Ring Stripping, Ring Cutting, and Growth Regulators Promote Phase Change and Early Flowering in Pear Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.2.1. Plant Growth Regulator Treatment
2.2.2. Ring-Stripping and Ring-Cutting Treatments
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results
3.1. Effect of Plant Growth Regulators on Phase Change and Flowering
3.1.1. Effect of Plant Growth Regulators on Shoot Growth
3.1.2. Effect of Plant Growth Regulators on Bud Nutrient Content
3.1.3. Effect of Plant Growth Regulators on Bud Endogenous Hormone Content
3.1.4. Effect of Plant Growth Regulators on the Expression of Flowering-Related Genes
3.1.5. Effect of Plant Growth Regulators on Flowering
3.2. Effect of Ring Stripping and Ring Cutting on Phase Change and Flowering of Hybrid Progenies
3.2.1. Effect of Ring Stripping and Ring Cutting on Shoot Growth
3.2.2. Effect of Ring Stripping and Ring Cutting on Bud Nutrient Content
3.2.3. Effect of Ring Stripping and Ring Cutting on Bud Endogenous Hormone Content
3.2.4. Effects of Ring Stripping and Ring Cutting on the Expression of Flowering-Related Genes
3.2.5. Effect of Ring Stripping and Ring Cutting on Flowering
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atay, A.N. Deciphering morpho-agronomic determinants of the juvenile-mature phase change in apple progenies. Sci. Hortic. 2020, 259, 108847. [Google Scholar] [CrossRef]
- Yu, S.; Cao, L.; Zhou, C.M.; Zhang, T.Q.; Lian, H.; Sun, Y.; Wu, J.; Huang, J.; Wang, G.; Wang, J.W. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2013, 2, e00269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.G.; Cui, J.W.; Jin, B. Research advances of developmental changes of juvenile to adult transition in woody plants. Plant Physiol. J. 2015, 51, 1765–1774. (In Chinese) [Google Scholar]
- Gao, Y.; Yang, F.Q.; Cao, X.; Li, C.M.; Wang, Y.; Zhao, Y.B.; Zeng, G.J.; Chen, D.M.; Han, Z.H.; Zhang, X.Z. Differences in gene expression and regulation during ontogenetic phase change in apple seedlings. Plant Mol. Biol. Rep. 2014, 32, 357–371. [Google Scholar]
- Zimmerman, R.H. Session III-juvenility-juvenility and flowering of fruit trees. Acta Hortic. 1973, 34, 139–142. [Google Scholar] [CrossRef]
- Song, M.; Wang, R.; Zhou, F.; Wang, R.; Yang, Y. SPLs-mediated flowering regulation and hormone biosynthesis and signaling accompany juvenile-adult phase transition in Pyrus. Sci. Hortic. 2020, 272, 109584. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Yao, G.F.; Wang, D.F.; Wu, J. Effects of exogenous growth regulator treatment on floral initiation of pear progenies from hybrids ‘Mantianhong’ × ‘Dangshansuli’. J. Nanjing Agric. Univ. 2015, 38, 381–388. (In Chinese) [Google Scholar]
- Wang, G.P.; Liu, Q.X.; Kong, D.J.; Zhang, X.Z. Effects of some chemical regulators on phase change and promoting early flowering in chestnut seedlings. J. Anhui Agric. Sci. 2008, 36, 2335–2336. [Google Scholar]
- Hibara, K.; Isono, M.; Mimura, M.; Sentoku, N.; Kojima, M.; Sakakibara, H.; Kitomi, Y.; Yoshikawa, T.; Itoh, J.; Nagato, Y. Jasmonate regulates juvenile-to-adult phase transition in rice. Development 2016, 143, 3407–3416. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Zhang, D.; Li, Y.; Zhao, C.; Zhang, S.; Shen, Y.; An, N.; Han, M. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genom. 2014, 15, 1125. [Google Scholar] [CrossRef] [Green Version]
- Corbesier, L.; Vincent, C.; Jang, S.H.; Fornara, F.; Fan, Q.Z.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Buylla, E.R.; Benítez, M.; Espinosa-Soto, C. Phenotypic evolution is restrained by complex developmental processes. HFSP J. 2007, 1, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Moyroud, E.; Kusters, E.; Monniaux, M.; Koes, R.; Parcy, F. LEAFY blossoms. Trends Plant Sci. 2010, 15, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Ahearn, K.P.; Johnson, H.A.; Weigel, D.; Wagner, A. NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol. 2001, 42, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- Weigel, D.; Alvarez, J.; Smyth, D.R.; Yanofsky, M.F.; Meyerowitz, E.M. LEAFY controls floral meristem identity in Arabidopsis. Cell 1992, 69, 843–859. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.M.; Li, C.M.; Zhao, Y.B.; Zhang, X.Z.; Yang, F.Q. Research on the advanced flower of apple seedlings treated by growth regulators. J. Hebei Agric. Sci. 2008, 12, 16–17. (In Chinese) [Google Scholar]
- Cao, J.K.; Jiang, W.B.; Zhao, Y.M. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables; China Light Industry Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Wang, X.P.; Xing, S.L. Determination of protein quantitation using the method of Coomassie brilliant blu. Tianjin Chem. Ind. 2009, 23, 40–42. (In Chinese) [Google Scholar]
- Zhao, J.; Li, G.; Yi, G.X.; Wang, B.M.; Deng, A.X.; Nan, T.G.; Li, Z.H.; Li, Q.X. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal. Chim. Acta 2006, 571, 79–85. [Google Scholar] [CrossRef]
- Goldschmidt, E.E.; Aschkenazi, N.; Herzano, Y.; Schaffer, A.A.; Monselise, S.P. A role for carbohydrate levels in the control of flowering in citrus. Sci. Hortic. 1985, 26, 159–166. [Google Scholar] [CrossRef]
- Garcia-Luis, A.; Fornes, F.; Guardiola, J.L. Leaf carbohydrates and flower formation in Citrus. J. Am. Soc. Hortic. Sci. 1995, 120, 222–227. [Google Scholar] [CrossRef]
- Melzer, R. Regulation of flowering time: A splicy business. J. Exp. Bot. 2017, 68, 5017–5020. [Google Scholar] [CrossRef] [Green Version]
- Wilkie, J.D.; Sedgley, M.; Olesen, T. Regulation of floral initiation in horticultural trees. J. Exp. Bot. 2008, 59, 3215–3228. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, L.; Zeng, L.; Zhang, C.; Ma, H. Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev. 2015, 29, 975–987. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.B.; Zhang, Q.W.; Han, M.Y.; Zhao, C.P.; Chen, X.L.; Hou, Y.J.; Liu, H.K. Effects of spraying PBO on growth, leaf quality and flower formation of yang apple tree. J. Northwest A F Univ. (Nat. Sci. Ed.) 2013, 41, 141–148. (In Chinese) [Google Scholar]
- Wang, P.; Zhang, X.Y.; Zhai, C.F.; Liu, S.J. Effects of different application methods of paclobutrazol on the growth and development and flowering and fruiting of young trees of Starkrimson. J. Anhui Agric. Sci. 2007, 20, 6092–6093. (In Chinese) [Google Scholar]
- Sheng, J.; Li, X.; Zhang, D. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Hortic. Plant J. 2022, 8, 243–250. [Google Scholar] [CrossRef]
- Mataa, M.; Tominaga, S.; Kozaki, I. The effect of time of girdling on carbohydrate contents and fruiting in Ponkan mandarin (Citrus reticulata Blanco). Sci. Hortic. 1998, 73, 203–211. [Google Scholar] [CrossRef]
- Fabbri, B. Flower bud induction and differentiation in olive. J. Hortic. Sci. Biotechnol. 2000, 75, 131–141. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.J.; Zhang, W.L.; Njie, A.; Pan, X.J. The changes in C/N, carbohydrate, and amino acid content in leaves during female flower bud differentiation of Juglans sigillata. Acta Physiol. Plant. 2022, 44, 19. [Google Scholar] [CrossRef]
- Guo, Y.; An, L.; Yu, H.; Yang, M. Endogenous Hormones and Biochemical Changes during Flower Development and Florescence in the Buds and Leaves of Lycium ruthenicum. Murr. For. 2022, 13, 763. [Google Scholar] [CrossRef]
- Wang, J.; Luo, T.; Zhang, H.; Shao, J.; Peng, J.; Sun, J. Variation of endogenous hormones during flower and leaf buds development in ‘Tianhong 2’ apple. Hortscience 2020, 55, 1794–1798. [Google Scholar] [CrossRef]
- Cao, S.Y.; Zhang, J.C.; Wei, L.H. Studies on the changes of endogenous hormones in the differentiation period of flower bud in apple trees. J. Fruit Sci. 2000, 17, 244–248. [Google Scholar]
- Qin, L.; Zhang, X.; Yan, J.; Fan, L.; Rong, C.; Mo, C.; Zhang, M. Effect of exogenous spermidine on floral induction, endogenous polyamine and hormone production, and expression of related genes in ‘Fuji’ apple (Malus domestica Borkh). Sci. Rep. 2019, 9, 12777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 1999, 286, 1960–1962. [Google Scholar] [CrossRef]
- Lin, M.K.; Belanger, H.; Lee, Y.J.; Varkonyi-Gasic, E.; Taoka, K.; Miura, E.; Xoconostle-Cázares, B.; Gendler, K.; Jorgensen, R.A.; Phinney, B.; et al. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 2007, 19, 1488–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kardailsky, I.; Shukla, V.K.; Ahn, J.H.; Dagenais, N.; Christensen, S.K.; Nguyen, J.T.; Chory, J.; Maria, J. Activation tagging of the floral inducer FT. Science 1999, 286, 1962–1965. [Google Scholar] [CrossRef] [Green Version]
- Coen, E.S.; Romero, J.M.; Doyle, S.; Elliott, R.; Carpenter, R. Floricaula: A homeotic gene required for flower development in Antirrhinum majus. Cell 1990, 63, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, O.J.; Amaya, I.; Vincent, C.A.; Rothstein, S.; Carpenter, R.; Coen, E.S.; Bradley, D.J. A common mechanism controls the life cycle and architecture of plants. Development 1998, 125, 1609–1615. [Google Scholar] [CrossRef]
- Gyllenstrand, N.; Clapham, D.; Kallman, T.; Lagercrantz, U. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol. 2007, 144, 248–257. [Google Scholar] [CrossRef] [Green Version]
Treatment | Combination of Agents | Number of Sprays |
---|---|---|
T1 | 1 mg/kg KT30 + 1000 mg/kg PP333 | 1 time |
T2 | 50 mg/kg6-BA + 1000 mg/kg PP333 | 1 time |
T3 | 100 mg/kg6-BA + 1000 mg/kg PP333 | 1 time |
T4 | 1 mg/kg KT30 + 1000 mg/kg Eth | 2 times |
T5 | 50 mg/kg6-BA + 1000 mg/kg Eth | 2 times |
T6 | 100 mg/kg6-BA + 1000 mg/kg Eth | 2 times |
CK | water | 2 times |
Gene | PCR Product Length | Primer Sequence (5’→3’) | Usage |
---|---|---|---|
FT | 220 | F:AGCCCAAGTGACCCCAACCT R:CGGCGAAGTCTCTGGTATTGAAG | RT-qPCR |
LFY | 226 | F:AGGGAGCACCCGTTCATCGT R:GCCGCATCTTTGGCTTGTTG | RT-qPCR |
TFL1 | 164 | F: CCTTCACTCCAACAACGCAC R: CAGGACAATCTGGGTCCGTC | RT-qPCR |
Actin | 200 | F:TTGGTATGGGTCAGAAGG R: CTGTGAGCAGAACTGGGTG | RT-qPCR |
Treatments | Flowering Plant Rate/% | Average Number of Inflorescences/pcs | Average Total Number of Flowers/pcs | Juvenile Span/cm |
---|---|---|---|---|
T1 | 33.67 ± 6.34 b | 11.67 ± 4.53 b | 65.35 ± 20.88 b | 230.25 ± 14.27 b |
T2 | 37.93 ± 5.32 b | 17.89 ± 3.79 a | 105.55 ± 29.45 a | 216.67 ± 15.06 bc |
T3 | 46.67 ± 3.57 a | 21.45 ± 4.36 a | 139.10 ± 27.92 a | 199.54 ± 17.74 c |
T4 | 20.00 ± 8.35 c | 4.25 ± 4.12 cd | 23.80 ± 11.57 d | 253.33 ± 12.08 a |
T5 | 26.67 ± 5.73 c | 6.25 ± 4.23 c | 41.88 ± 10.73 c | 237.67 ± 10.10 b |
T6 | 35.71 ± 7.21 b | 18.06 ± 3.82 a | 112.33 ± 30.80 a | 192.33 ± 18.98 c |
CK | 23.33 ± 5.63 c | 4.50 ± 3.64 cd | 23.40 ± 10.32 d | 235.75 ± 11.83 b |
Treatments | Flowering Plant Rate/% | Average Number of Inflorescences /pcs | Average Total Number of Flowers /pcs | Juvenile Span /cm |
---|---|---|---|---|
Ring-stripping | 47.84 ± 8.47 a | 16.33 ± 4.24 a | 91.45 ± 12.36 a | 190.25 ± 30.21 b |
Ring-cutting | 43.33 ± 7.38 a | 15.45 ± 5.71 a | 101.25 ± 10.94 a | 213.33 ± 21.98 b |
CK | 22.22 ± 5.82 b | 4.25 ± 2.72 b | 27.33 ± 8.36 b | 240.25 ± 16.73 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wu, Y.; Wang, X.; Wang, W.; Huang, M.; Ma, Z.; Peng, J. Ring Stripping, Ring Cutting, and Growth Regulators Promote Phase Change and Early Flowering in Pear Seedlings. Plants 2023, 12, 2933. https://doi.org/10.3390/plants12162933
Zhang X, Wu Y, Wang X, Wang W, Huang M, Ma Z, Peng J. Ring Stripping, Ring Cutting, and Growth Regulators Promote Phase Change and Early Flowering in Pear Seedlings. Plants. 2023; 12(16):2933. https://doi.org/10.3390/plants12162933
Chicago/Turabian StyleZhang, Xiaojie, Yueju Wu, Xiaoming Wang, Wenfang Wang, Mingxia Huang, Zitan Ma, and Jianying Peng. 2023. "Ring Stripping, Ring Cutting, and Growth Regulators Promote Phase Change and Early Flowering in Pear Seedlings" Plants 12, no. 16: 2933. https://doi.org/10.3390/plants12162933
APA StyleZhang, X., Wu, Y., Wang, X., Wang, W., Huang, M., Ma, Z., & Peng, J. (2023). Ring Stripping, Ring Cutting, and Growth Regulators Promote Phase Change and Early Flowering in Pear Seedlings. Plants, 12(16), 2933. https://doi.org/10.3390/plants12162933