Application of Bio-Fertilizers Improves Forage Quantity and Quality of Sorghum (Sorghum bicolor L.) Intercropped with Soybean (Glycine max L.)
Abstract
:1. Introduction
2. Results
2.1. Sorghum Forage Productivity
2.2. Soybean Forage Productivity
2.3. Crude Protein Content (CP)
2.4. Forage Ash
2.5. Acid Detergent Fiber (ADF)
2.6. Neutral Detergent Fiber (NDF)
2.7. Water Soluble Carbohydrate (WSC)
2.8. Dry Matter Intake (DMI)
2.9. Digestible Dry Matter (DDM)
2.10. Total Digestible Nutrients (TDN)
2.11. Relative Feed Value (RFV)
2.12. Net Energy for Lactation (NEL)
2.13. Land Equivalent Ratio (LER)
2.14. Aggressivity (A) and Competitive Ratio (CR)
2.15. Monetary Advantage Index (MAI)
2.16. Correlation
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Treatments and Experimental Design
4.3. Measurements
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation Lists | Full Form |
A | Aggressivity |
ADF | Acid detergent fiber |
BF | Bio-fertilizer |
CP | Crude protein |
CR | Competitive ratio |
DM | Dry matter |
DDM | Digestible dry matter |
DMI | Dry matter intake |
LER | Land equivalent ratio |
MAI | Monetary advantage index |
NDF | Neutral detergent fiber |
NEL | Net energy for lactation |
RCBD | Randomized complete blocks design |
RFV | Relative feed value |
TDN | Total digestible nutrients |
WSC | Water soluble carbohydrate |
References
- Wang, Z.; Zhao, X.; Wu, P.; He, J.; Chen, X.; Gao, Y.; Cao, X. Agricultural and Forest Meteorology Radiation Interception and Utilization by Wheat/Maize Strip Intercropping Systems. Agric. For. Meteorol. 2015, 204, 58–66. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with Legume for Agroecological Cropping Systems: Complementarity and Facilitation Processes and the Importance of Soil Microorganisms. A Review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Belel, M.D.; Halim, R.A.; Rafii, M.Y.; Saud, H.M. Intercropping of Corn with Some Selected Legumes for Improved Forage Production: A Review. J. Agric. Sci. 2014, 6, 48–62. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, B.; Xie, Y.; Li, J.; Yang, Z.; Zhang, G. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability. PLoS ONE 2015, 10, e0144813. [Google Scholar] [CrossRef] [PubMed]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of Yield, Essential Oil Content and Compositions of Peppermint (Mentha piperita L.) Intercropped with Faba Bean (Vicia faba L.). J. Clean. Prod. 2018, 171, 529–537. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C.; Yang, W. Changes in Light Environment, Morphology, Growth and Yield of Soybean in Maize-Soybean Intercropping Systems. F. Crop. Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Aghaee, A.; Maggi, F. Funneliformis Mosseae Inoculation under Water Deficit Stress Improves the Yield and Phytochemical Characteristics of Thyme in Intercropping with Soybean. Sci. Rep. 2021, 11, 15279. [Google Scholar] [CrossRef]
- Yilmaz, Ş.; Özel, A.; Atak, M.; Erayman, M. Effects of Seeding Rates on Competition Indices of Barley and Vetch Intercropping Systems in the Eastern Mediterranean. Turk. J. Agric. For. 2014, 39, 135–143. [Google Scholar] [CrossRef]
- Hossain, M.S.; Islam, M.N.; Rahman, M.M.; Mostofa, M.G.; Khan, M.A.R. Sorghum: A Prospective Crop for Climatic Vulnerability, Food and Nutritional Security. J. Agric. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Marsalis, M.A.; Angadi, S.V.; Contreras-Govea, F.E. Dry Matter Yield and Nutritive Value of Corn, Forage Sorghum, and BMR Forage Sorghum at Different Plant Populations and Nitrogen Rates. F. Crop. Res. 2010, 116, 52–57. [Google Scholar] [CrossRef]
- Bean, B.W.; Baumhardt, R.L.; McCollum, F.T.; McCuistion, K.C. Comparison of Sorghum Classes for Grain and Forage Yield and Forage Nutritive Value. F. Crop. Res. 2013, 142, 20–26. [Google Scholar] [CrossRef]
- Herridge, D.F.; Bergersen, F.J.; Peoples, M.B. Measurement of Nitrogen Fixation by Soybean in the Field Using the Ureide and Natural 15N Abundance Methods. Plant Physiol. 1990, 93, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Crusciol, C.A.C.; Nascente, A.S.; Mateus, G.P.; Pariz, C.M.; Martins, P.O.; Borghi, E. Intercropping Soybean and Palisade Grass for Enhanced Land Use Efficiency and Revenue in a No till System. Eur. J. Agron. 2014, 58, 53–62. [Google Scholar] [CrossRef]
- Rezaei-Chiyaneh, E.; Amirnia, R.; Amani Machiani, M.; Javanmard, A.; Maggi, F.; Morshedloo, M.R. Intercropping Fennel (Foeniculum vulgare L.) with Common Bean (Phaseolus vulgaris L.) as Affected by PGPR Inoculation: A Strategy for Improving Yield, Essential Oil and Fatty Acid Composition. Sci. Hortic. 2020, 261, 108951. [Google Scholar] [CrossRef]
- Hafez, M.; Popov, A.I.; Rashad, M. Integrated Use of Bio-Organic Fertilizers for Enhancing Soil Fertility–Plant Nutrition, Germination Status and Initial Growth of Corn (Zea mays L.). Environ. Technol. Innov. 2021, 21, 101329. [Google Scholar] [CrossRef]
- Daniel, A.I.; Fadaka, A.O.; Gokul, A.; Bakare, O.O.; Aina, O.; Fisher, S.; Burt, A.F.; Mavumengwana, V.; Keyster, M.; Klein, A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022, 10, 1220. [Google Scholar] [CrossRef]
- Javanmard, A.; Amani Machiani, M.; Lithourgidis, A.; Morshedloo, M.R.; Ostadi, A. Intercropping of Maize with Legumes: A Cleaner Strategy for Improving the Quantity and Quality of Forage. Clean. Eng. Technol. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Armstrong, K.L.; Albrecht, K.L.; Lauer, J.G.; Riday, H. Intercropping corn with lablab bean, velvet bean, and scarlet runner bean for forage. Crop. Sci. 2008, 48, 371–379. [Google Scholar] [CrossRef]
- Sadeghpour, A.; Jahanzad, E.; Esmaeili, A.; Hosseini, M.B.; Hashemi, M. Forage Yield, Quality and Economic Benefit of Intercropped Barley and Annual Medic in Semi-Arid Conditions: Additive Series. F. Crop. Res. 2013, 148, 43–48. [Google Scholar] [CrossRef]
- Fotohi Chiyaneh, S.; Rezaei-Chiyaneh, E.; Amirnia, R.; Keshavarz Afshar, R.; Siddique, K.H.M. Changes in the Essential Oil, Fixed Oil Constituents, and Phenolic Compounds of Ajowan and Fenugreek in Intercropping with Pea Affected by Fertilizer Sources. Ind. Crops Prod. 2022, 178, 114587. [Google Scholar] [CrossRef]
- de Oliveira Gonçalves, M.; Carpanez, T.G.; Silva, J.B.G.; Otenio, M.H.; de Paula, V.R.; de Mendonça, H.V. Biomass Production of the Tropical Forage Grass Pennisetum Purpureum (BRS Capiaçu) Following Biofertilizer Application. Waste Biomass Valorization 2022, 13, 2137–2147. [Google Scholar] [CrossRef]
- Behrouzi, D.; Diyanat, M.; Majidi, E.; Mirhadi, M.J.; Shirkhani, A. Yield and Quality of Forage Maize as a Function of Diverse Irrigation Regimes and Biofertilizer in the West of Iran. J. Plant Nutr. 2022, 46, 2246–2256. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vlachostergios, D.N.; Dordas, C.A.; Damalas, C.A. Dry Matter Yield, Nitrogen Content, and Competition in Pea-Cereal Intercropping Systems. Eur. J. Agron. 2011, 34, 287–294. [Google Scholar] [CrossRef]
- Stoltz, E.; Nadeau, E. Effects of Intercropping on Yield, Weed Incidence, Forage Quality and Soil Residual N in Organically Grown Forage Maize (Zea mays L.) and Faba Bean (Vicia faba L.). Field Crop. Res. 2014, 169, 21–29. [Google Scholar] [CrossRef]
- Bo, P.T.; Dong, Y.; Zhang, R.; Htet, M.N.S.; Hai, J. Optimization of Alfalfa-Based Mixed Cropping with Winter Wheat and Ryegrass in Terms of Forage Yield and Quality Traits. Plants 2022, 11, 1752. [Google Scholar] [CrossRef]
- Mehrvarz, S.; Chaichi, M.R. Effect of Phosphate Solubilizing Microorganisms and Phosphorus Chemical Fertilizer on Forage and Grain Quality of Barely (Hordeum vulgare L.). J. Agric. Environ. Sci. 2008, 3, 855–860. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Nitrogen Analysis of Soil and Plant Tissues. J. Assoc. Off. Anal. Chem. 1980, 63, 770–778. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Li, R.; Chang, X.; Jing, R. Development of Near-Infrared Reflectance Spectroscopy Models for Quantitative Determination of Water-Soluble Carbohydrate Content in Wheat Stem and Glume. Anal. Lett. 2011, 44, 2478–2490. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 7, 3583–3597. [Google Scholar] [CrossRef]
- Ofori, F.; Stern, W.R. Cereal–Legume Intercropping Systems. Adv. Agron. 1987, 41, 41–90. [Google Scholar] [CrossRef]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition Indices of Common Vetch and Cereal Intercrops in Two Seeding Ratio. Field Crop. Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield Performance and Land-Use Efficiency of Barley and Faba Bean Mixed Cropping in Ethiopian Highlands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar] [CrossRef]
- Willey, R. Intercropping-Its Importance and Research Needs: Part 1. Competition and Yield Advantages. Field Crop. Abstr. 1979, 32, 1–13. [Google Scholar]
- Ghosh, P.K. Growth, Yield, Competition and Economics of Groundnut/Cereal Fodder Intercropping Systems in the Semi-Arid Tropics of India. Field Crop. Res. 2004, 88, 227–237. [Google Scholar] [CrossRef]
Treatments | CP (g kg−1 DM) | ADF (g kg−1 DM) | NDF (g kg−1 DM) | WSC (g kg−1 DM) | ASH (g kg−1 DM) | |
---|---|---|---|---|---|---|
Control | S10 | 83.5 f | 365.33 ab | 595.6 b | 181.73g | 48.13 f |
S15 | 90.8 f | 377.43 a | 622.56 a | 180 g | 51.06 f | |
S10G40 | 124.7 cd | 305.9 de | 499.73 c | 228.37 cd | 90.86 cd | |
S10G50 | 137.3 b | 277.4 g | 464.9 ef | 221.57 de | 104.3 ab | |
S15G40 | 115.03 d | 318.08 cd | 510.53 c | 217.47 def | 77.33 e | |
S15G50 | 133.3 bc | 311.1 de | 491.4 cd | 219.83 def | 93.30 cd | |
Bio-fertilizer | S10 | 102.4 e | 333.73 c | 578.70 b | 214.80 ef | 54.16 f |
S15 | 103.3 e | 356.43 b | 578.63 b | 208.23 f | 53.46 f | |
S10G40 | 123.6 cd | 297.23 ef | 478.86 de | 245.20 ab | 95.46 cd | |
S10G50 | 149.6 a | 258 h | 449.36 f | 251.16 a | 113.2 a | |
S15G40 | 133.03 bc | 301.63 def | 498.26 cd | 238.60 bc | 86.33 de | |
S15G50 | 137.2 b | 287.86 fg | 479.16 de | 236.8 bc | 97.3 bc |
Treatments | DDM (g kg−1 DM) | DMI (g kg−1 of Body Weight) | TDN (g kg−1 DM) | NEL (Mcal kg−1) | RFV (%) | |
---|---|---|---|---|---|---|
Control | S10 | 611.36 g | 20.21 ef | 553.38 g | 1.367 g | 95.64 ef |
S15 | 596.54 h | 19.30 f | 528.82 h | 1.317 g | 89.17 f | |
S10G40 | 660.70 de | 24.57 cd | 618.58 de | 1.499 cde | 121.33 d | |
S10G50 | 672.9 b | 25.60 b | 655.37 b | 1.574 ab | 135.47 b | |
S15G40 | 641.21 ef | 23.63 d | 602.85 ef | 1.467 ef | 117.39 d | |
S15G50 | 646.65 de | 24.57 cd | 611.87 de | 1.486 de | 122.78 cd | |
Bio-fertilizer | S10 | 629.52 f | 20.78 e | 582.65 f | 1.426 f | 101.21 e |
S15 | 604.4 gh | 20.85 e | 541.85 gh | 1.343 g | 97.52 e | |
S10G40 | 657.45 cd | 25.24 bc | 629.77 cd | 1.548 bc | 128.59 bc | |
S10G50 | 668.01 a | 26.83 a | 680.42 a | 1.625 a | 142.98 a | |
S15G40 | 654.02 cde | 24.10 cd | 624.09 cde | 1.511 cde | 122.14 cd | |
S15G50 | 664.75 bc | 25.08 bc | 614.86 bc | 1.547 bc | 129.16 bc |
Treatments | LERs | LERg | LERt | As | Ag | CRs | CRg | |
---|---|---|---|---|---|---|---|---|
Control | S10G40 | 0.901 | 0.548 | 1.449 | 0.353 | −0.353 | 1.644 | 0.608 |
S10G50 | 0.908 | 0.539 | 1.447 | 0.368 | −0.368 | 1.683 | 0.594 | |
S15G40 | 0.906 | 0.405 | 1.311 | 0.502 | −0.502 | 2.240 | 0.447 | |
S15G50 | 0.812 | 0.529 | 1.341 | 0.283 | −0.283 | 1.534 | 0.652 | |
Bio-fertilizer | S10G40 | 0.921 | 0.593 | 1.514 | 0.328 | −0.328 | 1.552 | 0.644 |
S10G50 | 0.938 | 0.592 | 1.530 | 0.392 | −0.392 | 1.588 | 0.630 | |
S15G40 | 0.953 | 0.579 | 1.532 | 0.374 | −0.374 | 1.646 | 0.608 | |
S15G50 | 0.934 | 0.546 | 1.481 | 0.354 | −0.354 | 1.710 | 0.585 |
Soil Texture | Sand (%) | Silt (%) | Clay (%) | OM (g kg−1) | EC (ds m−1) | pH | CEC (Cmolc kg−1) | N (g kg−1) | P (mg kg−1) | K (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
Sandy clay loam | 56.3 | 16.3 | 27.4 | 8.1 | 1.17 | 7.73 | 26.6 | 0.84 | 9.43 | 553.17 |
Year | April | May | June | July | August | September |
---|---|---|---|---|---|---|
Monthly average temperature (°C) | ||||||
2020 | 11.8 | 19.1 | 24.2 | 28.0 | 25.1 | 23.8 |
2021 | 16.3 | 21.3 | 27.2 | 28.3 | 28.1 | 23.02 |
2-year mean | 14.1 | 20.2 | 25.7 | 28.1 | 26.6 | 23.4 |
10-year mean | 12.9 | 18.5 | 24.4 | 28.1 | 27.5 | 22.7 |
Total monthly precipitation (mm) | ||||||
2020 | 63.3 | 12.0 | 2.6 | 0.1 | 1.2 | 0.0 |
2021 | 12.01 | 13.3 | 0.01 | 3.10 | 0.02 | 0.1 |
2-year mean | 37.6 | 12.7 | 1.3 | 1.6 | 0.6 | 0.05 |
10-year mean | 41.8 | 19.9 | 1.5 | 0.7 | 0.3 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadafzadeh, E.; Javanmard, A.; Amani Machiani, M.; Sofo, A. Application of Bio-Fertilizers Improves Forage Quantity and Quality of Sorghum (Sorghum bicolor L.) Intercropped with Soybean (Glycine max L.). Plants 2023, 12, 2985. https://doi.org/10.3390/plants12162985
Sadafzadeh E, Javanmard A, Amani Machiani M, Sofo A. Application of Bio-Fertilizers Improves Forage Quantity and Quality of Sorghum (Sorghum bicolor L.) Intercropped with Soybean (Glycine max L.). Plants. 2023; 12(16):2985. https://doi.org/10.3390/plants12162985
Chicago/Turabian StyleSadafzadeh, Elnaz, Abdollah Javanmard, Mostafa Amani Machiani, and Adriano Sofo. 2023. "Application of Bio-Fertilizers Improves Forage Quantity and Quality of Sorghum (Sorghum bicolor L.) Intercropped with Soybean (Glycine max L.)" Plants 12, no. 16: 2985. https://doi.org/10.3390/plants12162985