568–1575. [Google Scholar] [CrossRef]
- Andre, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; del Rosario Herrera, M.; Hoffmann, L.; Evers, D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef]
- Ekin, Z. Some analytical quality characteristics for evaluating the utilization and consumption of potato (Solanum tuberosum L.) tubers. Afr. J. Biotechnol. 2011, 10, 6001–6010. [Google Scholar] [CrossRef]
- Tesfaye, A.; Shermarl, W.; Thunya, T.; Oranuch, L. Variation of Mineral Concentrations among Different Potato Varieties Grown at Two Distinct Locations in Ethiopia. Agric. Nat. Resour. 2012, 46, 837–850. [Google Scholar]
- Bradshaw, J.E.; Bonierbale, M. Potatoes. In Root and Tuber Crops. Handbook of Plant Breeding; Bradshaw, J., Ed.; Springer: New York, NY, USA, 2010; Volume 7, pp. 1–52. [Google Scholar] [CrossRef]
- Arslanoglu, F.; Aytac, S.; Oner, K. Morphological characterization of the local potato (Solanum tuberosum L.) genotypes collected from the Eastern Black Sea region of Turkey. Afr. J. Biotechnol. 2011, 10, 922–932. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Morote, M.; Stangoulis, J.; Bonierbale, M. Iron and zinc concentration of native Andean potato cultivars from a human nutrition perspective. J. Sci. Food Agric. 2007, 87, 668–675. [Google Scholar] [CrossRef]
- Brown, C.R.; Haynes, K.G.; Moore, M.; Pavek, M.J.; Hane, D.C.; Love, S.L.; Miller, J.C. Stability and broad-sense heritability of mineral content in potato: Iron. Am. J. Potato Res. 2010, 87, 390–396. [Google Scholar] [CrossRef]
- Welch, R.M. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J. Nutr. 2002, 132, 495S–499S. [Google Scholar] [CrossRef]
- Dabholkar, A.R. Elements of Biometrical Genetics; Concept Publishing Company: New Delhi, India, 1992; p. 431. [Google Scholar]
- Sharma, J.R. Statistical and Biometrical Techniques in Plant Breeding; New Age International: New York, NY, USA, 2006. [Google Scholar]
- Nadarajan, N.; Gunasekaran, M. Quantitative Genetics and Biometrical Techniques in Plant Breeding; Kalyani Publishers: New Delhi, Indai, 2005; pp. 1–258. [Google Scholar]
- Bhandari, H.R.; Bhanu, A.N.; Srivastava, K.; Singh, M.N.; Shreya, H.A. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res. 2017, 7, 279–286. [Google Scholar] [CrossRef]
- Gevrekçi, Y.; Yeğenoğlu, E.D.; Altun, İ.; Berberoğlu, E. A sample of using cluster analysis in animal data. In Proceedings of the 4th National Animal Science Congress, Isparta, Turkey, 1–3 September 2004; pp. 360–366. [Google Scholar]
- Tekalign, T.; Hammes, P.S. Growth and productivity of potato as influenced by cultivar and reproductive growth: II. Growth analysis, tuber yield and quality. Sci. Hortic. 2005, 105, 29–44. [Google Scholar] [CrossRef]
- Brown, C.R.; Haynes, K.G.; Moore, M.; Pavek, M.J.; Hane, D.C.; Love, S.L.; Miller, J.C. Stability and broad-sense heritability of mineral content in potato: Zinc. Am. J. Potato Res. 2011, 88, 238–244. [Google Scholar] [CrossRef]
- Deshmukh, S.N.; Basu, M.S.; Reddy, P.S. Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian J. Agric. Sci. 1986, 56, 816–821. [Google Scholar]
- Amoros, W.; Salas, E.; Hualla, V.; Burgos, G.; De Boeck, B.; Eyzaguirre, R.; Bonierbale, M. Heritability and genetic gains for iron and zinc concentration in diploid potato. Crop Sci. 2020, 60, 1884–1896. [Google Scholar] [CrossRef]
- Seid, E.; Mohammed, W.; Abebe, T. Genetic Diversity in Potato (Solanum tuberosum L.) Genotypes for Yield and Processing Attributes at Holetta, Central Highlands of Ethiopia. East Afr. J. Agric. Biotechnol. 2020, 2, 34–50. [Google Scholar] [CrossRef]
- Regassa, D.; Basavaraj, N. Genetic variability studies in potato (Solanum tuberosum L.). Karnataka J. Agric. Sci. 2005, 18, 87–90. [Google Scholar]
- Addisu, F.Y.P.; Habtamu, Z. Genetic variability and association between agronomic characters in some potato (Solanum tuberosum L.) genotypes in SNNPRS, Ethiopia. Int. J. Biodivers. Conserv. 2013, 5, 523–528. [Google Scholar] [CrossRef]
- Tripura, A.; Das, A.; Das, B.; Priya, B.; Sarkar, K.K. Genetic studies of variability, character association and path analysis of yield and its component traits in potato (Solanum tuberosum L.). J. Crop Weed 2016, 12, 56–63. [Google Scholar]
- Panigrahi, K.K.; Pradhan, J.; Panigrahi, P.; Sarkar, K.K. Genetic variability, character association and path coefficient analysis of yield attributes for medium and late maturing potato cultivars. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2558–2566. [Google Scholar] [CrossRef]
- Burton, G.W.; Devane, D.E. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agron. J. 1953, 45, 478–481. [Google Scholar] [CrossRef]
- Johnson, H.W.; Robinson, H.F.; Comstock, R.E. Estimates of genetic and environmental variability in soybeans. Agron. J. 1955, 47, 314–318. [Google Scholar] [CrossRef]
- Lenka, D.; Mishra, B. Path coefficient analysis of yield in rice varieties. Indian J. Agric. Sci. 1973, 43, 376–379. [Google Scholar]
- Rahman, M.M.; Amin, M.N.; Rashid, M.H.; Islam, M.M.; Kundu, B.C.; Uddin, M.M.; Rahaman, E.S. Genetic variation among biofortified and late blight tolerant potato (Solanum tuberosum L.)(minituber) production in Bangladesh. Plant Sci. Today 2021, 8, 647–654. [Google Scholar] [CrossRef]
- Waithaka, M.M.; Thornton, P.K.; Shepherd, K.D.; Ndiwa, N.N. Factors affecting the use of fertilizers and manure by smallholders: The case of Vihiga, western Kenya. Nutr. Cycl. Agro-Ecosyst. 2007, 78, 211–224. [Google Scholar] [CrossRef]
- White, P.J.; Brown, P. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef]
- Wassu, M. Specific gravity, dry matter content, and starch content of potato (Solanum tuberosum L.) varieties cultivated in Eastern Ethiopia. East Afr. J. Sci. 2016, 10, 87–102. [Google Scholar]
- Wassu, M. Genotype x environment interaction, stability and co heritability of tuber internal quality traits in potato (Solanum tuberosum L.) cultivars in Ethiopia. Afr. J. FoodAgric. Nutr. Dev. 2017, 17, 12930–12952. [Google Scholar]
- Tessema, L.; Mohammed, W.; Abebe, T. Evaluation of Potato (Solanum tuberosum L.) Varieties for Yield and Some Agronomic Traits. Open Agric. 2020, 5, 63–74. [Google Scholar] [CrossRef]
- Gould, W. Specific gravity-its measurement and use. In Chipping Potato Handbook; The Snack Food Association: Alexandria, VA, USA, 1995; pp. 18–21. [Google Scholar]
- Porras, E.; Burgos, G.; Sosa, P.; zum Felde, T. Procedures for Sampling and Sample Preparation of Sweet Potato Roots and Potato Tubers for Mineral Analysis; International Potato Center: Lima, Peru, 2014. [Google Scholar]
- Sosa, P.; Guild, G.; Burgos, G.; Bonierbale, M.; zum Felde, T. Potential and application of X-ray fluorescence spectrometry to estimate iron and zinc concentrations in potato. J. Food Compos. Anal. 2018, 70, 22–27. [Google Scholar] [CrossRef]
- SAS Institute. SAS System for Windows; SAS Institute: Cary, NC, USA, 2010. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalayani Publishers: New Delhi, India, 1996; p. 318. [Google Scholar]
- Falconer, D.S.; Mackay, T.F.C. An Introduction to Quantitative Genetic, 4th ed.; Hall: London, UK, 1996. [Google Scholar]
- Robertson, A. Experimental design in the evaluation of genetic parameters. Biometrics 1959, 15, 219–226. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K.A. Correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- Kumar, V.; Kato, N.; Urabe, Y.; Takahashi, A.; Muroyama, R.; Hosono, N.; Matsuda, K. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat. Genet. 2011, 43, 455–458. [Google Scholar] [CrossRef]
- Sneath, P.H.; Sokal, R.R. Numerical Taxonomy. The Principles and Practice of Numerical Classification; W H Freeman & Co.: New York, NY, USA, 1973. [Google Scholar]
Source of Variation | DF | Traits | |||||||
---|---|---|---|---|---|---|---|---|---|
AvTN | AvTW (g/tuber) | TY (kg/m2) | DMC (%) | SG (g cm−3) | TSC (g/100 g) | Fe (mg kg−1) | Zn (mg kg−1) | ||
Replication | 2 | 11.33 | 84.35 | 0.36 | 1.41 | 0.00003 | 1.13 | 98.75 | 59 |
Block | 24 | 4.37 | 67.82 | 0.12 | 1.73 | 0.00004 | 1.37 | 10.18 | 1.95 |
Genotype | 44 | 33.23 ** | 165.24 ** | 0.73 ** | 5.84 ** | 0.00012 ** | 4.63 ** | 20.69 ** | 13.48 ** |
Error | 64 | 4.39 | 43.73 | 0.07 | 0.96 | 0.00002 | 0.76 | 6.86 | 2.06 |
Mean | 8.36 | 26.94 | 1.04 | 26.25 | 1.105 | 19.39 | 20.59 | 14.6 | |
CV (%) | 25.08 | 24.55 | 24.46 | 3.74 | 0.41 | 4.51 | 12.72 | 9.84 |
Genotypes | AvTN | AvTW (g/tuber) | TY (kg/m2) | DMC (%) | SG (g cm−3) | STC (g/100 g) | Fe (mg kg −1) | Zn (mg kg −1) |
---|---|---|---|---|---|---|---|---|
CIP312507.311 | 6.53 g–l | 28.26 a–e | 0.81 f–o | 27.09 ab | 1.109 ab | 20.15 ab | 22.03 a–e | 14.73 b–j |
CIP312507.312 | 6.66 g–l | 21.75 b–e | 0.76 g–o | 27.31 a | 1.110 a | 20.34 a | 19.92 a–e | 14.21 d–j |
CIP312527.026 | 3.63 j–l | 18.12 c–e | 0.29 no | 25.22 a–e | 1.101 a–e | 18.48 a–e | 24.44 a–d | 15.38 b–i |
CIP312595.053 | 2.67 l | 28.38 a–e | 0.36 m–o | 25.97 a–d | 1.104 a–d | 19.14 a–d | 19.74 a–e | 13.05 e–j |
CIP312609.247 | 8.34 c–l | 34.17 a–e | 1.60 a–g | 25.11 a–e | 1.100 a–e | 18.38 a–e | 17.71 a–e | 12.93 e–j |
CIP312621.069 | 5.33 h–l | 19.60 c–e | 0.53 k–o | 25.40 a–e | 1.101 a–e | 18.64 a–e | 25.40 ab | 20.59 a |
CIP312621.097 | 7.21 e–l | 30.43 a–e | 0.96 e–o | 27.54 a | 1.111 a | 20.54 a | 20.77 a–e | 14.49 c–j |
CIP312637.069 | 6.98 f–l | 34.04 a–e | 1.03 e–o | 27.35 a | 1.110 a | 20.37 a | 20.41 a–e | 13.41 e–j |
CIP312682.005 | 6.93 f–l | 18.57 c–e | 0.51 l–o | 26.81 a–c | 1.108 a–c | 19.89 a–c | 22.66 a–e | 16.36 a–g |
CIP312686.019 | 5.21 h–l | 15.04 de | 0.42 l–o | 26.97 a–c | 1.109 a–c | 20.04 a–c | 22.30 a–e | 11.32 h–j |
CIP312686.050 | 4.50 i–l | 23.87 a–e | 0.48 l–o | 26.12 a–d | 1.105 a–d | 19.28 a–d | 18.40 a–e | 16.83 a–f |
CIP312718.005 | 4.37 i–l | 31.35 a–e | 0.61 i–o | 22.15 e | 1.086 e | 15.74 e | 24.03 a–d | 18.78 a–d |
CIP312721.004 | 4.69 i–l | 30.83 a–e | 0.67 h–o | 23.18 de | 1.091 de | 16.65 de | 24.99 a–c | 15.24 b–i |
CIP312721.029 | 8.74 b–l | 33.03 a–e | 1.67 a–f | 26.99 a–c | 1.109 a–c | 20.05 a–c | 16.74 b–e | 12.78 f–j |
CIP312721.038 | 5.02 i–l | 22.50 a–e | 0.43 l–o | 22.15 e | 1.087 e | 15.74 e | 24.78 a–d | 14.79 b–j |
CIP312721.212 | 3.86 j–l | 18.30 c–e | 0.30 no | 25.48 a–d | 1.102 a–d | 18.71 a–d | 22.61 a–e | 16.94 a–f |
CIP312721.245 | 5.99 g–l | 26.28 a–e | 0.76 g–o | 27.12 ab | 1.109 ab | 20.17 ab | 23.95 a–d | 17.74 a–e |
CIP312721.286 | 7.42 d–l | 35.18 a–d | 1.15 d–n | 27.61 a | 1.112 a | 20.61 a | 19.47 a–e | 12.63 f–j |
CIP312725.001 | 14.16 a–e | 32.64 a–e | 2.13 ab | 27.66 a | 1.112 a | 20.65 a | 17.67 a–e | 12.49 f–j |
CIP312725.024 | 13.85 a–f | 14.33 de | 1.01 e–o | 26.86 a–c | 1.108 a–c | 19.94 a–c | 19.90 a–e | 13.35 e–j |
CIP312725.036 | 6.07 g–l | 20.42 b–e | 0.54 j–o | 24.84 a–e | 1.099 a–e | 18.14 a–e | 21.70 a–e | 14.85 b–j |
CIP312725.041 | 11.03 a–i | 31.32 a–e | 1.52 a–h | 26.53 a–c | 1.107 a–c | 19.64 a–c | 17.62 a–e | 13.13 e–j |
CIP312725.047 | 15.68 ab | 18.25 c–e | 1.28 b–l | 26.92 a–c | 1.108 a–c | 19.99 a–c | 21.52 a–e | 13.71 e–j |
CIP312725.048 | 12.13 a–h | 33.67 a–e | 1.82 a–e | 27.23 ab | 1.110 a | 20.27 ab | 19.39 a–e | 14.64 b–j |
CIP312725.052 | 14.36 a–d | 18.49 c–e | 1.06 d–o | 27.93 a | 1.113 a | 20.89 a | 18.23 a–e | 12.38 f–j |
CIP312725.055 | 8.54 c–l | 28.41 a–e | 1.44 a–i | 27.24 a | 1.110 a | 20.27 a | 19.83 a–e | 15.73 a–i |
CIP312725.057 | 11.14 a–i | 25.08 a–e | 1.26 c–l | 23.92 b–e | 1.095 b–e | 17.32 b–e | 22.45 a–e | 12.44 f–j |
CIP312725.062 | 5.88 g–l | 30.06 a–e | 0.78 f–o | 26.34 a–d | 1.106 a–d | 19.47 a–d | 21.81 a–e | 14.25 d–j |
CIP312725.067 | 10.55 a–j | 15.94 de | 0.73 h–o | 24.94 a–e | 1.099 a–e | 18.22 a–e | 24.65 a–d | 17.10 a–f |
CIP312725.110 | 9.41 a–l | 32.47 a–e | 1.69 a–e | 27.78 a | 1.112 a | 20.75 a | 21.60 a–e | 14.99 b–j |
CIP312725.128 | 12.17 a–h | 32.44 a–e | 1.76 a–e | 27.53 a | 1.111 a | 20.53 a | 19.47 a–e | 11.73 g–j |
CIP312731.004 | 16.19 a | 28.47 a–e | 2.03 a–c | 26.06 a–d | 1.104 a–d | 19.22 a–d | 16.07 de | 11.42 h–j |
CIP312735.062 | 9.86 a–k | 42.79 ab | 2.26 a | 26.52 a–c | 1.107 a–c | 19.63 a–c | 16.53 c–e | 11.14 ij |
CIP312735.077 | 11.03 a–i | 30.50 a–e | 1.49 a–h | 25.83 a–d | 1.103 a–d | 19.02 a–d | 18.94 a–e | 14.75 b–j |
CIP312735.100 | 6.42 g–l | 26.12 a–e | 0.74 g–o | 26.42 a–d | 1.106 a–c | 19.54 a–d | 22.36 a–e | 16.13 a–h |
CIP312735.105 | 12.58 a–g | 12.55 e | 0.71 h–o | 27.22 ab | 1.109 ab | 20.25 ab | 19.77 a–e | 13.93 d–j |
CIP312735.114 | 7.07 f–l | 29.57 a–e | 1.06 d–o | 27.52 a | 1.111 a | 20.52 a | 23.23 a–e | 15.78 a–i |
CIP312735.253 | 14.56 a–c | 20.86 b–e | 1.38 b–k | 27.65 a | 1.112 a | 20.64 a | 16.43 c–e | 11.25 ij |
CIP312751.028 | 7.65 c–l | 39.84 a–c | 1.40 a–j | 27.90 a | 1.113 a | 20.86 a | 18.26 a–e | 14.40 c–j |
CIP312763.441 | 8.72 b–l | 18.93 c–e | 0.73 h–o | 24.84 a–e | 1.099 a–e | 18.14 a–e | 17.69 a–e | 13.91 e–j |
CIP312764.013 | 10.33 a–k | 30.69 a–e | 1.20 c–m | 26.90 a–c | 1.108 a–c | 19.98 a–c | 17.49 a–e | 16.63 a–f |
CIP312767.014 | 5.58 g–l | 25.32 a–e | 0.66 h–o | 25.39 a–e | 1.101 a–e | 18.63 a–e | 26.07 a | 19.14 a–c |
CIP312871.043 | 3.31 kl | 18.80 c–e | 0.28 o | 27.24 ab | 1.110 ab | 20.27 ab | 20.79 a–e | 15.88 a–i |
CIP395017.242 | 4.23 i–l | 39.94 a–c | 0.75 g–o | 23.71 c–e | 1.094 c–e | 17.13 c–e | 21.80 a–e | 19.48 ab |
Gudanie | 9.40 a–l | 44.7 a | 1.91 a–d | 26.59 a–c | 1.107 a–c | 19.69 a–c | 14.68 e | 10.22 j |
Range | 2.67–16.19 | 12.55–44.70 | 0.28–2.26 | 22.15–27.93 | 1.086–1.113 | 15.74–20.89 | 14.68–26.07 | 10.22–20.59 |
Mean | 8.35 | 26.94 | 1.04 | 26.25 | 1.105 | 19.39 | 20.59 | 14.6 |
Traits | σ2g | σ2p | σ2e | GCV | PCV | H2% | GA (5%) | GAM% | PCV-GCV |
---|---|---|---|---|---|---|---|---|---|
AvTN | 9.61 | 14.01 | 4.39 | 37.11 | 44.79 | 68.64 | 5.30 | 63.43 | 7.68 |
AvTW (g/tuber) | 40.50 | 84.23 | 43.73 | 23.62 | 34.07 | 48.09 | 9.10 | 33.79 | 10.44 |
TY (kg/m2) | 0.22 | 0.29 | 0.07 | 45.15 | 51.35 | 77.31 | 0.85 | 81.89 | 6.20 |
DMC (%) | 1.62 | 2.59 | 0.96 | 4.86 | 6.13 | 62.81 | 2.08 | 7.94 | 1.27 |
SG (g cm−3) | 0.00003 | 0.00005 | 0.00002 | 0.53 | 0.67 | 62.61 | 0.01 | 0.86 | 0.14 |
TSC (g/100 g) | 1.29 | 2.05 | 0.76 | 5.86 | 7.39 | 62.80 | 1.86 | 9.57 | 1.53 |
Fe (mg kg−1) | 4.61 | 11.47 | 6.86 | 10.43 | 16.45 | 40.20 | 2.81 | 13.64 | 6.02 |
Zn (mg kg−1) | 3.81 | 5.87 | 2.06 | 13.36 | 16.59 | 64.86 | 3.24 | 22.20 | 3.23 |
Variable | AvTN | AvTW | TY | DMC | SG | TSC | Fe | Zn |
---|---|---|---|---|---|---|---|---|
Average tuber number | −0.02 ns | 0.71 ** | 0.39 ** | 0.38 ** | 0.39 ** | −0.54 ** | −0.53 ** | |
Average tuber weight (g/tuber) | −0.03 ns | 0.57 ** | 0.06 ns | 0.06 ns | 0.06 ns | −0.39 ** | −0.18 ns | |
Tuber Yield (kg/m2) | 0.67 ** | 0.62 ** | 0.38 * | 0.38 * | 0.38 * | −0.68 ** | −0.56 ** | |
Dry matter content (%) | 0.31 ** | 0.04 ns | 0.30 ** | 1.00 ** | 1.00 ** | −0.47 ** | −0.38 * | |
Specific gravity (g cm−3) | 0.31 ** | 0.04 ns | 0.30 ** | 1.00 ** | 1.00 ** | −0.47 ** | −0.38 * | |
Total starch content (g/100 g) | 0.31 ** | 0.037 ** | 0.30 ** | 1.00 ** | 1.00 ** | −0.47 ** | −0.38 * | |
Fe (mg kg−1) | −0.27 ** | −0.12 * | −0.39 ** | −0.36 ** | −0.37 ** | −0.36 ** | 0.68 * | |
Zn (mg kg−1) | −0.39 ** | −0.09 ns | −0.39 ** | −0.32 ** | −0.32 ** | −0.32 ** | 0.68 ** |
Variable | AvTN | AvTW | TY | DMV | Zn | rg |
---|---|---|---|---|---|---|
Average tuber number | −0.24 | 0.01 | −0.01 | −0.07 | −0.23 | −0.54 ** |
Average tuber weight (g/tuber) | 0.01 | −0.30 | 0.00 | −0.01 | −0.08 | −0.39 ** |
Tuber Yield (kg/m2) | −0.17 | −0.19 | −0.01 | −0.07 | −0.24 | −0.68 ** |
Dry matter content (%) | −0.09 | −0.02 | 0.00 | −0.19 | −0.16 | −0.47 ** |
Zinc (mg kg−1) | 0.13 | 0.05 | 0.00 | 0.07 | 0.42 | 0.68 * |
Variable | AvTN | TY | DMC | Fe | rg |
---|---|---|---|---|---|
Average tuber number | −0.20 | −0.04 | −0.01 | −0.28 | −0.53 ** |
Tuber Yield (kg/m2) | −0.14 | −0.06 | −0.01 | −0.35 | −0.56 ** |
Dry matter content (%) | −0.08 | −0.02 | −0.04 | −0.24 | −0.38 * |
Iron (mg kg−1) | 0.11 | 0.04 | 0.02 | 0.52 | 0.68 * |
Variable | PC1 | PC2 |
---|---|---|
Average tuber number | 0.32 | 0.18 |
Average tuber weight (g/tuber) | 0.15 | 0.46 |
Tuber Yield (kg/m2) | 0.36 | 0.43 |
Dry matter content (%) | 0.41 | −0.38 |
Specific gravity (g cm−3) | 0.41 | −0.38 |
Total starch content (g/100 g) | 0.41 | −0.38 |
Fe (mg kg−1) | −0.37 | −0.29 |
Zn (mg kg−1) | −0.33 | −0.24 |
Eigenvalue | 4.29 | 1.87 |
Variances (%) | 53.60 | 23.30 |
Cumulative variances (%) | 53.60 | 76.90 |
Variable | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 |
---|---|---|---|---|---|
Average tuber number | 5.81 | 4.58 | 9.81 | 14.21 | 10.54 |
Average tuber weight (g) | 23.52 | 30.72 | 28.17 | 16.93 | 34.25 |
Tuber yield (kg/m2) | 0.63 | 0.60 | 1.30 | 1.06 | 1.69 |
Dry matter content (%) | 26.40 | 22.77 | 24.94 | 27.32 | 27.08 |
Specific gravity (g cm−3) | 1.11 | 1.09 | 1.10 | 1.11 | 1.11 |
Starch content (g/100 g) | 19.53 | 16.29 | 18.23 | 20.35 | 20.13 |
Fe (mg kg−1) | 22.30 | 23.80 | 19.05 | 19.39 | 18.01 |
Zn (mg kg−1) | 15.69 | 17.07 | 13.51 | 12.93 | 13.23 |
No. | Genotypes | No. | Genotypes | No. | Genotypes |
---|---|---|---|---|---|
1 | CIP312507.311 | 16 | CIP312721.212 | 31 | CIP312725.128 |
2 | CIP312507.312 | 17 | CIP312721.245 | 32 | CIP312731.004 |
3 | CIP312527.026 | 18 | CIP312721.286 | 33 | CIP312735.062 |
4 | CIP312595.053 | 19 | CIP312725.001 | 34 | CIP312735.077 |
5 | CIP312609.247 | 20 | CIP312725.024 | 35 | CIP312735.100 |
6 | CIP312621.069 | 21 | CIP312725.036 | 36 | CIP312735.105 |
7 | CIP312621.097 | 22 | CIP312725.041 | 37 | CIP312735.114 |
8 | CIP312637.069 | 23 | CIP312725.047 | 38 | CIP312735.253 |
9 | CIP312682.005 | 24 | CIP312725.048 | 39 | CIP312751.028 |
10 | CIP312686.019 | 25 | CIP312725.052 | 40 | CIP312763.441 |
11 | CIP312686.050 | 26 | CIP312725.055 | 41 | CIP312764.013 |
12 | CIP312718.005 | 27 | CIP312725.057 | 42 | CIP312767.014 |
13 | CIP312721.004 | 28 | CIP312725.062 | 43 | CIP312871.043 |
14 | CIP312721.029 | 29 | CIP312725.067 | 44 | CIP395017.242 |
15 | CIP312721.038 | 30 | CIP312725.110 | 45 | Gudanie |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seid, E.; Tessema, L.; Abebe, T.; Solomon, A.; Chindi, A.; Hirut, B.; Negash, K.; Shunka, E.; Mogse, Z.; Burgos, G.; et al. Genetic Variability for Micronutrient Content and Tuber Yield Traits among Biofortified Potato (Solanum tuberosum L.) Clones in Ethiopia. Plants 2023, 12, 2625. https://doi.org/10.3390/plants12142625
Seid E, Tessema L, Abebe T, Solomon A, Chindi A, Hirut B, Negash K, Shunka E, Mogse Z, Burgos G, et al. Genetic Variability for Micronutrient Content and Tuber Yield Traits among Biofortified Potato (Solanum tuberosum L.) Clones in Ethiopia. Plants. 2023; 12(14):2625. https://doi.org/10.3390/plants12142625
Chicago/Turabian StyleSeid, Ebrahim, Lemma Tessema, Tesfaye Abebe, Atsede Solomon, Abebe Chindi, Betaw Hirut, Kasaye Negash, Egata Shunka, Zewditu Mogse, Gabriela Burgos, and et al. 2023. "Genetic Variability for Micronutrient Content and Tuber Yield Traits among Biofortified Potato (Solanum tuberosum L.) Clones in Ethiopia" Plants 12, no. 14: 2625. https://doi.org/10.3390/plants12142625