Research Trends, Biases, and Gaps in Phytochemicals as Insecticides: Literature Survey and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Summary of the Literature Surveyed
2.2. Qualitative Trends: Study of Geographical Origin, Plants, Insects, and Phytochemicals
2.3. Quantitative Trends: Meta-Analyses
3. Discussion
4. Materials and Methods
4.1. Data Collection
4.2. Screening
4.3. Data Extraction
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hairston, N.G.; Smith, F.E.; Slobodkin, L.B. Community Structure, Population Control, and Competition. Am. Nat. 1960, 94, 421–425. [Google Scholar] [CrossRef]
- Murdoch, W.W. Community Structure, Population Control, and Competition-A Critique. Am. Nat. 1966, 100, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Power, M.E. Top-Down and Bottom-Up Forces in Food Webs: Do Plants Have. Ecology 1992, 73, 733–746. [Google Scholar] [CrossRef]
- Wilkinson, D.M.; Sherratt, T.N. Why Is the World Green? The Interactions of Top–down and Bottom–up Processes in Terrestrial Vegetation Ecology. Plant Ecol. Divers. 2016, 9, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Malthankar, P.A.; Mathur, V. Insect-Plant Interactions: A Multilayered Relationship. Ann. Entomol. Soc. Am. 2021, 114, 1–16. [Google Scholar] [CrossRef]
- Giron, D.; Dubreuil, G.; Bennett, A.; Dedeine, F.; Dicke, M.; Dyer, L.A.; Erb, M.; Harris, M.O.; Huguet, E.; Kaloshian, I.; et al. Promises and Challenges in Insect–Plant Interactions. Entomol. Exp. Appl. 2018, 166, 319–343. [Google Scholar] [CrossRef] [Green Version]
- Naorem, A.S.; Karthi, S. Ecology and Evolution of Insect-Plant Interactions. In Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology; Singh, I.K., Singh, A., Eds.; Springer-Nature: Singapore, 2021; pp. 437–453. [Google Scholar]
- Braga, M.P.; Janz, N. Host Repertoires and Changing Insect–Plant Interactions. Ecol. Entomol. 2021, 46, 1241–1253. [Google Scholar] [CrossRef]
- Smith, B.D.; Zeder, M.A. The Onset of the Anthropocene. Anthropocene 2013, 4, 8–13. [Google Scholar] [CrossRef]
- Steffen, W.; Grinevald, J.; Crutzen, P.; McNeill, J. The Anthropocene: Conceptual and Historical. Philos. Trans. R. Soc. A 2011, 369, 842–867. [Google Scholar] [CrossRef]
- Chen, Y.H.; Gols, R.; Benrey, B. Crop Domestication and Naturally Selected Species Interactions. Annu. Rev. Entomol. 2015, 60, 35–58. [Google Scholar] [CrossRef]
- Turchen, L.M.; Cosme-Júnior, L.; Guedes, R.N.C. Plant-Derived Insecticides under Meta-Analyses: Status, Biases, and Knowledge Gaps. Insects 2020, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Coats, J.R. Risks from Natural versus Synthetic Insecticides. Annu. Rev. Entomol. 1994, 39, 489–515. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, J.D.; Banks, J.E. Population-Level Effects of Pesticides and Other Toxicants on Arthropods. Annu. Rev. Entomol. 2003, 48, 505–519. [Google Scholar] [CrossRef]
- Agostini, M.G.; Roesler, I.; Bonetto, C.; Ronco, A.E.; Bilenca, D. Pesticides in the Real World: The Consequences of GMO-Based Intensive Agriculture on Native Amphibians. Biol. Conserv. 2020, 241, e108355. [Google Scholar] [CrossRef]
- Ghimire, N.; Woodward, R.T. Under- and over-Use of Pesticides: An International Analysis. Ecol. Econ. 2013, 89, 73–81. [Google Scholar] [CrossRef]
- Köhler, H.; Triebskorn, R.; Köhler, H.; Triebskorn, R. Wildlife Ecotoxicology of Pesticides: Can We Track Effects to The. Science 2013, 341, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Hayes, T.B.; Hansen, M. From Silent Spring to Silent Night: Agrochemicals and the Anthropocene. Elementa 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Schreinemachers, P.; Tipraqsa, P. Agricultural Pesticides and Land Use Intensification in High, Middle and Low Income Countries. Food Policy 2012, 37, 616–626. [Google Scholar] [CrossRef]
- Gibbs, K.E.; MacKey, R.L.; Currie, D.J. Human Land Use, Agriculture, Pesticides and Losses of Imperiled Species. Divers. Distrib. 2009, 15, 242–253. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do Pesticides Promote or Hinder Sustainability in Agriculture? The Challenge of Sustainable Use of Pesticides in Modern Agriculture. Sci. Total Environ. 2021, 795, e148625. [Google Scholar] [CrossRef]
- Copping, L.G.; Menn, J.J. Biopesticides: A Review of Their Action, Applications and Efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Miresmailli, S.; Isman, M.B. Botanical Insecticides Inspired by Plant-Herbivore Chemical Interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have Biopesticides Come of Age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of Botanical Insecticides for Sustainable Agriculture: Future Perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Sparks, T.C.; Crouse, G.D.; Durst, G. Natural Products as Insecticides: The Biology, Biochemistry and Quantitative Structure-Activity Relationships of Spinosyns and Spinosoids. Pest Manag. Sci. 2001, 57, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Loso, M.R.; Garizi, N.; Hegde, V.B.; Hunter, J.E.; Sparks, T.C. Lead Generation in Crop Protection Research: A Portfolio Approach to Agrochemical Discovery. Pest Manag. Sci. 2017, 73, 678–685. [Google Scholar] [CrossRef]
- Sparks, T.C.; Bryant, R.J. Innovation in Insecticide Discovery: Approaches to the Discovery of New Classes of Insecticides. Pest Manag. Sci. 2022, 78, 3226–3247. [Google Scholar] [CrossRef] [PubMed]
- Velasques, J.; Cardoso, M.H.; Abrantes, G.; Frihling, B.E.; Franco, O.L.; Migliolo, L. The Rescue of Botanical Insecticides: A Bioinspiration for New Niches and Needs. Pestic. Biochem. Physiol. 2017, 143, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Loiseleur, O. Natural Products in the Discovery of Agrochemicals. Chimia 2017, 71, 810–822. [Google Scholar] [CrossRef]
- Gerwick, B.C.; Sparks, T.C. Natural Products for Pest Control: An Analysis of Their Role, Value and Future. Pest Manag. Sci. 2014, 70, 1169–1185. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the Framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Acheuk, F.; Basiouni, S.; Shehata, A.A.; Dick, K.; Hajri, H.; Lasram, S.; Yilmaz, M.; Emekci, M.; Tsiamis, G.; Spona-Friedl, M.; et al. Status and Prospects of Botanical Biopesticides in Europe and Mediterranean Countries. Biomolecules 2022, 12, 311. [Google Scholar] [CrossRef]
- Haddi, K.; Turchen, L.M.; Viteri Jumbo, L.O.; Guedes, R.N.C.; Pereira, E.J.G.; Aguiar, R.W.S.; Oliveira, E.E. Rethinking Biorational Insecticides for Pest Management: Unintended Effects and Consequences. Pest Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Balog, A.; Hartel, T.; Loxdale, H.D.; Wilson, K. Differences in the Progress of the Biopesticide Revolution between the EU and Other Major Crop-Growing Regions. Pest Manag. Sci. 2017, 73, 2203–2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fijioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, Biologics and Nematicides: Updates to IRAC’s Mode of Action Classification—A Tool for Resistance Managementf. Pestic. Biochem. Physiol. 2020, 167, e104587. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical Insecticide Research: Many Publications, Limited Useful Data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Marsin, A.M.; Muhamad, I.I.; Anis, S.N.S.; Lazim, N.A.M.; Ching, L.W.; Dolhaji, N.H. Essential Oils as Insect Repellent Agents in Food Packaging: A Review. Eur. Food Res. Technol. 2020, 246, 1519–1532. [Google Scholar] [CrossRef]
- Scott, R.P.W. Techniques and Practice of Chromatography; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Lopes, E.; Filho, A.C.; Nobre, D.A.C.; Mendes, F.Q.; Fernandes, F.L.; Pinto, F.G.; Silva, G.H.; Tronto, J.; Visôtto, L.E.; Borges, P.D.; et al. A Química Na Produção Vegetal; UFV: Rio Paranaíba, Brazil, 2017. [Google Scholar]
- Sparks, T.C.; Bryant, R.J. Impact of Natural Products on Discovery of, and Innovation in, Crop Protection Compounds. Pest Manag. Sci. 2022, 78, 399–408. [Google Scholar] [CrossRef]
- Simmonds, M.S.J.; Fang, R.; Wyatt, L.; Bell, E.; Allkin, B.; Forest, F.; Wynberg, R.; da Silva, M.; Zhang, B.G.; Shi Liu, J.; et al. Biodiversity and Patents: Overview of Plants and Fungi Covered by Patents. Plants People Planet 2020, 2, 546–556. [Google Scholar] [CrossRef]
- Campbell, J.F.; Athanassiou, C.G.; Hagstrum, D.W.; Zhu, K.Y. Tribolium castaneum: A Model Insect for Fundamental and Applied Research. Annu. Rev. Entomol. 2022, 67, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Hagstrum, D.W.; Phillips, T.W. Evolution of Stored-Product Entomology: Protecting the World Food Supply. Annu. Rev. Entomol. 2017, 62, 379–397. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Athanassiou, C.G. Improving Stored Product Insect Pest Management: From Theory to Practice. Insects 2019, 10, 332. [Google Scholar] [CrossRef] [Green Version]
- Hubert, J.; Stejskal, V.; Athanassiou, C.G.; Throne, J.E. Health Hazards Associated with Arthropod Infestation of Stored Products. Annu. Rev. Entomol. 2018, 63, 553–573. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environmental Programme [UNEP]. Montreal Protocol on Substances that Deplete; UNEP: Nairobi, Kenya, 1994. [Google Scholar]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the Fumigant Phosphine and Its Management in Insect Pests of Stored Products: A Global Perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurjar, M.; Baronia, A.K.; Azim, A.; Sharma, K. Managing Aluminum Phosphide Poisonings. J. Emergencies Trauma Shock 2011, 4, 378–384. [Google Scholar] [CrossRef]
- Bumbrah, G.S.; Krishan, K.; Kanchan, T.; Sharma, M.; Sodhi, G.S. Phosphide Poisoning: A Review of Literature. Forensic Sci. Int. 2012, 214, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.N.C.; Walse, S.S.; Throne, J.E. Sublethal Exposure, Insecticide Resistance, and Community Stress. Curr. Opin. Insect Sci. 2017, 21, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, R.N.C.; Cutler, G.C. Insecticide-Induced Hormesis and Arthropod Pest Management. Pest Manag. Sci. 2014, 70, 690–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, R.N.C.; Rix, R.R.; Cutler, G.C. Pesticide-Induced Hormesis in Arthropods: Towards Biological Systems. Curr. Opin. Toxicol. 2022, 29, 43–50. [Google Scholar] [CrossRef]
- Cutler, G.C.; Amichot, M.; Benelli, G.; Guedes, R.N.C.; Qu, Y.; Rix, R.R.; Ullah, F.; Desneux, N. Hormesis and Insects: Effects and Interactions in Agroecosystems. Sci. Total Environ. 2022, 825, e153899. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Benelli, G.; Agathokleous, E. Arthropod Outbreaks, Stressors and Sublethal Stress. Curr. Opin. Environ. Sci. Health 2022, 28, e100371. [Google Scholar] [CrossRef]
- Agathokleous, E.; Barceló, D.; Aschner, M.; Azevedo, R.A.; Bhattacharya, P.; Costantini, D.; Cutler, G.C.; De Marco, A.; Docea, A.O.; Dórea, J.G.; et al. Rethinking Subthreshold Effects in Regulatory Chemical Risk Assessments. Environ. Sci. Technol. 2022, 56, 11095–11099. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Egbuna, C.; Ifemeje, J.C.; Udedi, S.C.; Kumar, S. Phytochemistry: Volume 1: Fundamentals, Modern Techniques, and Applications, 1st ed.; Egbuna, C., Ifemeje, J.C., Udedi, S.C., Kumar, S., Eds.; Apple Academic Press: New York, NY, USA, 2019. [Google Scholar]
Structure | Class | Subclasses [Representative Constituents] |
---|---|---|
Phenolics | Aromatic acids [e.g., simple phenols, phenolic acids, phenolic aldehydes, etc.] Polyphenols [e.g., flavonoids, isoflavonoids, curcuminoids, tannins, etc.] | |
Aromatics | Non-phenolic aromatics [e.g., benzoquinones, acetophenones, phenylacetic acids, coumarins, etc.] | |
Terpenes | From monoterpenes [e.g., limonene], to diterpene [e.g., retinol, phytol], to sesquiterpenes [e.g., farnesol, humulene], up to polyterpenes [e.g., natural rubber] | |
Terpene ((C5H8)n for n > 1) derivatives with additional functional groups | Terpenoids | From hemiterpenoids [e.g., isoprenol, prenol], to monoterpenoids [e.g., camphor, carvone, menthol], up to polyterpenoids |
Diverse nitrogen-containing compounds | Organonitrides | Alkaloids [e.g., nicotine, caffeine, morphine, Cyanogenic glucosides Nonprotein amino acids [e.g., canavanine] |
Sulfur-containing compounds (non-amino acid) | Organosulfides | [e.g., allicin, alliin, piperine, phytoalexins] |
Carbonyl | Aldehydes [e.g., citral], ketones and other carbonyl compounds not represented in the previous classes | |
Others | [phytic acid, oxalic acid, tartaric acid, malic acid, quinic acid, etc.] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collares, L.J.; Turchen, L.M.; Guedes, R.N.C. Research Trends, Biases, and Gaps in Phytochemicals as Insecticides: Literature Survey and Meta-Analysis. Plants 2023, 12, 318. https://doi.org/10.3390/plants12020318
Collares LJ, Turchen LM, Guedes RNC. Research Trends, Biases, and Gaps in Phytochemicals as Insecticides: Literature Survey and Meta-Analysis. Plants. 2023; 12(2):318. https://doi.org/10.3390/plants12020318
Chicago/Turabian StyleCollares, Lara J., Leonardo M. Turchen, and Raul Narciso C. Guedes. 2023. "Research Trends, Biases, and Gaps in Phytochemicals as Insecticides: Literature Survey and Meta-Analysis" Plants 12, no. 2: 318. https://doi.org/10.3390/plants12020318
APA StyleCollares, L. J., Turchen, L. M., & Guedes, R. N. C. (2023). Research Trends, Biases, and Gaps in Phytochemicals as Insecticides: Literature Survey and Meta-Analysis. Plants, 12(2), 318. https://doi.org/10.3390/plants12020318