Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering
Abstract
:1. Introduction
2. Efficiency of NPs in Eliminating Contamination
3. Influence of NPs on Seed Germination
3.1. AgNPs
3.2. Other Metal and Metal Oxide NPs
Plant | Nanoparticle (NP) Treatment and Culture Type | Biochemical Changes | Reference |
---|---|---|---|
Brassica juncea var. pusa jaikisan | AgNPs, shoots | Increased chlorophyll and decreased MDA, H2O2, and proline content, increased CAT, GPX, and APX activities | [62] |
Brassica napus | AgNPs/AuNPs, shoots | Increased chlorophylls, carotenoids, anthocyanins, free sugars, H2O2 contents, no change in phenolic content | [60] |
Brassica nigra | ZnONPs, shoots and roots (seedling), callus | Increased free radical scavenging activity, total antioxidant capacity, total reducing power, phenolic, and flavonoid contents | [65] |
Brassica nigra | CuONPs, seedling and roots (from leaf and stem derived callus) | Seedlings increased free radical scavenging activity, total phenolic, and flavonoid content, decreased total antioxidant and reducing potential; Roots increased free radical scavenging activity, total antioxidant and reducing potential, total phenolic, and flavonoid contents | [5] |
Brassica oleracea var. sabellica ‘Nero di Toscana’ | AgNPs, leaves | Decreased chlorophyll, carotenoid, and anthocyanin contents, no change in phenolic, protein contents and SOD activities, increased GPOX activity | [59] |
Campomanesia rufa | AgNPs, shoots | No significant difference in SOD activity | [75] |
Caralluma tuberculata | AgNPs, callus | Increased PAL and free radical scavenging, SOD, POD, CAT, APX activities, total phenolics, and flavonoid contents | [76] |
Cicer arietinum | CuONPs, seedling | Increased H2O2 generation, MDA content, POD activity, and lignification in roots | [66] |
Cichorium intybus | Fe2O3NPs, hairy roots | Increased hairy root growth, total phenolic, and flavonoid contents | [77] |
Corylus avellana cv. Gerd Eshkevar | AgNPs, cell suspension | Increased CAT, APX, H2O2, PAL activities, decreased SOD and POD activities, and total soluble phenol content | [78] |
Corylus avellana cv. Gerd Eshkevar | AgNPs, cell suspension | Increased MDA, total phenolic, anthocyanin, and flavonoid contents | [79] |
Cucumis anguria | AgNPs, hairy roots | Increased total phenolic and flavonoid contents, and antioxidant activities | [80] |
Eruca sativa | AuNPs, CuNPs, and AgNPs, seedling | AuNPs decreased total antioxidant capacity, total phenolic and flavonoid contents, increased DPPH, SOD and POD activities, no change in protein content; CuNPs decreased total antioxidant capacity, DPPH activity, protein content, increased total phenolic, and flavonoid contents, SOD and POD activities; AgNP decreased total antioxidant capacity, DPPH activity, decreased total phenolics and flavonoid contents, POD activity, increased SOD activity, no change in protein | [56] |
Fragaria × ananassa cv. Queen Elisa | FeNPs, shoots | Increased chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, total carbohydrates, total protein, and total free proline and iron contents, decreased H2O2 and MDA content, higher SOD and POD activities | [81] |
Linum usitatissimum cv. Kerman Shahdad | ZnONPs/TiO2NPs, cell suspension | Increased PAL and CAD activities, and total phenol content | [82] |
Linum usitatissimum cv. Barbara | ZnONPs, seedling and callus | Increased ROS production, membrane lipid peroxidation, protein carbonylation and 8-oxo guanine formation, SOD, POD, radical scavenging activities, total phenolics, and flavonoid contents | [68] |
Maerua oblongifolia | AgNPs, shoots | Higher chlorophyll, total protein and proline contents, and increased activities of antioxidant enzymes | [83] |
Momordica charantia | AgNPs, cell suspension | Increased MDA, H2O2, total phenolics and flavonoid contents, and antioxidant activity | [84] |
Musa paradisiacal cv. Grand Nain | ZnNPs and ZnONPs, shoots | Higher proline, chlorophyll, and antioxidant enzymes activities | [43] |
Musa spp. | AgNPs, shoots | Increased chlorophyll content | [85] |
Nicotiana benthamiana | CH-ZnO, callus | Increased chlorophyll, carotenoid, proline contents and PAL and AO activities, decreased MDA and H2O2 levels | [86] |
Nicotiana tabacum cv. Bright Yellow-2 | ZnONPs, cell suspension | Decreased dehydrogenase, oxidoreductase SOD, POD and APX activities, increased GR, PAL, protease, caspase-like and acid phosphatases activities, and total phenolic content | [87] |
Oryza sativa cv. Swarna | AgNPs, seedling leaves | Increased chlorophyll and flavonol contents and POD, SOD, CAT, APX and GR activities, decreased phenolics, flavonoids, H2O2 and MDA contents | [57] |
Oryza sativa cv. IR64 | AgNPs, shoot | Decreased MDA, proline and H2O2 levels | [88] |
Pennisetum glaucum | AgNPs, seedling | Increased DPPH, proline, SOD, POD, and CAT activities, total phenolics and flavonoid contents | [58] |
Phoenix dactylifera | MWCNTs, shoots | Increased flavonoid, chlorophylls and carotenoid, nutrient contents, decreased phenolics and tannin contents, SOD, GPOX, and GR activities | [89] |
Phoenix dactylifera cv. Hayani | AgNPs, somatic embryos | Increased chlorophyll content | [90] |
Physalis peruviana | AgNPs, seedling derived shoots and shoots | Seedling derived shoots- increased CAT and APX activity, and decreased chlorophyll content, SOD and MDA activities;Shoots- no change in SOD, APX and MDA levels, decreased CAT activity | [70] |
Raphanus sativus var. sativus ‘Ramona’ | AgNPs, leaves | Increased carotenoid, phenolic contents, and SOD activity, decreased chlorophyll, anthocyanins, protein contents, and GPOX activity | [59] |
Saccharum spp. cv. Mex 69-290 | AgNPs, leaves | Increased N, Ca, Mg, Fe, Cu, Zn, Mn, and decreased P, K, and B content, higher total phenolics, ROS and lipid peroxidation contents, and antioxidant activity | [91] |
Simmondsia chinensis | MWCNTs, shoots | Increased total tannin content and antioxidant activities, decreased phenolics and flavonoid contents | [92] |
Solanum lycopersicon | Fe3O4NPs, shoots | Increased proline content and osmotic potential | [93] |
Solanum lycopersicum | ZnONPs, callus | Increased Na, N, P, K, and Zn ionic, protein contents, SOD and GPX activity | [4] |
Solanum lycopersicum var. Poranek | AgNPs, leaves | Increased chlorophyll, anthocyanins, phenolics, protein contents and SOD and GPOX activities, decreased carotenoid content | [59] |
Solanum tuberosum | SiO2NPs, leaves | Increased antioxidant enzymes activity and expression of proteins | [94] |
Solanum tuberosum cv. White Desiree | AgNPs, shoots | Increased total chlorophyll, carotenoids, proline, total flavonoids, phenolics, lipid peroxidation and H2O2 contents, decreased anthocyanins | [95] |
Vanilla planifolia | AgNPs, shoots | Higher chlorophyll, increased elements like N and B, no change in P, Ca and Mg, and decreased K, Fe, Cu, Zn, Mn, and B contents, higher total phenolics, ROS and lipid peroxidation contents, and antioxidant activity | [33] |
Vigna radiata | CuONPs, seedling | Decreased chlorophyll and increased proline contents, H2O2 and MDA contents in root, no change in carotenoid, H2O2 and MDA contents in shoots | [71] |
4. Modulation of In Vitro Morphogenesis by NPs
4.1. Metal NPs
Plant | Explant | Nanoparticle (NP) Treatment | Callus/Number of Shoots or SEs/Explant (% Response) | Shoot Length (cm) | Root Induction Media | Number of Roots/Explant (% Response) | Root Length (cm) | Effect | Reference |
---|---|---|---|---|---|---|---|---|---|
Alternanthera sessilis | Node | GFAgNPs (2.0 mg/L) | 153.6 ± 2.3 (100%) | - | - | - | - | In vitro cultures are genetically uniform with mother plant | [109] |
Brassica napus cv. Hayola 401 | Hypocotyl | ZnONPs (10 mg/L) | Callus- 300 mg (FW), 29 mg (DW) (88%) | - | - | - | - | Improved callus FW and DW | [110] |
Brassica nigra | Stem | ZnONPs (1 mg/L) | Callus- 11.95 ± 1.7 g (FW) 0.70 ± 0.2 g (DW) | - | - | - | - | Induced roots and few shoots from callus, decreased FW and DW of callus | [65] |
Brassica nigra | Leaf and stem | CuONPs (1 mg/L) | Callus (leaf)- 8.5 ± 1.9 g (FW), 0.3 ± 0.01 g (DW); Callus (stem)- 8.7 ± 1.8 g (FW), 0.4 ± 0.06 g (DW) | - | - | - | - | Decreased FW and DW of callus | [5] |
Campomanesia rufa | Node | AgNPs (1.54 mg/L) | 17 | 1.1 | - | - | - | Less shoots in presence of NPs, but no significance difference in fresh mass of the shoots | [75] |
Cicer arietinum | Embryo axes (EA) and embryo axes with adjacent part of cotyledon (EXC) | IONPs (15 mg/L) | EA- 51.6 ± 0.9 (86%), EXC- 53.0 ± 1.5 (88%) (var. Punjab-Noor 09); EA- 47.4 ± 0.4 (79%), EXC- 45.7 ± 2.5 (76%) (var. Bittle-98) | EA- 9.9 ± 0.3, EXC- 11.8 ± 0.5 (var. Pujab-Noor 09); EA- 7.5 ± 0.3, EXC- 8.5 ± 0.4 (var. Bittle-98) | IONPs (15 mg/L) | EA- 45.0 ± 1.2 (75%), EXC- 49.8 ± 0.9 (83%) (var. Pujab-Noor 09); EA- 41.5 ± 1.5 (69%), EXC- 47.0 ± 2.6 (78%) (var. Bittle-98) | - | Higher iron content | [111] |
Citrus australasica | Node | AgNPs (40 μM) | 17.4 | 3.53 ± 0.02 | - | - | - | Less shoot regeneration | [101] |
Daucus carota cv. Berlicum | Hypocotyl | Fe3O4NPs (4.02 mg/L) | - | - | - | - | - | Decreased SEs formation, mitotic index of cell culture | [112] |
Fragaria × ananassa cv. Queen Elisa | Runner tips | FeNPs (0.8 ppm) | 4 (Branch number) | 2.80 ± 0.03 (Branch length) | - | - | 3.40 ± 0.20 | Increased biomass, higher percentage of relative water content (RWC), and membrane stability index (MSI) | [81] |
Fragaria × ananassa cv. Ruby Gem | Runner tips | AgNO3NPs (10 mg/L) | 11.00 | 4.17 | - | - | - | Increasedpercentage of open buds, shoot regeneration, leaf number, shoots FW and DW | [35] |
Fragaria × ananassa | Leaf | Shoot induction- Explants were treated with 200 mg/L AgNPs solution (20 min), shoot multiplication- AgNPs (0.20 mg/L) | Regeneration- 21.00 (64.44%), multiplication- 12.67 (100%) | 3.93 | AgNPs (0.50 mg/L) | 6.67 | 3.40 | Increased regeneration and rooting response, and biomass of plants | [113] |
Hordeum vulgare cv. Nosrat | Mature embryos | TiO2NPs (60 µg/mL) | - | Callus diameter- 21 mm2 | - | - | - | Increased number and size of callus | [42] |
Linum usitatissimum ‘Blue di Riga’ | Stem of in vitro seedling | CNPs (1×10−3 g/L) | Callus- 83%, 0.5 ± 0.1 g (FW), indirect embryogenesis- 25% | Callus diameter- 8.5 ± 0.3 mm | - | - | - | Reduce callus formation, embryogenesis, and organogenesis | [114] |
Linum usitatissimum | Stem of in vitro seedling | BAP (1 mg/L) (coated with AgNPs or AuNPs) | Callus regeneration zone- 1.40 ± 0.65, rhizogenesis (50%), embryogenesis (50%) (AgNPs); Callus regeneration zone- 3.40 ± 1.22, rhizogenesis (30%), embryogenesis (70%) (AuNPs) | Callus length and width- 5.38 ± 1.30 and 5.00 ± 2.14 mm (AgNPs), 8.38 ± 1.60 and 5.38 ± 1.06 (AuNPs) | - | - | - | Increased callus formation and embryogenesis | [99] |
Linum usitatissimum | Stem of in vitro seedling | Experiment A- Fe3O4NPs (1.5 mg/L), Experiment B- Fe3O4NPs (1 mg/L) | Experiment A- 100% somatic embryogenesis, Experiment B- 100% rhizogenesis | Callus length and width- 1.4 ± 0.38 and 1.11 ± 0.26 cm (Exp. A), 1.17 ± 0.55 and 0.98 ± 0.32 cm (Exp. B) | - | - | - | Increased callus size and embryogenesis, NPs induced genotoxicity incallus cultures | [115] |
Maerua oblongifolia | Node | AgNPs (20 mg/L) | 16.67 ± 0.57 | 10.43 ± 0.45 | - | - | - | Increased shoot number and length, leaf number, shoot FW and DW | [83] |
Mentha longifolia | Node | CuNPs (0.5 mg/L) | - | 6.83 ± 0.74 | - | - | - | Increased regeneration and shoot formation | [116] |
Musa paradisiacal cv. Grand Nain | Shoot tip (Suckers) | ZnNPs/ZnONPs (100 mg/L) | Callus- 92%, shoot- 2.5 (92%) | - | ZnNPs/ZnONPs (100 mg/L) | 6.57 (89%) | 2.93 | Reduced contamination and increased callus formation, shoot regeneration, shoots and roots FW, and rooting | [43] |
Musa paradisiacal | Shoot tip (Suckers) | FCNTs (100 µg/mL) | 12.5 | 5.2 | - | - | - | Increased shoot formation | [117] |
Musa spp. | In vitro shoot tip | AgNPs (1 ppm) | 8.40 | 2.45 | AgNPs (3 ppm) | 7.10 | 7.70 | Increased number of shoot, its length, leaf number, shoot FW and DW | [85] |
Musa spp. | Pseudo-stem | Callus formation- AgNPs (8 ppm), shoot regeneration- AgNPs (4 ppm), multiplication- AgNPs (6 ppm) | Callus- 97.78%, multiplication coefficient- 4.22 (100%) | 3.44 | AgNPs (4 ppm) | 5.22 (98.33%) | 4.26 | Increased callus formation, shoot induction and multiplication as well as rooting response | [103] |
Olea europaea cv. Picual | Node | AgNPs (5 mg/L) | 1.72 | 5.44 | - | - | - | Increased bud sprouting, shoot length, shoot number, and number of leaves/shoot | [104] |
Olea europaea | Node | AgNPs (10 mg/L) | 4.3 ± 0.17 (cv. Manzanillo); 4.0 ± 0.00 (cv. Picual); 5.0 ± 0.00 (cv. Koroneiki) | 7.0 ± 0.00 (cv. Manzanillo); 8.0 ± 0.57 (cv. Picual); 10.0 ± 0.00 (cv. Koroneiki) | - | - | - | Higher number of shoots, shoot length, leaf number, and multiplication rate | [36] |
Oryza sativa cv. KDML105 | Seed | TiO2NPs (25 mg/L) | 2.80 ± 0.03 (56.46 ± 0.82%) | - | - | - | - | Better regeneration | [118] |
Oryza sativa | Seed | Callus- CuONPs (10 mg/L), regeneration- CuONPs (20 mg/L) (var. Basmati 2000, Basmati 370, Basmati 385); Callus- CuONPs (10 mg/L), regeneration- CuONPs (15 mg/L) (var. Super Basmati) | Callus- 74%, regeneration- 80% (var. Basmati 2000); Callus- 86%, regeneration- 42% (var. Basmati 370); Callus- 90%, regeneration- 92% (var. Basmati 385); Callus- 94%, regeneration- 65% (var. Super Basmati) | - | - | - | - | Increased callogenesis and regeneration | [119] |
Oryza sativa ssp. indica cv. RD49 | Seed | TiO2NPs (20 mg/L) | Callus- 97.73 ± 0.17%, regeneration- 67% | - | - | - | - | Better regeneration | [120] |
Oryza sativa ssp. indica | Seed | Callus- TiO2NPs (50 mg/L), regeneration- TiO2NPs (40 mg/L) | Callus- 94.67 ± 1.01%, regeneration- 3.11 (61.89 ± 1.13%) (cv. Suphanburi1); Callus- 93.25 ± 1.02%, regeneration- 3.06 (60.25 ± 1.13%) (cv. Suphanburi90) | - | - | - | - | Better regeneration | [121] |
Oryza sativa cv. KDML105 | Seed | Callus- NCNPs (5 mg/L), regeneration- NCNPs (20 mg/L) | Callus- 94.70 ± 0.86%, regeneration- 3.16 ± 0.04 (62.75 ± 0.89%) | - | - | - | - | Increased callus frequency, FW and DW, ratio of no. of seedlings to no. of regenerated calli | [108] |
Oryza sativa cv. IR64 | Seeds | Callus- AgNPs (10 mg/L), regeneration- AgNPs (5 mg/L) | Callus- 82.4 ± 5.2%, regeneration- 61 ± 6.3% | - | AgNPs (10 mg/L) | 11.2 ± 0.6 | 4.9 ± 0.3 | Increased regeneration and rooting | [88] |
Panicum virgatum | Seed/ internode | ZnONPs (20 and 30 mg/L) | Callus induction- 90% (seed), 96% (internode), shoot regeneration- 23.10 ± 2.1 (76%) (seed), 24.00 ± 0.01 (80%) (internode) | - | - | - | - | Enhanced plant growth and development | [122] |
Phaseolus vulgaris | Hypocotyl | AgNPs (50 mg/mL) | Callus- 97% | - | - | - | - | Increased callus formation, FW and DW | [64] |
Phoenix dactylifera | Leaflets | Callus—MWCNTs (0.05 mg/L), SE formation and elongation—MWCNTs (0.1 mg/L) | Callus- 3.80 g, SE- 24.0 | 4.3 | MWCNTs (0.1 mg/L) | 5.3 | 6.0 | Increased embryogenesis and elongation of shoots | [89] |
Phoenix dactylifera | Immature inflorescences | Callus establishment- AgNPs (500 μg/L), callus differentiation- AgNPs (125 μg/L), SE formation- AgNPs (125 μg/L) (cv. Medjool); Callus establishment- AgNPs (500 μg/L), callus differentiation- AgNPs (500 μg/L), SE formation- AgNPs (125 μg/L)(cv. Sewi) | Callus- 76.66%, globular SE- 16.00, direct SE- 68.33%, germination- 0.81, multiplication- 1.00 (cv. Medjool); Callus- 73.33% globular SE- 17.33, direct SE- 68.33%, germination- 0.92, multiplication- 1.00 (cv. Sewi) | - | - | - | - | Increased SE formation | [34] |
Phoenix dactylifera cv. Hayani | Shoot tip | AgNPs (1 mL/L) | Callus- 4.60 g (FW), SE initiation- 9.39, SE development- 35.30 | 1.80 | - | - | - | Increased SE length, no. and length of leaves, shoots were genetically uniform | [90] |
Rhizoma polygonati | Tuber | Fe3O4NPs (0.4 mg/L) | 4 | - | Fe3O4NPs (0.5 mg/L) | 9.5 | - | Increased number of shoots and roots | [123] |
Rubus adenotrichos | In vitro shoot | - | - | - | SWCNTs-COOH (4 µg/mL) | 8.60 ± 5.75 | 0.6 | Increased rooting of shoots and growth of plants | [124] |
Saccharum spp.cv. Mex 69-290 | In vitro Shoot | AgNPs (50 mg/L) | 47.28 ± 1.69 | 5.55 ± 0.24 | - | - | - | Improved regeneration and shoot length in temporary immersion bioreactors | [91] |
Simmondsia chinensis | Node | MWCNTs (0.002 g/L) | 16.00 | 1.36 | - | - | - | Improved regeneration | [92] |
Solanum lycopersicon | Hypocotyl (For callus), cotyledonary nodes (For regeneration) | Fe3O4NPs (3 mg/L) | Callus- 64.26 ± 0.38%, shoot- 8.2 ± 0.09 (cv. Nora); Callus- 83.28 ± 0.94%, shoot- 10.8 ± 0.09 (cv. PS-10); Callus- 74.48 ± 0.39%, shoot- 9.7 ± 0.09 (cv. Peto); Callus- 56.32 ± 0.47%, shoot- 6.6 ± 0.12 (cv. Roma) | - | - | - | - | Better callus and shoot formationshowing resistance to salinity stress | [93] |
Solanum lycopersicum cv. Edkawy | Cotyledon | ZnONPs (15 mg/L) | Regeneration- 83.34 ± 0.23% (cv. Edkawy), 64.58 ± 0.15% (cv. Anna Aasa), 78.16 ± 0.23% (cv. Australische Rosen), 67.7 ± 0.47% (cv. Sankt Ignatius), 87.64 ± 0.58% (cv. Sandpoint) | - | - | - | - | Improved salinity stress and regeneration frequency | [4] |
Solanum tuberosum | Leaf | SiO2NPs (50 mg/L) | Callus- 1.1 g (FW), 0.07 g (DW) (cv. Proventa); Callus- 1 g (FW), 0.05 g (DW) (cv. Sante) | 9 (cv. Proventa); 8 (cv. Sante) | - | 6 (cv. Proventa); 4 (cv. Sante) | 10 (cv. Proventa); 8 (cv. Sante) | Increased resistance to salinity stress in terms of various morphological traits | [94] |
Solanum tuberosum cv. White Desiree | Node | AgNPs (2 mg/L) | - | 7.8 | - | - | 12 | Increased shoot and root DW, root length and leaf area, decreased shoot length | [95] |
Solanum tuberosum cv. Spunta | Sprout | CSNPs (250 mg/L) | 90.97 ± 1.41 | 12.40 ± 0.38 | - | - | - | Production of potato virus Y (PVY) free plants | [125] |
Triticum aestivum | Mature embryo | Callus- 1X-3X of all NPs (ZnO/CuO/γ-Fe3O4), embryogenic callus- 1x (CuO/γ-Fe3O4), SE formation- 3X γ-Fe3O4NPs (genotypeKırik); Callus- 2XZnONPs/3XZnONPs/3XCuONPs, embryogenic callus-3XZnONPs, regeneration- 3X ZnONPs (genotype ES-26) | Callus- 100%, embryogenic callus- 97.5%, SEs- 1.69, plantlet- 9.00 (genotypeKırik); Callus- 97.50%, embryogenic callus- 41.38%, SE- 1.70, plantlet- 6.75 (genotype ES-26) | - | - | - | - | Genotype Kırik: higher callus, SE and plantlet formation; Genotype ES-26: same frequency of callus but less SE and plantlet formation | [126] |
Triticum aestivum | Mature embryo | CuNPs (0.015 mg/L) + AgNPs (4 mg/L) | Callus- 90.00%, embryogenic callus- 84.67%, regeneration- 71.67% (genotype AS-2002); Callus- 95.00%, embryogenic callus- 78.00%, regeneration- 68.33% (genotype Wafaq-2001) | - | - | - | - | Increased callus and regeneration frequency | [127] |
Vanilla planifolia | In vitro shoot | AgNPs (50 mg/L) | 14.89 ± 0.40 | 4.71 ± 0.23 | - | - | - | Increased regeneration, shoot length, and biomass | [33] |
Vigna unguiculata cv. Ülkem | Plumule of embryo | MgONPs (555 mg/L) | 10.00 (82.50%) | 1.45 | MgONPs (370 mg/L) | 0.75 (22.50%) | 0.72 | Increased shoot number, frequency, and rooting response | [128] |
4.2. Metal Oxide NPs
4.3. Role of Green NPs
5. Ramifications of NPs on In Vitro Cultures
5.1. NPs to Mitigate Stress and Virus Resistance
5.2. NPs’ Influence on Induction of Somaclonal Variation
5.3. NPs as an Elicitor for In Vitro Production of Secondary Metabolites
Plant | Metabolite(s) | Culture Type | Nanoparticle (NP) Treatment and Time | Remarks | Reference |
---|---|---|---|---|---|
Allium sativum | Allicin, di-allyldisulfide and vinyldithiin | Callus | AgNPs (2 mg/L), time- 4 w | Increased content of all metabolites | [139] |
Brassica rapa spp. pekinensis | Glucosinolates (gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin, 4-hydroxyglucobrassicin, glucoallysin, glucobrassicanapin, sinigrin, progoitrin, and gluconapin), phenolic compounds (flavonols, hydroxybenzoic and hydroxycinnamic acids), hydroxy-benzoic acids (vanillin, p-hydroxybenzoic, protocatechuic, syringic, gentisic acids), hydroxycinnamic acids (chlorogenic, p-coumaric, ferulic, and t-cinnamic acids) and flavonols (myricetin, quercetin, catechin, kaempferol, rutin, naringenin and hesperidin) | Hairy roots | CuONPs (100 mg/L), time- 48 h | Increased content of all metabolites and expression of genes | [140] |
Calendula officinalis | α-Pinene, β-pinene, ρ-cymene, α-thujene, calendulaglycoside, α-cadinene, cadinol, t-muurolol, 1,8-cineole and limonene | Callus | AgNO3NPs (1.2 mg/L), time- 4 w | Increased contents | [136] |
Capsicum annum and C. frutescens | Capsaicin | Cell suspension | AgNO3NPs (3 mg/L), time- 6 d | Increased content | [144] |
Corylus avellana cv. Gerd Eshkevar | Taxol | Cell suspension | AgNPs (5 ppm), time- 1 w | Increased content, decreased cell viability | [78] |
Corylus avellana cv. Gerd Eshkevar | Taxol and baccatin III | Cell suspension | AgNPs (5 ppm), time- 24 h | Increased contents | [79] |
Cucumis anguria | Hydroxybenzoic acids (p-Hydroxybenzoic acid, gallic acid, protocatechuic acid, syringic acid, gentisic acid, salicylic acid, vanillic acid, β-resorcylic acid, hydroxycinnamic acids (Caffeic acid, p-coumaric acid, o-coumaric acid, ferulic acid, chlorogenic acid, t-cinnamic acid), flavonols (Myricetin, quercetin, kaempferol, catechin, rutin, naringenin, biochanin A), phenolics (vanillin, veratric acid, homogentisic acid, hesperidin) | Hairy root | AgNPs (1 mg/L), time- 21 d | Increased biomass and content | [80] |
Datura metel | Atropine | Hairy roots | Nanosilver (conc.- NM), time- 48 h | Increased biomass and content | [137] |
Lavandula angustifolia cv. Munstead | Essential oils | Shoots | AgNPs and AuNPs (10 mg/dm3), time- NM | Decreased content of low-molecular-weight compounds (e.g., α- and β-pinene, camphene, δ-3-carene, p-cymene, 1,8-cineole, trans-pinocarveol, camphoriborneol), and increased content of high-molecular-weight compounds (τ- and α-cadinol 9-cedranone, cadalene, α-bisabolol, cis-14-nor-muurol-5-en-4-one, (E,E)-farnesol) | [138] |
Linum usitatissimum cv. Kerman Shahdad | Lignan | Cell suspension | TiO2NPs (150 mg/L), time- 72 h | Increased content | [82] |
Linum usitatissimum cv. Barbara | Lignans (secoisolariciresinoldiglucoside, lariciresinoldiglucoside) and neolignans (dehydrodiconiferyl alcohol glucoside and guaiacylglycerol-β-coniferyl alcohol ether glucoside) | Seedlings and callus | ZnONPs (500 mg/L)/(10 mg/L), time- 30 d | Higher ZnONPs increased contents in seedling; lower ZnONPs increased contents in callus | [68] |
Mentha longifolia | Essential oils (Linalool and linalyl acetate) | Shoots | CoNPs (0.8 mg/L), time- 30 d | Increased linalool and decreased linalyl acetate contents | [116] |
Momordica charantia | Hydroxybenzoic acids (p-Hydroxybenzoic acid, gallic acid, protocatechuic acid, syringic acid, gentisic acid, salicylic acid, vanillic acid, β-resorcylic acid), hydroxycinnamic acids (Caffeic acid, p-coumaric acid, o-coumaric acid, ferulic acid, chlorogenic acid, t-cinnamic acid), flavonols (Myricetin, quercetin, kaempferol, catechin, rutin, naringenin, biochanin A) | Cell suspension | AgNPs (5 mg/L), time- 48 h | Increased contents | [84] |
Nicotiana benthamiana | Tannin and nicotine | Callus | CH-ZnO (400 ppm)/ZnONPs (200 ppm), time- 7 d | CH-ZnOincreased tannin content; ZnONPs increased nicotine content | [86] |
Olea europaea | Oleuropein, OH-tyrosol, ligustroside and oleacein | Shoot tips | AgNO3NPs (1 and 2 mg/L), time- 30 days | Increased contents | [145] |
Oryza sativa cv. Swarna | Carotenoids | Seedling leaves | AgNPs (40 ppm), time- 14 d | Increased content | [57] |
Punica granatum | Tannins (Gallic acid, tannic acid, ellagic acid, brevifolincarboxylic acid), phenols (chlorogenic acid, catechin, rutin, coumaric acid, ferulic acid, benzoic acid, acacetin, cinnamic acid, genistein, kaempferol) | Callus, shoot tip | MgONPs (2.5–10 mg/L)/CuONPs (5–20 mg/L), time- 21 d | Callus: MgONPs, gallic acid, tannic acid, ellagic acid, chlorogenic acid, acacetin, cinnamic acid, genistein; CuONPs: brevifolincarboxylic acid, catechin, rutin, coumaric acid, ferulic acid, benzoic acid, kaempferol; Shoot tip- MgONPs- gallic acid, tannic acid, ellagic acid, brevifolincarboxylic acid, chlorogenic acid, rutin, coumaric acid, ferulic acid, benzoic acid, acacetin, cinnamic acid, genistein; CuONPs: catechin, kaempferol | [141,142] |
Tagetes erecta | Gallic acid, syringic acid, ellagic acid, quercetin, quercetagetin, lutein and kaempferol | Callus | SiO2NPs (200 mg/L), time- 30 d | Increased contents | [143] |
Vigna radiata var. NCM-13, MgAT-7, and MgAT-4 | Phenolic and glycosides | Callus and shoots | CuONPs (0.5 mg/L)/ ZnONPs (0.5 mg/L), time- NM | Overall, callus synthesized more metabolite than shoots, CuONPs-increased phenolics, ZnONPs increased glycoside content | [135] |
5.4. NPs’ Uptake, Biochemical and Molecular Attributes in Plant Cell
6. NPs as a Tool for Genetic Engineering in Crops
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Cook, S.; Wang, P.; Hwang, H.M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci. Total Environ. 2009, 407, 3070–3072. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef]
- Alharby, H.F.; Metwali, E.M.R.; Fuller, M.P.; Aldhebiani, A.Y. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch. Biol. Sci. 2016, 68, 723–735. [Google Scholar] [CrossRef]
- Zafar, H.; Alim, A.; Zia, M. CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl. Biochem. Biotechnol. 2017, 181, 365–378. [Google Scholar] [CrossRef]
- Zia, M.; Gul, S.; Akhtar, J.; Ul Haq, I.; Abbasi, B.H.; Hussain, A.; Naz, S.; Chaudhary, M.F. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnol. 2017, 11, 193–199. [Google Scholar] [CrossRef]
- Aslani, F.; Bagheri, S.; Julkapli, N.M.; Juraimi, A.S.; Hashemi, F.S.G.; Baghdadi, A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J. 2014, 2014, 641759. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zhao, F.J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Sanzari, I.; Leone, A.; Ambrosone, A. Nanotechnology in plant science: To make a long story short. Front. Bioeng. Biotechnol. 2019, 7, 120. [Google Scholar] [CrossRef]
- Kralova, K.; Jampilek, J. Responses of medicinal and aromatic plants to engineered nanoparticles. Appl. Sci. 2021, 11, 1813. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Judy, J.D.; Sumerlin, B.B.; He, Z. Nano-enabled agriculture: From nanoparticles to smart nanodelivery systems. Environ. Chem. 2020, 17, 413–425. [Google Scholar] [CrossRef]
- Mujtaba, M.; Wang, D.; Carvalho, L.B.; Oliveira, J.L.; Pereira, A.D.E.S.; Sharif, R.; Jogaiah, S.; Paidi, M.K.; Wang, L.; Ali, Q.; et al. Nanocarrier-mediated delivery of miRNA, RNAi, and CRISPR-Cas for plant protection: Current trends and future directions. ACS Agric. Sci. Technol. 2021, 1, 417–435. [Google Scholar] [CrossRef]
- Khalid, M.F.; Khan, R.I.; Jawaid, M.Z.; Shafqat, W.; Hussain, S.; Ahmed, T.; Rizwan, M.; Ercisli, S.; Pop, O.L.; Marc, R.A. Nanoparticles: The plant saviour under abiotic stresses. Nanomaterials 2022, 12, 3915. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef]
- Nauerby, B.; Billing, K.; Wyndaele, R. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci. 1997, 123, 169–177. [Google Scholar] [CrossRef]
- Wiebke, B.; Ferreira, F.; Pasquali, G.; Bodanese-Zanettini, M.H.; Droste, A. Influence of antibiotics on embryogenic tissue and Agrobacterium tumefaciens suppression in soybean genetic transformation. Bragantia 2006, 65, 543–551. [Google Scholar] [CrossRef]
- Abdi, G.; Salehi, H.; Khosh-Khui, M. Nano silver: A novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol. Plant. 2008, 30, 709–714. [Google Scholar] [CrossRef]
- Safavi, K. Effect of titanium dioxide nanoparticles in plant tissue culture media for enhance resistance to bacterial activity. Bull. Environ. Pharmacol. Life Sci. 2014, 3, 163–166. [Google Scholar]
- da Silva, T.G.A.; Duong, T.; Michi, T.; Seiichi, F. The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Sci. Hortic. 2003, 97, 397–410. [Google Scholar] [CrossRef]
- Safavi, K. Evaluation of using nanomaterial in tissue culture media and biological activity. In Proceedings of the 2nd International Conference on Ecological, Environmental and Biological Sciences (EEBS’2012), Bali, Indonesia, 13–14 October 2012; pp. 5–8. [Google Scholar]
- Braydich-Stolle, L.; Hussain, S.; Schlager, J.J.; Hofmann, M.C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Debabrata, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 225103. [Google Scholar] [CrossRef]
- Jeong, S.H.; Hwang, Y.H.; Yi, S.C. Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver. J. Mater. Sci. 2005, 40, 5413–5418. [Google Scholar] [CrossRef]
- Min, J.S.; Kim, K.S.; Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, S.B.; Jung, M.; Lee, Y.S. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol. J. 2009, 25, 376–380. [Google Scholar] [CrossRef]
- Rostami, A.A.; Shahsavar, A. Nano-silver particles eliminate the in vitro contaminations of Olive ‘Mission’ explants. Asian J. Plant Sci. 2009, 8, 505–509. [Google Scholar] [CrossRef]
- Safavi, K.; Mortazaeinezahad, F.; Esfahanizadeh, M.; Asgari, M.J. In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad. Sci. Eng. Technol. 2011, 55, 372–373. [Google Scholar]
- Bansod, S.; Bawskar, M.; Rai, M. In vitro effect of biogenic silver nanoparticles on sterilization of tobacco leaf explants and for higher yield of protoplasts. IET Nanobiotechnol. 2015, 9, 239–245. [Google Scholar] [CrossRef]
- Fakhrfeshani, M.; Bagheri, A.; Sharifi, A. Disinfecting effects of nano silver fluids in gerbera (Gerbera jamesonii) capitulum tissue culture. J. Biol. Environ. Sci. 2012, 6, 121–127. [Google Scholar]
- Arab, M.M.; Yadollahi, M.M.H.; Bagheri, S. Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G × N15 (hybrid of almond × peach) rootstock. J. Genet. Eng. Biotechnol. 2014, 12, 103–110. [Google Scholar] [CrossRef]
- Shokri, S.; Babaei, A.; Ahmadian, M.; Hessami, S.; Arab, M.M. The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of Rosae (Rosa hybrida L.) in vitro culture. Acta Hortic. 2014, 3, 50–54. [Google Scholar]
- Gouran, A.; Jirani, M.; Mozafari, A.A.; Saba, M.K.; Ghaderi, N.; Zaheri, S. Effect of silver nanoparticles on grapevine leaf explants sterilization at in vitro conditions. In Proceedings of the 2nd National Conference on Nanotechnology from Theory to Application, Isfahan, Iran, 20 February 2014; pp. 1–6. [Google Scholar]
- Spinoso-Castillo, J.L.; Chavez-Santoscoy, R.A.; Bogdanchikova, N.; Pérez-Sato, J.A.; Morales-Ramos, V.; Bello-Bello, J.J. Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult. 2017, 129, 195–207. [Google Scholar] [CrossRef]
- El-Kosary, S.; Abd-Allatif, A.M.; Stino, R.G.; Hassan, M.M.; Kinawy, A.A. Effect of silver nanoparticles on micropropagation of date palm (Phoenix dactylifera L. cv. sewi and medjool). Plant Arch. 2020, 20, 9701–9706. [Google Scholar]
- Abbas, H.K.; Abdulhussein, M.A.A. Improving shoot multiplication of strawberry (Fragaria ananassa L. Cv. Roby Gem) in vitro by using AgNPs and iron nanoparticles. Nat. Volatiles Essent. 2021, 8, 2521–2530. [Google Scholar]
- Darwesh, O.M.; Hassan, S.A.M.; Abdallatif, A.M. Enhancing in vitro multiplication of some olive cultivars using silver, selenium and chitosan nanoparticles. Res. Sq. 2021, 8, 995940. [Google Scholar] [CrossRef]
- Lee, W.M.; Kwak, J.I.; An, Y.J. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 2012, 86, 491–499. [Google Scholar] [CrossRef]
- Mahna, N.; Vahed, S.Z.; Khani, S. Plant in vitro culture goes nano: Nanosilver mediated decontamination of ex vitro explants. J. Nanomed. Nanotechnol. 2013, 4, 161. [Google Scholar] [CrossRef]
- Cho, M.; Chung, H.; Choi, W.; Yoon, J. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Eniron. Microbiol. 2005, 71, 270–275. [Google Scholar] [CrossRef]
- Shiraishi, K.; Koscki, H.; Tsurumoto, T.; Baba, K.; Naito, M.; Nakayama, K.; Shindo, H. Antimicrobial metal implant with a TiO2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf. Interface Anal. 2008, 41, 17–21. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Mandeh, M.; Omidi, M.; Rahaie, M. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol. Trace Elem. Res. 2012, 150, 376–380. [Google Scholar] [CrossRef]
- Helaly, M.N.; El-Metwally, M.A.; El-Hoseiny, H.; Omar, S.A.; El-Sheery, N.I. Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust. J. Crop. Sci. 2014, 8, 612–624. [Google Scholar]
- Álvarez, S.P.; Tapia, M.A.M.; Vega, M.E.G.; Ardisana, E.F.H.; Medina, J.A.C.; Zamora, G.L.F.; Bustamante, D.V. Nanotechnology and plant tissue culture. In Plant Nanobionics, Nanotechnology in the Life Sciences; Prasad, R., Ed.; Springer: Cham, Germany, 2019; pp. 333–370. [Google Scholar]
- Waterworth, W.M.; Bray, C.M.; West, C.E. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot. 2015, 66, 3549–3558. [Google Scholar] [CrossRef] [PubMed]
- Barrena, R.; Casals, E.; Colón, J.; Font, X.; Sánchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Yasur, J.; Rani, P.U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environ. Sci. Pollut. Res. Int. 2013, 20, 8636–8648. [Google Scholar] [CrossRef]
- Hatami, M. Stimulatory and inhibitory effects of nanoparticulates on seed germination and seedling vigor indices. In Nanoscience and Plant-Soil Systems; Ghorbanpour, M., Manika, K., Varma, A., Eds.; Springer International Publishing: New York, NY, USA, 2017; pp. 357–385. [Google Scholar]
- Zheng, L.; Mingyu, S.; Xiao, W.; Chao, L.; Chunxiang, Q.; Liang, C.; Huang, H.; Xiaoqing, L.; Hong, F. Effect of nano anatase on spectral characteristics and distribution of LHCLL on the thylakoid membranes of spinach. Biol. Trace Elem. Res. 2007, 120, 273–280. [Google Scholar]
- Mehrian, S.K.; Heidari, R.; Rahmani, F.; Najafi, S. Effect of chemical synthesis silver nanoparticles on germianation indices and seedling growth in seven varietes of Lycopersicon esculentum Mill (tomato) plants. J. Clust. Sci. 2016, 27, 327–340. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Szőllősi, R.; Molnár, Á.; Kondak, S.; Kolbert, Z. Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. phytotoxcity. Plants 2020, 9, 1745. [Google Scholar] [CrossRef]
- Mazumdar, H.; Ahmed, G.U. Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int. J. Chem. Tech. Res. 2011, 3, 1494–1500. [Google Scholar]
- Tripathi, D.K.; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef]
- Ali, A.; Phull, A.R.; Zia, M.; Shah, A.M.A.; Malik, R.N.; Haq, I.U. Phytotoxicity of river Chenab sediments: In vitro morphological and biochemical response of Brassica napus L. Environ. Nanotechnol. Monit. Manag. 2015, 4, 74–84. [Google Scholar] [CrossRef]
- Zaka, M.; Abbasi, B.H.; Rahman, L.; Shah, A.; Zia, M. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnol. 2016, 10, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Dutta Gupta, S.; Agarwal, A.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef]
- Khan, I.; Raza, M.A.; Awan, S.A.; Khalid, M.H.B.; Raja, N.I.; Min, S.; Zhang, A.; Naeem, M.; Meraj, T.A.; Iqbal, N.; et al. In vitro effect of metallic silver nanoparticles (AgNPs): A novel approach toward the feasible production of biomass and natural antioxidants in pearl millet (Pennisetum glaucum L.). Appl. Ecol. Environ. Res. 2019, 17, 12877–12892. [Google Scholar] [CrossRef]
- Tymoszuk, A. Silver nanoparticles effects on in vitro germination, growth, and biochemical activity of tomato, radish, and kale seedlings. Materials 2021, 14, 5340. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska-Sowa, M.; Lisiecki, K.; Pańka, D. Response of rapeseed (Brassica napus L.) to silver and gold nanoparticles as a function of concentration and length of exposure. Agronomy 2022, 12, 2885. [Google Scholar] [CrossRef]
- Biba, R.; Matić, D.; Lyons, D.M.; Štefanić, P.P.; Cvjetko, P.; Tkalec, M.; Balen, B. Coating-dependent effects of silver nanoparticles on tobacco seed germination and early growth. Int. J. Mol. Sci. 2020, 21, 3441. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef]
- Timoteo, C.O.; Paiva, R.; dos Reis, M.V.; da Silva, D.P.C.; da Silva, R.B.; de Oliveira, J.E. Silver nanoparticles on dragon fruit in vitro germination and growth. Plant Cell Cult. Micropropag. 2018, 14, 18–25. [Google Scholar]
- Mustafa, H.S.; Oraibi, A.G.; Ibrahim, K.M.; Ibrahim, N.K. Influence of silver and copper nanoparticles on physiological characteristics of Phaseolus vulgaris L. in vitro and in vivo. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 834–843. [Google Scholar] [CrossRef]
- Zafar, H.; Ali, A.; Ali, J.S.; Haq, I.U.; Zia, M. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Front. Plant Sci. 2016, 7, 535. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.M.G.; Chung, I.M. Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. J. Plant Growth Regul. 2015, 34, 350–361. [Google Scholar] [CrossRef]
- Lahiani, M.H.; Dervishi, E.; Chen, J.; Nima, Z.; Gaume, A.; Biris, A.S.; Khodakovskaya, M.V. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interface 2013, 5, 7965–7973. [Google Scholar] [CrossRef]
- Zaeem, A.; Drouet, S.; Anjum, S.; Khurshid, R.; Younas, M.; Blondeau, J.P.; Tungmunnithum, D.; Giglioli-Guivarc’h, N.; Hano, C.; Abbasi, B.H. Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. in vitro cultures: A comparative analysis. Biomolecules 2020, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Dehkourdi, E.H.; Mosavi, M. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol. Trace Elem. Res. 2013, 155, 283–286. [Google Scholar] [CrossRef]
- Timoteo, C.O.; Paiva, R.; dos Reis, M.V.; Claro, P.I.C.; Ferraz, L.M.; Marconcini, J.M.; de Oliveira, J.E. In vitro growth of Physalis peruviana L. affected by silver nanoparticles. 3 Biotech 2019, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.M.G.; Kim, S.H.; Chung, I.M. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: Physiological and molecular level responses of in vitro grown plants. Acta Physiol. Plant. 2014, 36, 2947–2958. [Google Scholar] [CrossRef]
- Husen, A.; Siddiqi, K.S. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnol. 2014, 12, 16–27. [Google Scholar] [CrossRef]
- Villagarcia, H.; Dervishi, E.; de Silva, K.; Biris, A.S.; Khodakovskaya, M.V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 2012, 8, 2328–2334. [Google Scholar] [CrossRef]
- Dhingra, P.; Sharma, S.; Singh, K.H.; Kushwaha, H.S.; Barupal, J.K.; Haq, S.; Kothari, S.L.; Kachhwaha, S. Seed priming with carbon nanotubes and silicon dioxide nanoparticles influence agronomic traits of Indian mustard (Brassica juncea) in field experiments. J. King Saud Univ. Sci. 2022, 34, 102067. [Google Scholar] [CrossRef]
- Timoteo, C.O.; Paiva, R.; dos Reis, M.V.; Claro, P.I.C.; da Silva, D.P.C.; Marconcini, J.M.; de Oliveira, J.E. Silver nanoparticles in the micropropagation of Campomanesia rufa (O. Berg) Nied. Plant Cell Tissue Organ Cult. 2019, 137, 359–368. [Google Scholar] [CrossRef]
- Ali, A.; Mohammad, S.; Khan, M.A.; Raja, N.I.; Arif, M.; Kamil, A.; Mashwani, Z.R. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif. Cells Nanomed. Biotechnol. 2019, 47, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Mohebodini, M.; Fathi, R.; Mehri, N. Optimization of hairy root induction in chicory (Cichorium intybus L.) and effects of nanoparticles on secondary metabolites accumulation. Iran. J. Genet. Plant Breed. 2017, 6, 60–68. [Google Scholar]
- Jamshidi, M.; Ghanati, F.; Rezaei, A.; Bemani, E. Change of antioxidant enzymes activity of hazel (Corylus avellana L.) cells by AgNPs. Cytotechnology 2016, 68, 525–530. [Google Scholar] [CrossRef]
- Jamshidi, M.; Ghanati, F. Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles. Plant Physiol. Biochem. 2017, 110, 178–184. [Google Scholar] [CrossRef]
- Chung, I.M.; Rajakumar, G.; Thiruvengadam, M. Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol. Hung. 2018, 69, 97–109. [Google Scholar] [CrossRef]
- Mozafari, A.; Havas, F.; Ghaderi, N. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tissue Organ Cult. 2018, 132, 511–523. [Google Scholar] [CrossRef]
- Karimzadeh, F.; Haddad, R.; Garoosi, G.H.; Khademian, R. Effects of nanoparticles on activity of lignan biosynthesis enzymes in cell suspension culture of Linum usitatissimum L. Russ. J. Plant Physiol. 2019, 66, 756–762. [Google Scholar] [CrossRef]
- Shaikhaldein, H.O.; Al-Qurainy, F.; Nadeem, M.; Khan, S.; Tarroum, M.; Salih, A.M. Biosynthesis and characterization of silver nanoparticles using Ochradenus arabicus and their physiological effect on Maerua oblongifolia raised in vitro. Sci. Rep. 2020, 10, 17569. [Google Scholar] [CrossRef]
- Chung, I.M.; Rekha, K.; Rajakumar, G.; Thiruvengadam, M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. 3 Biotech 2018, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Do, D.G.; Dang, T.K.T.; Nguyen, T.H.T.; Nguyen, T.D.; Tran, T.T.; Duong, D.H. Effects of nano silver on the growth of banana (Musa spp.) cultured in vitro. J. Viet. Environ. 2018, 10, 92–98. [Google Scholar] [CrossRef]
- Patel, K.V.; Nath, M.; Bhatt, M.D.; Dobriyal, A.K.; Bhatt, D. Nanofomulation of zinc oxide and chitosan zinc sustain oxidative stress and alter secondary metabolite profile in tobacco. 3 Biotech 2020, 10, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Balážová, Ľ.; Baláž, M.; Babula, P. Zinc oxide nanoparticles damage tobacco BY-2 cells by oxidative stress followed by processes of autophagy and programmed cell death. Nanomaterials 2020, 10, 1066. [Google Scholar] [CrossRef] [PubMed]
- Manickavasagam, M.; Pavan, G.; Vasudevan, V. A comprehensive study of the hormetic influence of biosynthesized AgNPs on regenerating rice calli of indica cv. IR64. Sci. Rep. 2019, 9, 8821. [Google Scholar] [CrossRef] [PubMed]
- Taha, R.A.; Hassan, M.M.; Ibrahim, E.A.; Baker, N.H.A.; Shaaban, E.A. Carbon nanotubes impact on date palm in vitro cultures. Plant Cell Tissue Organ Cult. 2016, 127, 525–534. [Google Scholar] [CrossRef]
- Elsayh, S.A.A. Impact of silver nanoparticles on enhancing in vitro proliferation of embryogenic callus and somatic embryos regeneration of date palm cv. Hayani. Int. J. Environ. Agric. Biotech. 2021, 6, 40–52. [Google Scholar]
- Bello-Bello, J.J.; Chavez-Santoscoy, R.A.; Lecona-Guzman, C.A.; Bogdanchikova, N.; Salinas-Ruız, J.; Gomez-Merino, F.C.; Pestryakov, A. Hormetic response by silver nanoparticles on in vitro multiplication of sugarcane (Saccharum spp. cv. Mex 69-290) using a temporary immersion system. Dose Response 2017, 15, 1559325817744945. [Google Scholar] [CrossRef]
- Gaafar, A.A.; Taha, R.A.; Abou-Baker, N.H.; Shaaban, E.A.; Salama, Z.A. Evaluation of regeneration, active ingredients and antioxidant activities in jojoba tissue cultures as affected by carbon nanotubes. Biosci. Res. 2018, 15, 2283–2392. [Google Scholar]
- Aazami, M.A.; Rasouli, F.; Ebrahimzadeh, A. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biol. 2021, 21, 597. [Google Scholar] [CrossRef]
- Gowayed, S.M.H.; Al-Zahrani, H.S.M.; Metwali, E.M.R. Improving the salinity tolerance in potato (Solanum tuberosum) by exogenous application of silicon dioxide nanoparticles. Int. J. Agric. Biol. 2017, 19, 183–194. [Google Scholar]
- Homaee, M.B.; Ehsanpour, A.A. Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Ind. J. Plant Physiol. 2015, 20, 353–359. [Google Scholar] [CrossRef]
- Koontz, H.V.; Berle, K.L. Silver uptake, distribution, and effect on calcium, phosphorus, and sulfur uptake. Plant Physiol. 1980, 65, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Bell, P.F.; Chaney, R.L.; Angle, J.S. Free metal activity and total metal concentrations as indices of micro nutrient availability to barley [Hordeum vulgare L. Klages]. Plant Soil. 1991, 130, 51–62. [Google Scholar] [CrossRef]
- Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W.; Hernandez-Viezcas, J.A.; Bonilla-Bird, N.; López-Moreno, M.L.; Komárek, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiol. Biochem. 2017, 110, 236–264. [Google Scholar] [CrossRef]
- Kokina, I.; Gerbreders, V.; Sledevskis, E.; Bulanovs, A. Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J. Biotechnol. 2013, 165, 127–132. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Grosser, J.W.; Dutt, M. Silver compounds regulate leaf drop and improve in vitro regeneration from mature tissues of Australian finger lime (Citrus australasica). Plant Cell Tissue Organ Cult. 2020, 141, 455–464. [Google Scholar] [CrossRef]
- Sarmast, M.K.; Salehi, H. Silver nanoparticles: An influential element in plant nanobiotechnology. Mol. Biotechnol. 2016, 58, 441–449. [Google Scholar] [CrossRef]
- Huong, B.T.T.; Xuan, T.D.; Trung, K.H.; Ha, T.T.T.; Duong, V.X.; Khanh, T.D.; Gioi, D.H. Influences of silver nanoparticles in vitro morphogenesis of specialty king banana (Musa ssp.) in Vietnam. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 163–175. [Google Scholar]
- Hegazi, E.S.S.; Yousef, A.; Abd-Allatif, A.M.A.; Mahmoud, T.S.M.; Mostafa, M.K.M. Effect of silver nanoparticles, medium composition and growth regulators on in vitro propagation of picual olive cultivar. Egypt. J. Chem. 2021, 64, 6961–6969. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Selenium-induced upregulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity induced damage in rapeseed seedlings. Biol. Trace Elem. Res. 2011, 43, 1704–1721. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.M.; Fugetsu, B. Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. J. Biomed. Nanotechnol. 2007, 3, 285–288. [Google Scholar] [CrossRef]
- Chutipaijit, S.; Sutjaritvorakul, T. Application of activated charcoal and nanocarbon to callus induction and plant regeneration in aromatic rice (Oryza sativa L.). Chem. Soc. Rev. 2018, 30, 1–8. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Malar, S.; Thiyagarajan, M.; Indiraarulselvi, P.; Geetha, N. Effect of phycochemical coated silver nanocomplexes as novel growth-stimulating compounds for plant regeneration of Alternanthera sessilis L. J. Appl. Phycol. 2017, 29, 1095–1106. [Google Scholar] [CrossRef]
- Kouhi, S.M.; Lahouti, M. Application of ZnO nanoparticles for inducing callus in tissue culture of rapeseed. Int. J. Nanosci. Nanotechnol. 2018, 14, 133–141. [Google Scholar]
- Irum, S.; Jabeen, N.; Ahmad, K.S.; Shafique, S.; Khan, T.F.; Gul, H.; Anwaar, S.; Shah, N.I.; Mehmood, A.; Hussain, S.Z. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. PLoS ONE 2020, 15, e0242829. [Google Scholar] [CrossRef]
- Giorgetti, L.; Ruffini Castiglione, M.; Bernabini, M.; Geri, C. Nanoparticles effects on growth and differentiation in cell culture of carrot (Daucus carota L.). Agrochimica 2010, 6, 1–9. [Google Scholar]
- Tung, H.T.; Thuong, T.T.; Cuong, D.M.; Luan, V.Q.; Hien, V.T.; Hieu, T.; Nhut, D.T. Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell Tissue Organ Cult. 2021, 145, 393–403. [Google Scholar] [CrossRef]
- Kokina, I.; Sïedevskis, Ç.; Gerbreders, V.; Grauda, D.; Jermaïonoka, M.; Valaine, K.; Gavarâne, I.; Pigiòka, I.; Filipoviès, M.; Rashal, I. Reaction of flax (Linum usitatissimum L.) calli culture to supplement of medium by carbon nanoparticles. Proc. Latv. Acad. Sci. Sect. B 2012, 66, 200–209. [Google Scholar]
- Kokina, I.; Mickeviča, I.; Jahundoviča, I.; Ogurcovs, A.; Krasovska, M.; Jermaļonoka, M.; Mihailova, I.; Tamanis, E.; Gerbreders, V. Plant explants grown on medium supplemented with Fe3O4 nanoparticles have a significant increase in embryogenesis. J. Nanomater. 2017, 2017, 4587147. [Google Scholar] [CrossRef]
- Talankova-Sereda, T.E.; Liapina, K.V.; Shkopinskij, E.A.; Ustinov, A.I.; Kovalyova, A.V.; Dulnev, P.G.; Kucenko, N.I. The influence of Cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro. Nanosci. Nanoeng. 2016, 4, 31–39. [Google Scholar] [CrossRef]
- Chetia, I.; Chaliha, A.K.; Gogoi, M.B.; Verma, G. Establishment of efficient in-vitroregeneration protocol in ‘Malbhog’ Banana (Musa paradisiaca) using MWCNTs and plant growth regulators. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 2930–2937. [Google Scholar] [CrossRef]
- Chutipaijit, S. Establishment of condition and nanoparticle factors influencing plant regeneration from aromatic rice (Oryza sativa). Int. J. Agric. Biol. 2015, 17, 1049–1054. [Google Scholar]
- Anwaar, S.; Maqbool, Q.; Jabeen, N.; Nazar, M.; Abbas, F.; Nawaz, B.; Hussain, T.; Hussain, S.Z. The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L. Front. Plant Sci. 2016, 7, 1330. [Google Scholar] [CrossRef]
- Chutipaijit, S.; Sutjaritvorakul, T. Application of nanomaterials in plant regeneration of rice (Oryza sativa L.). Mater. Today Proc. 2017, 4, 6140–6145. [Google Scholar] [CrossRef]
- Chutipaijit, S.; Sutjaritvorakul, T. Titanium dioxide (TiO2) nanoparticles induced callus induction and plant regeneration of indica rice cultivars (suphanburi1 and suphanburi90). Dig. J. Nanomater. Biostruct. 2018, 13, 1003–1010. [Google Scholar]
- Shafique, S.; Jabeen, N.; Ahmad, K.S.; Irum, S.; Anwaar, S.; Ahmad, N.; Alam, S.; Ilyas, M.; Khan, T.F.; Hussain, S.Z. Green fabricated zinc oxide nanoformulated media enhanced callus induction and regeneration dynamics of Panicum virgatum L. PLoS ONE 2020, 15, e0230464. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; He, N.; Zhang, B.; Liu, X.; Tan, X. In vitro influence of Fe3O4 nanoparticles on Rhizoma polygonati micropropagation. J. Nanosci. Nanotechnol. 2017, 17, 2047–2053. [Google Scholar] [CrossRef]
- Flores, D.; Chacón, R.; Alvarado, L.; Schmidt, A.; Alvarado, C.; Chaves, J. Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am. J. Plant Sci. 2014, 5, 3510–3518. [Google Scholar] [CrossRef]
- Elsahhar, S.; Shahba, M.; Elsayed, T.; Mikhail, M.; Galal, A. Effect of chitosan nanoparticles (CS-NPs) on in vitro regeneration response and production of potato virus Y (PVY)-free plants of potato. Agronomy 2022, 12, 2901. [Google Scholar] [CrossRef]
- Nalci, O.B.; Nadaroglu, H.; Pour, A.H.; Gungor, A.A.; Haliloglu, K. Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult. 2019, 136, 269–277. [Google Scholar] [CrossRef]
- Malik, W.A.; Mahmood, I.; Razzaq, A.; Afzal, M.; Shah, G.A.; Iqbal, A.; Zain, M.; Ditta, A.; Asad, S.A.; Ahmad, I.; et al. Exploring potential of copper and silver nano particles to establish efficient callogenesis and regeneration system for wheat (Triticum aestivum L.). GM Crop. Food 2021, 12, 564–585. [Google Scholar] [CrossRef] [PubMed]
- Koçak, R.; Okcu, M.; Haliloglu, K.; Alayli, A.; Nadaroglu, H. Determination of the effect of magnesium oxide nanoparticles (MgO-NP) on in vitro culture of cowpea (Vigna unguiculata L. Walp). Res. Sq. 2021, 13, 1088469. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Pathak, A.; Joshi, A. Somaclonal variation. In Plant Biotechnology: Principles, Techniques and Applications; Prasad, B.D., Sahni, S., Kumar, P., Siddiqui, W.M., Eds.; Apple Academic Press (CRC Press): New York, NY, USA, 2018; Volume 1, pp. 185–213. [Google Scholar]
- Jeong, B.R.; Sivanesan, I. Direct adventitious shoot regeneration, in vitro flowering, fruiting, secondary metabolite content and antioxidant activity of Scrophularia takesimensis Nakai. Plant Cell Tissue Organ Cult. 2015, 123, 607–618. [Google Scholar] [CrossRef]
- Kokina, I.; Mickevica, I.; Jermalonoka, M.; Bankovska, L.; Gerbreders, V.; Ogurcovs, A.; Jahundovica, I. Case study of somaclonal variation in resistance genes Mlo and Pme3 in flaxseed (Linum usitatissimum L.) induced by nanoparticles. Int. J. Genomics 2017, 2017, 1676874. [Google Scholar] [CrossRef]
- Hatami, M.; Naghdi, B.H.; Ghorbanpour, M. Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review. J. Med. Plant. 2019, 18, 6–36. [Google Scholar] [CrossRef]
- Raei, M.; Angaji, A.A.; Omidi, M.; Khodayari, M. Effect of abiotic elicitors on tissue culture of Aloe vera. Int. J. Biosci. 2014, 5, 74–81. [Google Scholar]
- Iqbal, Z.; Javad, S.; Naz, S.; Shah, A.A.; Shah, A.N.; Paray, B.A.; Gulnaz, A.; Abdelsalam, N.R. Elicitation of the in vitro cultures of selected varieties of Vigna radiata L. with zinc oxide and copper oxide nanoparticles for enhanced phytochemicals production. Front. Plant Sci. 2022, 13, 908532. [Google Scholar] [CrossRef]
- Al-Oubaidi, H.K.M.; Mohammed-Ameen, A.S. The effect of (AgNO3) NPs on increasing of secondary metabolites of Calendula officinalis L. in vitro. Int. J. Pharm. Pract. 2014, 5, 267–272. [Google Scholar]
- Shakeran, Z.; Keyhanfar, M.; Asghari, G.; Ghanadian, M. Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turk. J. Biol. 2015, 39, 111–118. [Google Scholar] [CrossRef]
- Wesołowska, A.; Jadczak, P.; Kulpa, D.; Przewodowski, W. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oils from AgNPs and AuNPs elicited Lavandula angustifolia in vitro cultures. Molecules 2019, 24, 606. [Google Scholar] [CrossRef]
- Al-Taie, A.A.G.; Aboohanah, M.A.; Issa, F.H. Effect of silver nanoparticles in stimulating some active compounds in garlic callus under salt stress, in vitro. IOP Conf. Ser. Earth Environ. Sci. 2021, 923, 012023. [Google Scholar] [CrossRef]
- Chung, I.M.; Rekha, K.; Rajakumar, G.; Thiruvengadam, M. Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles. Plant Cell Tissue Organ Cult. 2018, 134, 95–106. [Google Scholar] [CrossRef]
- Al-Oubaidi, H.K.M.; Al-Khafagi, M.F.J. In vitroincreasing medical compounds (tannins and phenols) of Punica granatum L. in callus using MgO NPs and CuO NPs. J. Pharm. Sci. Res. 2018, 10, 1085–1088. [Google Scholar]
- Al-Khafagi, M.F.J.; Al-Oubaidi, H.K.M. Effect of MgO and CuO nanoparticles on increasing tannin and phenol compounds of Punica granatum L. using shoot tip in vitro. Int. J. Drug Deliv. Technol. 2020, 10, 499–504. [Google Scholar] [CrossRef]
- Hayl, L.A.A.-A.; Al-Oubaidi, H.K.M. Effect of SiO2 NPs on increase of active compounds in leave callus of Tagetes erecta L. (Marigold) plant in vitro. J. Pharm. Negat. 2022, 13, 86–92. [Google Scholar]
- Bhat, P.; Bhat, A. Silver nanoparticles for the enhancement of accumulation of capsaicin in suspension culture of Capsicum sp. J. Exp. Sci. 2016, 7, 1–6. [Google Scholar]
- Al-Sowaidi, W.M.M.; Al-Oubaidi, H.K.M. Increasing (glycosides compounds) of Olea europaea L. from shoot tips using AgNO3 nano particle in vitro. Int. J. Phytopharmacol. 2015, 6, 31–35. [Google Scholar]
- Anjum, S.; Anjum, I.; Hano, C.; Kousar, S. Advances in nanomaterials as novel elicitors of pharmacologically active plant spcialized metabolites: Current status and future outlooks. RSC Adv. 2019, 9, 40404–40423. [Google Scholar] [CrossRef] [PubMed]
- Bolwell, G.P.; Wojtaszek, P. Mechanisms for the generation of reactive oxygen species in plant defence–A broad perspective. Physiol. Mol. Plant Pathol. 1997, 51, 347–366. [Google Scholar] [CrossRef]
- Khan, A.K.; Kousar, S.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Anjum, S. Nano-elicitation as an effective and emerging strategy for in vitro production of industrially important flavonoids. Appl. Sci. 2021, 11, 1694. [Google Scholar] [CrossRef]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; AlMutairi, K.A.; Siddiqui, Z.H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 2017, 110, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Luyckx, M.; Xu, X.; Legay, S.; Sergeant, K.; Hausman, J.F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 2018, 161, 98–106. [Google Scholar] [CrossRef]
- Phukan, U.J.; Jeena, G.S.; Shukla, R.K. WRKY transcription factors: Molecular regulation and stress responses in plants. Front. Plant Sci. 2016, 7, 760. [Google Scholar] [CrossRef]
- Kohan-Baghkheirati, E.; Geisler-Lee, J. Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 2015, 5, 436–467. [Google Scholar] [CrossRef]
- Marslin, G.; Sheeba, C.J.; Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant Sci. 2017, 8, 832. [Google Scholar] [CrossRef]
- Rivero-Montejo, S.J.; Hernandez, M.V.; Pacheco, I.T. Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agriculture 2021, 11, 134. [Google Scholar] [CrossRef]
- Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D.P. Determination of the pore size of cell walls of living plant cells. Science 1979, 205, 1144–1147. [Google Scholar] [CrossRef]
- Maine, M.A.; Duarte, M.V.; Suñé, N.L. Cadmium uptake by floating macrophytes. Water Res. 2001, 35, 2629–2634. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B.M.; Lu, J.; Wanzer, M.B.; Woloschak, G.E.; Smalle, J.A. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010, 10, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Feng, C.; Chen, Z.; Liu, L.; Jiang, K.; Li, Q.; Fan, S. Super aligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 2008, 8, 2564–2569. [Google Scholar] [CrossRef]
- Etxeberria, E.; Gonzalez, P.; Pozueta, J. Evidence for two endocytic transport pathways in plant cells. Plant Sci. 2009, 177, 341–348. [Google Scholar] [CrossRef]
- Pola, M.; Tamara, L.C.; Andrew, T.H. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. Lett. 2012, 46, 9224–9239. [Google Scholar]
- Birbaum, K.; Brogioli, R.; Schellenberg, M.; Martinoia, E.; Stark, W.J.; Günther, D.; Limbach, L.K. No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ. Sci. Technol. 2010, 44, 8718–8723. [Google Scholar] [CrossRef]
- Hauck, T.S.; Ghazani, A.A.; Chan, W.C.W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4, 153–159. [Google Scholar] [CrossRef]
- Deng, Y.Q.; White, J.C.; Xing, B.S. Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. J. Zhejiang Univ. Sci. A 2014, 15, 552–572. [Google Scholar] [CrossRef]
- Nair, R.; Varghese, H.S.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Lin, S.; Reppert, J.; Hu, Q.; Hudson, J.S.; Reid, M.L.; Ratnikova, T.A.; Rao, A.M.; Luo, H.; Ke, P.C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 2009, 5, 1128–1132. [Google Scholar] [CrossRef]
- Lee, C.W.; Mahendra, S.; Zodrow, K.; Li, D.; Tsai, Y.C.; Braam, J.; Alvarez, P.J.J. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 2010, 29, 669–675. [Google Scholar] [CrossRef]
- Onelli, E.; Prescianotto-Baschong, C.; Caccianiga, M.; Moscatelli, A. Clathrin dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J. Exp. Bot. 2008, 59, 3051–3068. [Google Scholar] [CrossRef]
- Serag, M.F.; Kaji, N.; Gaillard, C.; Okamoto, Y.; Terasaka, K.; Jabasini, M.; Tokeshi, M.; Mizukami, H.; Bianco, A.; Baba, Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 2010, 5, 493–499. [Google Scholar] [CrossRef]
- Whiteside, M.D.; Treseder, K.K.; Atsatt, P.R. The brighter side of soils: Quantum dots track organic nitrogen through fungi and plants. Ecology 2009, 90, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ratnikova, T.A.; Stone, M.B.; Lin, S.; Lard, M.; Huang, G.; Hudson, J.S.; Ke, P.C. Differential uptake of carbo nanoparticles by plant and mammalian cells. Small 2010, 6, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, B.; Wang, Q.; Shi, X.; Xiao, Z.; Lin, J.; Fang, X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009, 9, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Geiser-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010, 408, 3053–3061. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, L.; He, X.; Bai, W.; Ding, Y.; Zhang, Z.; Zhao, Y.; Chai, Z. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 2010, 78, 273–279. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. 2014, 21, 12709–12722. [Google Scholar] [CrossRef]
- Hossain, Z.; Mustafa, G.; Komatsu, S. Plant responses to nanoparticle stress. Int. J. Mol. Sci. 2015, 16, 26644–26653. [Google Scholar] [CrossRef]
- Kole, C.; Kole, P.; Randunu, K.M.; Choudhary, P.; Podila, R.; Ke, P.C. Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Ammara, R.; Jhanzab, H.M.; Mahmood, T.; Hafeez, A.; Hussain, S. A novel nanomaterial to enhance growth and yield of wheat. J. Nanosci. Technol. 2016, 2, 55–58. [Google Scholar]
- Choi, O.; Deng, K.K.; Kim, N.J.; Ross, L.; Surampalli, R.Y.; Hu, Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066–3074. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.A.; Padil, V.V.T.; Slaveykova, V.I.; Černık, M.; Sevců, A. Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res. Lett. 2018, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009, 43, 9473–9479. [Google Scholar] [CrossRef]
- Mirzajani, F.; Askari, H.; Hamzelou, S.; Farzaneh, M.; Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf. 2013, 88, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Dat, J.; Vandenabeele, S.; Vranová, E.; Van Montagu, M.; Inzé, D.; Van Breusegem, F. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 2000, 57, 779–795. [Google Scholar] [CrossRef]
- Bethke, P.C.; Jones, R.L. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J. 2001, 25, 19–29. [Google Scholar]
- Faisal, M.; Saquib, Q.; Alatar, A.A.; Al-Khedhairy, A.A.; Hegazy, A.K.; Musarrat, J. Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death. J. Hazard. Mater. 2013, 250–251, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Liao, W. Hydrogen peroxide signaling in plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Front. Plant Sci. 2016, 7, 230. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Sinha, A.K.; Jaggi, M.; Raghuram, B.; Tuteja, N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 2011, 6, 196–203. [Google Scholar] [CrossRef]
- Gechev, T.S.; Hille, J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell. Biol. 2005, 168, 17–20. [Google Scholar] [CrossRef]
- Joshi, P.K.; Saxena, S.C.; Arora, S. Characterization of Brassica juncea antioxidant potential under salinity stress. Acta Physiol. Plant. 2011, 33, 811–822. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Felemban, A.; Braguy, J.; Zurbriggen, M.D.; Al-babili, S. Apocarotenoids involved in plant development and stress response. Front. Plant Sci. 2019, 10, 1168. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Gurunathan, S.; Chung, I.M. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanopartciles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 2015, 252, 1031–1046. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.A.; Jones, J.H.; Mitchell, R.J.; Brewer, C.H. Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a fraunhofer line radiometer. Remote Sens. Environ. 1996, 55, 89–92. [Google Scholar] [CrossRef]
- Bartley, G.E. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell 1995, 7, 1027–1038. [Google Scholar]
- Sillanpää, M.; Ncibi, C. Biofuels and bioenergy. In A Sustainable Bioeconomy; Sillanpää, M., Ncibi, C., Eds.; Springer: Cham, Germany, 2017; pp. 79–139. [Google Scholar]
- Yang, J.; Cao, W.; Rui, Y. Interaction between nanoparticles and plants: Phytotoxicity and defense mechanisms. J. Plant Interact. 2017, 12, 158–169. [Google Scholar] [CrossRef]
- Husen, A.; Siddiqi, K.S. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res. Lett. 2014, 9, 1–24. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Sperotto, R.A.; Boff, T.; Duarte, G.L.; Fett, J.P. Increased senescence-associated gene expression and lipid peroxidation induced by iron deficiency in rice roots. Plant Cell Rep. 2008, 27, 183–195. [Google Scholar] [CrossRef]
- Rawat, M.; Nayan, R.; Negi, B.; Zaidi, M.; Arora, S. Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. juncea. Plant Physiol. Biochem. 2017, 118, 274–284. [Google Scholar] [CrossRef]
- Hezaveh, T.A.; Pourakbar, L.; Rahmani, F.; Alipour, H. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Commun. Soil Sci. Plant Anal. 2019, 50, 698–715. [Google Scholar] [CrossRef]
- Winkel, B.S.J. When an enzyme isn’t just an enzyme anymore. J. Exp. Bot. 2017, 68, 1387–1389. [Google Scholar] [CrossRef]
- Van Assche, F.; Clijsters, H. Effects of metalson enzyme activity in plants. Plant Cell Environ. 1990, 13, 195–206. [Google Scholar] [CrossRef]
- Meharg, A.A. Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ. 1994, 17, 989–993. [Google Scholar] [CrossRef]
- Bandara, J.; Guasaquillo, I.; Bowen, P.; Soare, L.; Jardim, W.F.; Kiwi, J. Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO evidence for a reductive–oxidative interfacial mechanism. Langmuir 2005, 21, 8554–8559. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zebda, R.; Drake, S.J.; Sayes, C.M. Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Part. Fiber Toxicol. 2009, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Cheloni, G.; Marti, E.; Slaveykova, V.I. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat. Toxicol. 2016, 170, 120–128. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef]
- Pais, I. The biological importance of titanium. J. Plant Nutr. 1983, 6, 3–131. [Google Scholar] [CrossRef]
- Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 2005, 105, 83–91. [Google Scholar] [CrossRef]
- Yang, F.; Hong, F.; You, W.; Liu, C.; Gao, F.; Wu, C.; Yang, P. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 2006, 110, 179–190. [Google Scholar] [CrossRef]
- Zheng, L.; Mingyu, S.; Xiao, W.; Chao, L.; Chunxiang, Q.; Liang, C.; Hao, H.; Xiaoqing, L.; Fashui, H. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem. Res. 2008, 121, 69–79. [Google Scholar]
- Soundararajan, P.; Sivanesan, I.; Jana, S.; Jeong, B.R. Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Hortic. Environ. Biotechnol. 2014, 55, 271–279. [Google Scholar] [CrossRef]
- Kumar, V.; Ramakrishna, A.; Ravishankar, G.A. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. Plant Cell Tissue Organ Cult. 2007, 43, 602–607. [Google Scholar] [CrossRef]
- Zhao, X.C.; Qu, X.; Mathews, D.E.; Schaller, G.E. Effect of ethylene-pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol. 2002, 130, 1983–1991. [Google Scholar] [CrossRef] [PubMed]
- Pua, E.C.; Deng, X.; Koh, A.T.C. Genotypic variability of de novo shoot morphogenesis Brassica oleracea in vitro in response to ethylene inhibitors and putrescine. J. Plant Physiol. 1999, 155, 598–605. [Google Scholar] [CrossRef]
- Strader, L.C.; Beisner, E.R.; Bartel, B. Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 2009, 21, 3585–3590. [Google Scholar] [CrossRef]
- Ali, H.; Khan, M.A.; Ullah, N.; Khan, R.S. Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa. J. Photochem. Photobiol. B Biol. 2018, 183, 242–250. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Raza, M.A.; Rizwan, M.; Tariq, R.; Ali, S.; Huang, L. Silver nanoparticles improved plant growth and reduced the sodium and chlorine accumulation in pearl millet: A life cycle study. Environ. Sci. Pollut. Res. Int. 2021, 28, 13712–13724. [Google Scholar] [CrossRef]
- Cvjetko, P.; Milosic, A.; Domijan, A.M.; Vinkovic, I.; Tolic, S.; Peharec, P. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017, 137, 18–28. [Google Scholar] [CrossRef]
- Mallick, K.; Witcomb, M.; Scurrella, M. Silver nanoparticle catalysed redox reaction: An electron relay effect. Mater. Chem. Phys. 2006, 97, 283–287. [Google Scholar] [CrossRef]
- Mukherjee, M.; Mahapatra, A. Catalytic effect of silver nanoparticle on electron transfer reaction: Reduction of [Co(NH3)5Cl](NO3)2 by iron(II). Colloids Surf. A Physicochem. Eng. Asp. 2009, 350, 1–7. [Google Scholar] [CrossRef]
- Vannini, C.; Domingo, G.; Onelli, E.; Prinsi, B.; Marsoni, M.; Espen, L.; Bracale, M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 2013, 8, 68752. [Google Scholar] [CrossRef] [PubMed]
- Vankova, R.; Landa, P.; Podlipna, R.; Dobrev, P.I.; Prerostova, S.; Langhansova, L.; Gaudinova, A.; Motkova, K.; Knirsch, V.; Vanek, T. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Sci. Total Environ. 2017, 59, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Khodakovskaya, M.V.; de Silva, K.; Nedosekin, D.A.; Dervishi, E.; Biris, A.S.; Shashkov, E.V.; Galanzha, E.I.; Zharov, V.P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1028–1033. [Google Scholar] [CrossRef]
- Vander Willigen, C.; Postaire, O.; Tournaire-Roux, C.; Boursiac, Y.; Maurel, C. Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant Cell Physiol. 2006, 47, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6, 2128–2135. [Google Scholar] [CrossRef]
- Kahila, M.M.H.; Najy, A.M.; Rahaie, M.; Mir-Derikvand, M. Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella sativa L. Nat. Prod. Res. 2018, 32, 1858–1862. [Google Scholar] [CrossRef]
- Rajaee Behbahani, S.; Iranbakhsh, A.; Ebadi, M.; Majd, A.; Ardebili, Z.O. Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bitter melon (Momordica charantia); an in vitro experiment. PLoS ONE 2020, 15, e0235556. [Google Scholar] [CrossRef]
- Gelvin, S.B. Agrobacterium-mediated plant transformation: The “Gene-Jockeying” tool: The biology behind. Microbiol. Mol. Biol. Rev. 2003, 67, 16–37. [Google Scholar] [CrossRef]
- Price, D.R.G.; Gatehouse, J.A. RNAi-mediated crop protection against insects. Trends Biotechnol. 2008, 26, 393–399. [Google Scholar] [CrossRef]
- Izuegbunam, C.L.; Wijewantha, N.; Wone, B.; Ariyarathne, M.A.; Seredab, G.; Wone, B.M.W. A nano-biomimetic transformation system enables in planta expression of a reporter gene in mature plants and seeds. Nanoscale Adv. 2021, 3, 32–40. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Prakash, C.S.; McHughen, A.G. Genome editing for crop improvement: Challenges and opportunities. GM Crop. Food 2015, 6, 183–205. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Zhai, G.; Kern, M.; Turner, A.; Schnoor, J.L.; Wiesner, M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-Critical review. Nanotoxicology 2016, 10, 257–278. [Google Scholar] [CrossRef] [PubMed]
- Demirer, G.S.; Zhang, H.; Matos, J.L.; Goh, N.S.; Cunningham, F.J.; Sung, Y.; Chang, R.; Aditham, A.J.; Chio, L.; Cho, M.J.; et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 2019, 14, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhao, F.J.; Kopittke, P.M.J. Engineering crops without genome integration using nanotechnology. Trends Plant Sci. 2019, 24, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef]
- Niazian, M.; MolaahmadNalousi, A.; Azadi, P.; Ma’mani, L.; Chandler, S.F. Perspectives on new opportunities for nano-enabled strategies for gene delivery to plants using nanoporous materials. Planta 2021, 254, 83. [Google Scholar] [CrossRef]
- Torney, F.; Trewyn, B.G.; Lin, V.S.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2007, 2, 295–300. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Wang, L.; Xiao, S.; Tong, C.; Tang, D.; Liu, X. Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J. Cent. S. Univ. Technol. 2008, 15, 768–773. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Li, L.H.; Wang, P.W.; Qu, J.; Fu, Y.P.; Wang, H.; Sun, J.R.; Lü, C.L. Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem. Res. Chin. Univ. 2012, 28, 672–676. [Google Scholar]
- Vijayakumar, P.S.; Abhilash, O.U.; Khan, B.M.; Prasad, B.L.V. Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv. Funct. Mater. 2010, 20, 2416–2423. [Google Scholar] [CrossRef]
- Burlaka, O.M.; Pirko, Y.V.; Yemets, A.I.; Blume, Y.B. Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol. Genet. 2015, 49, 349–357. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, X.; Shi, Y.; Xing, J.; Marowitch, J.; Chen, J.; Chen, J. FITC delivery into plant cells using magnetic single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2012, 12, 6287–6293. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yang, X.; Shi, Y.; Song, S.; Xing, J.; Marowitch, J.; Chen, J.; Chen, J. Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 2013, 91, 457–466. [Google Scholar] [CrossRef]
- Naqvi, S.; Maitra, A.N.; Abdin, M.Z.; Akmal, M.; Arors, I.; Samim, M. Calcium phosphate nanoparticle mediated genetic transformation in plants. J. Mater. Chem. 2012, 22, 3500–3507. [Google Scholar] [CrossRef]
- Ardekani, M.R.S.; Abdeni, M.Z.; Nasrullaah, N.; Samim, M. Calcium phosphate nanoparticles a novel non-viral gene delivery system for genetic transformation of tobacco. Int. J. Pharm. Sci. 2014, 6, 605–609. [Google Scholar]
- Rafsanjani, M.S.O.; Kiran, U.; Ali, A.; Abdin, M.Z. Transformation efficiency of calcium phosphate nanoparticles for genetic manipulation of Cichorium intybus L. Ind. J. Biotechnol. 2016, 15, 145–152. [Google Scholar]
- Wang, Q.; Chen, J.; Zhang, H.; Lu, M.; Qiu, D.; Wen, Y.; Kong, Q. Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells. J. Nanosci. Nanotechnol. 2011, 11, 2208–2214. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.N.; Zhan, P.; Zhang, L.; Kong, Q.Q. Establishment of a suspension cell system for transformation of Jatropha curcas using nanoparticles. Adv. Mater. Res. 2013, 608–609, 314–319. [Google Scholar] [CrossRef]
- Martin-Ortigosa, S.; Valenstein, J.S.; Sun, W.; Moeller, L.; Fang, N.; Trewyn, B.G.; Wang, K. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 2012, 8, 413–422. [Google Scholar] [CrossRef]
- Martin-Ortigosa, S.; Valenstein, J.S.; Lin, V.S.Y.; Trewyn, B.G.; Wang, K. Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv. Funct. Mater. 2012, 22, 3576–3582. [Google Scholar] [CrossRef]
- Martin-Ortigosa, S.; Peterson, D.J.; Valenstein, J.S.; Lin, V.S.Y.; Trewyn, B.G.; Lyznik, L.A.; Wang, K. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. 2014, 164, 537–547. [Google Scholar] [CrossRef]
- Hajiahmadi, Z.; Shirzadian-Khorramabad, R.; Kazemzad, M.; Sohani, M.M.; Khajehali, J. A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in Solanum lycopersicum. 3 Biotech 2020, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Zolghadrnasab, M.; Mousavi, A.; Farmany, A.; Arpanaei, A. Ultrasound-mediated gene delivery into suspended plant cells using polyethyleneimine-coated mesoporous silica nanoparticles. Ultrason. Sonochem. 2021, 73, 105507. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Wang, J.; Wang, Q.; O’Hare, D.; Wan, Y. Layered double hydroxide nanotransporter for molecule delivery to intact plant cells. Sci. Rep. 2016, 6, 26738. [Google Scholar] [CrossRef]
- Finiuk, N.; Buziashvili, A.; Burlaka, O.; Zaichenko, A.; Mitina, N.; Miagkota, O.; Lobachevska, O.; Stoika, R.; Blume, Y.; Yemets, A. Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell Tissue Organ Cult. 2017, 131, 27–39. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, Z.; Wang, Y.; Chen, W.; Sun, C.; Cui, B.; Cui, H. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants. 2017, 3, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razik, A.B.; Hammad, I.A.; Tawfik, E. Transformation of thionin genes using chitosan nanoparticle into potato plant to be resistant to fungal infection. IOSRJ Biotechnol. Biochem. 2017, 3, 01–13. [Google Scholar] [CrossRef]
- Gil-Humanes, J.; Wang, Y.; Liang, Z.; Shan, Q.; Ozuna, C.V.; Sánchez-León, S.; Baltes, N.J.; Starker, C.; Barro, F.; Gao, C.; et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 2017, 89, 1251–1262. [Google Scholar] [CrossRef]
- Farooq, N.; Ather, L.; Shafiq, M.; Nawaz-ul-Rehman, M.S.; Haseeb, M.; Anjum, T.; Abbas, Q.; Hussain, Q.; Ali, N.; Abbas, S.A.A.A. Magnetofection approach for the transformation of okra using green iron nanoparticles. Sci. Rep. 2022, 12, 16568. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, E.; Ahmed, M.F. Chitosan nanoparticles as a new technique in gene transformation into different plants tissues. Nat. Resour. Human Health 2022, 2, 215–221. [Google Scholar] [CrossRef]
Plant | Nanoparticle (NP) Treatment | Parameters | Reference |
---|---|---|---|
Brassica juncea var. pusa jaikisan | AgNPs | Enhancement in the growth of seedlings in terms of shoot FW, shoot and root length, and vigor index | [62] |
Brassica napus | AgNPs/AuNPs | Deceased shoot and root lengths, as well as shoot FW and DW | [60] |
Brassica nigra | ZnONPs | Increased shoot length and shoot DW, decreased root length, shoot FW, root FW and DW | [65] |
Brassica nigra | CuONPs | Delayed seed germination, decreased plantlet length, and their FWs and DWs | [5] |
Brassica oleracea var. sabellica ‘Nero di Toscana’ | AgNPs | Increased germination response, shoot and root lengths, as well as biomass | [59] |
Cicer arietinum | CuONPs | Decreased shoot and root lengths, FWs and DWs of shoot and root, increased lignifications in root cells | [66] |
Eruca sativa | AuNPs, CuNPs and AgNPs | AgNP-increased seed germination, shoot and root lengths, and seed vigourindex; AuNP-and CuNP-decreased seed germination, shoot and root lengths, and seed vigour index | [56] |
Glycine max hybrid S42-T4 | MWCNTs | Early and better germination, increased shoot, root and leaf lengths, shoot and root FWs and DWs | [67] |
Hylocereus undatus | AgNPs | Increased germination, shoot number, shoot, and root lengths, cladode size, and FW | [63] |
Hordeum vulgare hybrid Robust | MWCNTs | Early and better germination, increased shoot, root, and leaf lengths, shoot and root FWs and DWs | [67] |
Linum usitatissimum cv. Barbara | ZnONPs | Increased shoot and root length, as well as their FWs and DWs | [68] |
Nicotiana tabacum | AgNPs | Increased germination and dry biomass | [61] |
Oryza sativa cv. Swarna | AgNPs | Increased shoot and root length, FWs and DWs of shoot and root | [57] |
Pennisetum glaucum | AgNPs | Increased germination, seed vigour index, shoot and root lengths, and fresh and dry biomass | [58] |
Petroselinum crispum | TiO2NPs | Increased germination, shoot and root lengths, and their FWs | [69] |
Phaseolus radiatus | AgNPs | Adverse effect on seedling growth | [37] |
Phaseolus vulgaris | AgNPs | Increased seed germination, shoot and root length, their FWs and DWs, number of axillary buds, adventitious buds and leaves | [64] |
Physalis peruviana | AgNPs | Decreased shoot and root lengths, chlorophyll content, but increased FW and DW | [70] |
Raphanus sativus var. sativus ‘Ramona’ | AgNPs | Increased germination response, shoot and root lengths, and seedling biomass | [59] |
Solanum lycopersicum var. Poranek | AgNPs | Decreased germination response, shoot and root lengths, and seedling biomass | [59] |
Sorghum bicolour | AgNPs | Adverse effect on seedling growth | [37] |
Vigna radiata | CuONPs | Decreased shoot and root lengths and their FWs, increased lignifications in root cells | [71] |
Zea mays hybrid N79Z 300GT | MWCNTs | Early and better germination, increased shoot, root and leaf lengths, shoot and root FW and DW | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, A.; Haq, S.; Meena, N.; Dwivedi, P.; Kothari, S.L.; Kachhwaha, S. Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering. Plants 2023, 12, 3126. https://doi.org/10.3390/plants12173126
Pathak A, Haq S, Meena N, Dwivedi P, Kothari SL, Kachhwaha S. Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering. Plants. 2023; 12(17):3126. https://doi.org/10.3390/plants12173126
Chicago/Turabian StylePathak, Ashutosh, Shamshadul Haq, Neelam Meena, Pratibha Dwivedi, Shanker Lal Kothari, and Sumita Kachhwaha. 2023. "Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering" Plants 12, no. 17: 3126. https://doi.org/10.3390/plants12173126
APA StylePathak, A., Haq, S., Meena, N., Dwivedi, P., Kothari, S. L., & Kachhwaha, S. (2023). Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering. Plants, 12(17), 3126. https://doi.org/10.3390/plants12173126